Knowledge Graphs
Representing Graphs with the Resource Description Framework (RDF)

Heiko Paulheim
Overview

• Graph representation in a nutshell
• A brief history of RDF
• Encodings of RDF
• Semantics and principles of RDF
• Embedding RDF in HTML – RDFa, Microdata, Microformats
• RDF Tools
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Directed vs. undirected, e.g.:
 - social graph: A and B know each other
 - citation graph: paper X cites paper Y
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Labeled vs. unlabeled (also: heterogenous vs. homogeneous)
 - A network of highways: a particular highway links to cities
 - A molecular graph
Knowledge Graphs are Graphs

• Graphs may have different flavours
• Homogenous vs. heterogeneous nodes, e.g.,
 – A coauthorship graph
 – A graph of authors and publications
Knowledge Graphs are Graphs

- Graphs may have different flavours
- Cyclic vs. acyclic
 - A family tree (acyclic graphs are often referred to as “trees”)
 - A computer network
Knowledge Graphs are Graphs

- So when we talk about a knowledge graph, what kind of graph do we mean?
- No formal definition, but de facto consensus:
 - Directed, labeled graph
 - Heterogeneous node types (and edges)
 - Need not be cycle free
- Node types (“classes”) and edge types (“properties”)
 - Are also referred to the “schema” of the graph (aka “ontology”)
 - Can be defined with further restrictions
 - e.g., an edge of type “author” links a publication to a person
The Semantic Web Stack

here be dragons...

Knowledge Graph Technologies (This lecture)

Technical Foundations

Berners-Lee (2009): *Semantic Web and Linked Data*
History: Metadata on the Web

• Goal: more effective rating and ranking of web contents, e.g., by search engines

• Who has created this page?
• When has it been changed the last time?
• What is its topic?
• Which is the content's license?
• How does it relate to other pages?
Metadata on the Web: Dublin Core

- Developed in 1995 at a workshop in Dublin, Ohio
- 15 predefined tags
- A widely accepted standard (ISO 15836:2009)

- May be embedded into HTML:

```html
<html>
<head profile="http://dublincore.org/documents/2008/08/04/dc-html/"/>
  <title>Semantic Web</title>
  <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
  <meta name="DC.publisher" content="University of Mannheim" />
  <meta name="DC.subject" content="Semantic Web Technologies" />
  <meta name="DC.creator" content="Heiko Paulheim" />
  <meta name="DC.relation" content="http://www.w3.org/2001/sw/" />
  ...
</head>
<body>
  ...
</body>
</html>
Metadata on the Web: Dublin Core

- Identifier
- Format
- Type
- Language
- Date
- Title
- Subject
- Coverage
- Description
- Creator
- Publisher
- Contributor
- Rights
- Source
- Relation
What is RDF?

• „Resource Description Framework“
• A W3C standard since 2004
• Description of arbitrary things

• View 1: Sentences in the form <subject, predicate, object> „Heiko works for the University of Mannheim.“

• View 2: Directed graphs with labeled edges

Some literature: <head, relation tail>
What is RDF?

- A knowledge graph consists of *multiple* sentences
What is RDF?

- We usually think of knowledge graphs as densely connected graphs
  - Objects of one statement become subjects of another

```
Harald knows Heiko
works for KIT
located in Baden-Württemberg

Heiko knows Harald
works for Uni Mannheim
located in Baden-Württemberg
```
Basic Building Blocks of RDF

• Resources
  – denote things
  – are identified by a URI
  – can have one or multiple types

• Literals
  – are values like strings or integers
  – can only be objects, not subjects or predicates
    (graph view: they can only have ingoing edges)
  – can have a datatype or a language tag (but not both)

• Properties (Predicates)
  – Link resources to other resources and to literals
Basic Building Blocks of RDF

• Resources:
  – Heiko, Uni Mannheim

• Properties
  – works for, ZIP

• Literals:
  – “68131”
Types

- All resources (not literals) can have a type
- Types can be arbitrarily defined
- The predefined predicate `rdf:type` defines the type of a resource

- Knowledge Graphs is a lecture

* `<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>`
Resource vs. Literal

• A literal is an atomic value
  – can only be object
  – i.e., a literal terminates always a graph

• A resource can be a subject itself
Datatypes for Literals

- (Almost) all XML Schema datatypes may be used
- Exception:
  - XML specific types
  - The underspecified type "duration"
  - sequence types
Language Tags for Literals

• Literals may be defined in different natural languages
  – "München"@de
  – "Munich"@en

• Those can be marked

• Note: Knowledge Graphs can be multilingual!

• Language codes according to ISO 963
  – if both are defined, ISO 963-1 has to be used!

## Language Tags for Literals

<table>
<thead>
<tr>
<th>ISO 639-2 Code</th>
<th>ISO 639-1 Code</th>
<th>English name of Language</th>
<th>French name of Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>aar</td>
<td>aa</td>
<td>Afar</td>
<td>afar</td>
</tr>
<tr>
<td>abk</td>
<td>ab</td>
<td>Abkhazian</td>
<td>abkhaze</td>
</tr>
<tr>
<td>aca</td>
<td>Ache</td>
<td>Achi</td>
<td>achi</td>
</tr>
<tr>
<td>ach</td>
<td>Acoli</td>
<td>acoli</td>
<td>acoli</td>
</tr>
<tr>
<td>ada</td>
<td>Adangme</td>
<td>adangme</td>
<td>adangme</td>
</tr>
<tr>
<td>ady</td>
<td>Adyghe; Adyghe</td>
<td>adyghe; adygly</td>
<td>adyghe; adygly</td>
</tr>
<tr>
<td>afl</td>
<td>Afro-Asiatic languages</td>
<td>afro-asiatiques, langues</td>
<td>afro-asiatiques, langues</td>
</tr>
<tr>
<td>afr</td>
<td>Afrihili</td>
<td>afrihili</td>
<td>afrihili</td>
</tr>
<tr>
<td>ain</td>
<td>Afrikaans</td>
<td>afrikaans</td>
<td>afrikaans</td>
</tr>
<tr>
<td>akin</td>
<td>Ainu</td>
<td>ainu</td>
<td>ainu</td>
</tr>
<tr>
<td>akk</td>
<td>Akhn</td>
<td>akhn</td>
<td>akhn</td>
</tr>
<tr>
<td>alb (B)</td>
<td>sq</td>
<td>Albanian</td>
<td>albanais</td>
</tr>
<tr>
<td>sq (T)</td>
<td>sq</td>
<td>Albanian</td>
<td>albanais</td>
</tr>
<tr>
<td>ale</td>
<td>Alen</td>
<td>ale</td>
<td>ale</td>
</tr>
<tr>
<td>alg</td>
<td>Algonquian languages</td>
<td>algonquines, langues</td>
<td>algonquines, langues</td>
</tr>
<tr>
<td>alt</td>
<td>Altai</td>
<td>altai du Sud</td>
<td>altai du Sud</td>
</tr>
<tr>
<td>amh</td>
<td>Amharic</td>
<td>amharic</td>
<td>amharique</td>
</tr>
<tr>
<td>ang</td>
<td>English, Old (ca 450-1190)</td>
<td>anglo-saxon (ca 450-1190)</td>
<td>anglo-saxon (ca 450-1190)</td>
</tr>
<tr>
<td>angk</td>
<td>Angka</td>
<td>angka</td>
<td>angka</td>
</tr>
<tr>
<td>asa</td>
<td>Apache languages</td>
<td>apache, lanouss</td>
<td>apache, lanouss</td>
</tr>
</tbody>
</table>
Datatypes in RDF

• Examples:
  :Munich :hasName "München"@de .
  :Munich :hasName "Munich"@en .
  :Munich :hasPopulation "1356594 "^^xsd:integer .
  :Munich :hasFoundingYear "1158-01-01"^^xsd:date .

• Note: there are no default datatypes (not even “string”!)
• These are three different literals:
  – "München"
  – "München"@de
  – "München"^^xsd:string .
Triple Notation

- Triples consist of a subject, predicate, and object
- An RDF document is an *unordered* set of triples

- **Simple triple:**
  
  <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>  
  <http://purl.org/dc/elements/1.1/relation>  
  <http://www.w3.org/2001/sw/> .

- **Literal with language tag:**
  
  <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>  
  <http://purl.org/dc/elements/1.1/subject>  
  "Semantic Web"@en .

- **Type literal:**
  
  <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>  
  <http://www.uni-mannheim.de/mhb/creditpoints>  
  "6"^^<http://www.w3.org/2001/XMLSchema#integer> .
Turtle Notation

• A simplified triple notation

• Central definition of namespaces (and a default namespace):

@prefix dc: <http://purl.org/dc/elements/1.1/>
@prefix : <http://www.dws.informatik.uni-mannheim.de/teaching/>

• Triples sharing the same subject or subject+predicate:

:semantic-web dc:subject "Semantisches Web"@de ,
    "Semantic Web"@en ;
    dc:creator "Heiko Paulheim".

• Shorthand notation for rdf:type:

:semantic-web a :lecture .
Notation RDF/XML

- A W3C standard since 2004
- Encodes RDF in XML
- Suitable for machine processing (plenty of XML tools!)

- Defining resources:

```xml
<rdf:Description rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
 <dc:creator>Heiko Paulheim</dc:creator>
</rdf:Description>
```

- Defining typed resources:

```xml
<rdf:Description rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
 <rdf:type rdf:resource="http://www.uni-mannheim.de/mhb/Lecture"/>
</rdf:Description>
```

- Alternative representation:

```xml
<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs"
 xmlns:mhb="http://www.uni-mannheim.de/mhb/" />
```
Notation RDF/XML

- **Relations between resources by nesting**

  \[
  \text{<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
  \text{<mhb:givenBy>}
  \text{<mhb:Lecturer rdf:about="http://dws.informatik.uni-mannheim.de/heiko"/>}
  \text{</mhb:givenBy>}
  \text{</mhb:Lecture>}
  \]

- **Relations between resources by explicit links**

  \[
  \text{<mhb:Lecturer rdf:about="http://dws.informatik.uni-mannheim.de/heiko"/>}
  \text{<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/kgs">
  \text{<mhb:givenBy rdf:resource="http://dws.informatik.uni-mannheim.de/heiko"/>}
  \text{</mhb:givenBy>}
  \text{</mhb:Lecture>}
  \]
Notation RDF/XML

- Recap: knowledge graphs may contain cycles
- XML is acyclic – we need to use explicit links

```
<mhb:University rdf:about="http://www.uni-mannheim.de">
 <mhb:hasEmployee>
 <mhb:UniversityMember rdf:about="http://www.heikopaulheim.com/">
 <mhb:worksFor rdf:resource="http://www.uni-mannheim.de"/>
 </mhb:UniversityMember>
 </mhb:hasEmployee>
</mhb:University>
```
JSON-LD Notation

- JSON is popular in script programming
- JSON-LD: Standard for serializing RDF in JSON
  - JSON-LD 1.1 W3C standard (2020)

```
{
 "@id": "http://www.heikopaulheim.com/",
 "http://dws.informatik.uni-mannheim.de/name": "Heiko Paulheim",
 "http://dws.informatik.uni-mannheim.de/teaches": {
 "http://http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://dws.informatik.uni-mannheim.de/Lecture",
 "http://dws.informatik.uni-mannheim.de/title": "Knowledge Graphs"
 }
}
```
Blank Nodes

• Information that is not or cannot be specified
  – "Dieter Fensel has written a book about the Semantic Web"
Blank Nodes

- Information that is not or cannot be specified
  - "Dieter Fensel has written something about the Semantic Web."

![Diagram showing blank nodes with edges labeled 'dc:creator' and 'dc:subject']
Blank Nodes in Turtle

• Variant 1: explicitly named with an underscore

```
:Dieter_Fensel dc:creator _:x .
_:x a :Book ;
 dc:subject "Semantic Web" .
```

• Variant 2: unnamed with square brackets

```
:Dieter_Fensel dc:creator
 [a :Book;
 dc:subject "Semantic Web"].
```

• Notes:
  – both are equivalent
  – changing blank node names does not change the semantics!
Application of Blank Nodes: n-ary Predicates

• RDF predicates always connect a subject and an object
  – i.e., in the sense of predicate logic, they are binary predicates


  \[ \iff \text{works_for(Heiko, UniMannheim)} . \]

• Sometimes, n-ary predicates are needed
  – has_ingredient(Recipe, Sugar, 100g)
Application of Blank Nodes: n-ary Predicates

:recipe :hasIngredient [ :ingredient :Sugar; :amount "100g" ] .
Recipe :hasIngredient [ :ingredient :Sugar;
   :amount [ :value "100"^^xsd:int ;

How does this differ from the version on the previous slide?
Semantic Principles of RDF

• On the Web, "anybody can say anything about anything"
  – This is called the AAA principle (Allemang & Hendler)

• The AAA principle is also used for RDF knowledge graphs
  – History: information sharing on the Web
Semantic Principles of RDF

• One thing can have multiple names

   :Munich :capitalOf :Bavaria .

• On the semantic web, there is not just one name for each thing
  – this is called the *Non-unique name assumption*

• This means: Just that two things have different names does not mean that they are different!
RDF: Intuition and Actual Semantics

• Let us consider the following example:

:Peter :fatherOf :Julia ,
    :Mary .

• How many children does Peter have?

• Intuitively, we assume that Julia and Mary are two different persons
• However, this is not trivial for a machine
  – (and the assumption may even be wrong)
Semantic Principles of RDF

• Historical argumentation:
  – We (probably) do not know all the contents of the Semantic Web*

• Therefore, there may be more information on a resource than what we have

• This principle is called "Open World Assumption"

* this may not be true for enterprise knowledge graphs
Let us consider this example again:

:Peter :fatherOf :Julia ,
    :Mary .

How many children does Peter have?

Intuition says: two children

However, he could also have three or more
(oder also just one, as we have learned just a minute ago)
RDF: Intuition and Actual Semantics

- Both
  - Non-unique Name Assumption and
  - Open World Assumption
will re-occur quite a few times in this lecture

- Hint: consider those two whenever something seems weird when interpreting RDF data
RDF and HTML

- The Semantic Web uses RDF
- The “classic” Web uses HTML

- Does that mean that each information has to be encoded twice?
  - once for humans, once for machines

```html
<html>
 ...
 Dr. Mark Smith
 <i>Physician</i>
 Main St. 14
 Smalltown
 Mon-Fri 9-11 am
 Wed 3-6 pm
 ...
</html>
```

```turtle
:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
:p :hasAddress :a .
:a :street "Main Street" .
:a :number "14"^^xsd:int .
:a :city "Smalltown" .
p :hasOpeningHours [rdf:Bag ;
 [:day :Monday;
 :from "9"^^xsd:int;
 :to "11"^^xsd:int;
]
 ...
```
Using RDF and HTML Together – Variant 1

• Explicit reference to a RDF version
  – an agent stumbling on the HTML page can download the RDF data file

```
<html>
<head>
 <link rel="meta" type="application/rdf+xml" title="DC" href="dc.rdf" />
</head>
<body>
...
</body>
</html>
```

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.dws.informatik.uni-mannheim.de/mhb/sw">
 <dc:publisher>University of Mannheim</dc:publisher>
 <dc:subject>Semantic Web</dc:subject>
 <dc:creator>Heiko Paulheim</dc:creator>
 <dc:relation rdf:resource="http://www.w3.org/2001/sw/" />
 </rdf:Description>
</rdf:RDF>
```
Using RDF and HTML Together – Variant 2

- Content Negotiation
Content Negotiation in Detail

Browser

Server

HTTP/1.1 303 See Other
Location: http://www.mannheim.de/index.html

GET / HTTP/1.1
Host: www.mannheim.de
Accept: text/html

Address for HTML
HTTP Get
Content Negotiation in Detail

GET / HTTP/1.1  
Host: www.mannheim.de  
Accept: application/rdf+xml

HTTP/1.1 303 See Other  
Location: http://www.mannheim.de/data.rdf
Content Negotiation: MIME Types

- MIME: Multipurpose Internet Mail Extensions
- Original purpose: classifying e-mail attachments
  - Text, PDF, ..
- First version: 1996
- Administred by IANA

- Important MIME types for Semantic Web programming
  - application/rdf+xml
  - text/turtle
  - text/n3
  - application/json
  - application/sparql-query
  - application/sparql-results+xml
Using RDF and HTML Together

• Link to RDF Document
  – Can be done with a simple HTML editor
  – No special server configuration needed

• Content Negotiation
  – Requires particular server setup
  – *One* URI can be used for different representations

• Both cases require
  – two different representations
  – “double bookkeeping”
→ Potential source of inconsistencies!
RDF in Attributes (RDFa)

• Idea of RDFa
  – Why not encode HTML and RDF in one document
  – The essential information only has to be encoded once

• RDFa combines XHTML with RDF
  – W3C Standard since 2008

```html
<html>
 ...
 <body about="http://www.marcsmith.com/MarcSmith">
 Dr. Mark Smith
 <i>Physician</i>

 Main Street

 14

 Smalltown

 </body>
 ...
</html>
```
RDFa Language Constructs

• about="http://foo.bar/aSubject"
  – Defines the subject of a page or section
• property = "http://foo.bar/aProperty"
  – Defines a relation
  – Contents of the tag are interpreted as a literal
• rel = "http://foo.bar/aRelation"
  – Defines a relation to another resource
• href = "http://foo.bar/aResource"
  – Defines a relation's object
  – can be the subject of a resource again
• typeof = "http://foo.bar/aType"
  – defines a resource's type
RDF in Attributes (RDFa)

```html
<html>
 ...
 <body about="http://www.marcsmith.com/MarcSmith">
 Dr. Mark Smith
 <i>Physician</i>

 Main Street
 14
 Smalltown

 </body>
</html>
```
RDF in Attributes (RDFa)

```html
<html>
 ...
 <body about="http://www.marcsmith.com/MarcSmith">
 Dr. Mark Smith
 <i>Physician</i>

 Main Street
 14
 Smalltown

 </body>
 ...
</html>
```
Alternative to RDFa: Microdata

• Adding structured information to web pages
  – By marking up contents
  – Arbitrary vocabularies are possible
  – Introduced with HTML5

• Similar to RDFa
  – W3C Standard since 2008, maintained by WHATWG since 2019

```
<div itemprop="http://schema.org/PostalAddress">
 Data and Web Science Group,
 Mannheim,
 68131,
 Germany
</div>
```
Alternative to RDFa: Microdata

- Markup can be extracted to RDF
  - See W3C Interest Group Note: Microdata to RDF [1]

```
<div itemscope itemtype="http://schema.org/PostalAddress">
 Data and Web Science Group
 _:1 a <http://schema.org/PostalAddress>
 _:1 <http://schema.org/name> "Data and Web Science Group"
 _:1 <http://schema.org/addressLocality> "Mannheim"
 _:1 <http://schema.org/postalCode> "68131"
 _:1 <http://schema.org/addressCountry> "Germany"
```

Alternative to RDFa: Microdata

• Commonalities
  – Arbitrary classes/predicates are possible
  – Although Microdata is mainly used with schema.org

• Differences
  – Microdata is slightly less expressive
  – No URIs, only blank nodes
  – No cycles in the resulting RDF graph
  – No reification (see later)
JSON-LD in HTML

- In a specific `<script>` tag
- Note: unlike RDFa/Microdata, this is content duplication!

```html
<script>
 "@context": "https://schema.org",
 "@type": "Organization",
 "address": {
 "@type": "PostalAddress",
 "name": "Data and Web Science Group",
 "addressLocality": "Mannheim",
 "postalCode": "68131",
 "addressCountry": "Germany"
 },
</script>
_:0 a <http://schema.org/Organization> .
_:0 <http://schema.org/address> _:1 .
_:1 a <http://schema.org/PostalAddress> .
_:1 <http://schema.org/name> "Data and Web Science Group" .
_:1 <http://schema.org/addressLocality> "Mannheim" .
_:1 <http://schema.org/addressCountry> "Germany" .
```
RDFa, MicroFormats, and Microdata

- MicroFormats: fixed vocabularies for persons, addresses, etc.

- WebDataCommons: Large-Scale Extraction of RDFa, MicroFormats, Microdata, JSON-LD from the Web

http://webdatacommons.org/structureddata/
RDFa, MicroFormats, and Microdata

- MicroFormats: fixed vocabularies for persons, addresses, etc.
- WebDataCommons: Large-Scale Extraction of RDFa, MicroFormats, Microdata, JSON-LD from the Web

http://webdatacommons.org/structureddata/
RDF Tools

- Storage: relational databases, graph databases, ...
- Validation: validating parsers checking consistency
- Visualization: mostly graph based visualization
- Reasoning: inference over graphs (see next lectures)
- Programming: APIs (see next lectures)

http://rdfplayground.dcc.uchile.cl/
Metadata for RDF

• Recap: Dublin Core was designed as Metadata for the Web
• Knowledge graphs may have metadata as well

• Most prominently: *provenance*
  – Where does the data come from?
  – Who created it?
  – When was it created?
  – What was the process creating it?
  – …

https://www.w3.org/TR/prov-o/
Reification

- Latin *res* ("Thing"), *facere* ("make")
  - an Explication
  - making a statement, an opinion etc. the subject of a statement

- In RDF: Statements about statements

- "Peter says that Rome is the capital of Spain."

Implementation:
  - RDF Statements are considered resources themselves
  - Can be subject or object of other statements

- Reification can have multiple levels
  - “Peter says that Wikipedia states that Rome is the capital of Spain.”
Reification in RDF

Peter says

Rome is capital of Spain
Implementing Reification as Standard RDF

Peter says: Rome is capital of Spain.
Encoding Reification in Turtle

- **Variant 1: Named Statement (with URI)**

  ```turtle
 :triple1 rdf:type rdf:Statement ;
 rdf:subject :Rome ;
 rdf:predicate :isCapitalOf ;
 rdf:object :Spain .
 :Peter :says :triple1 .
  ```

- **Variant 2: Unnamed Statement (Blank Node)**

  ```turtle
 :Peter :says [a rdf:Statement ;
 rdf:subject :Rome ;
 rdf:predicate :isCapitalOf ;
 rdf:object :Spain .
] .
  ```
Wrap Up

• RDF is a language for describing arbitrary things
  – interpretation: set of statements or directed graph
  – Notations: RDF/XML, Turtle

• Special language constructs
  – Blank nodes
  – Reification and its variants

• Semantics
  – Non-unique name assumption
  – Open world assumption

• Embedding in HTML is possible

• Large set of tools is available
A Critical Look in the Rear View Mirror

• Is RDF more powerful than XML?

• XML is a markup language for information

• In XML, arbitrary elements and attributes can be defined

• XML tag names are meaningless for a computer

• RDF is a markup language for information

• In RDF, arbitrary classes and predicates can be defined

• RDF class and predicate names are meaningless for a computer
A Critical Look in the Rear View Mirror

- So, why did we spend an entire lecture on RDF?
A Critical Look in the Rear View Mirror

How Standards Proliferate:
(See: A/C chargers, character encodings, instant messaging, etc.)

SITUATION:
There are 14 competing standards.

14?! RIDICULOUS!
We need to develop one universal standard that covers everyone's use cases. YEAH!

SITUATION:
There are 15 competing standards.

http://xkcd.com/927/
The Semantic Web Stack

here be dragons...

Knowledge Graph Technologies (This lecture)

Technical Foundations

Berners-Lee (2009): Semantic Web and Linked Data
Questions?