
Knowledge Graphs
Linked Open Data &

Semantic Web Programming

Heiko Paulheim

9/26/23 Heiko Paulheim 2

Overview

• Linked Open Data

– Principles

– Examples

– Vocabularies

• Microdata & schema.org

• Introduction to Semantic Web Programming with rdflib & Jena

9/26/23 Heiko Paulheim 3

Linked Open Data

• What we've got to know up to now

– RDF as a universal language for encoding knowledge

– RDF Schema for describing vocabularies (i.e., classes and properties)

• How can we publish such knowledge?

• Linked Open Data
• uses techniques like URIs, RDF, RDF schema

• for publishing knowledge on the Web

9/26/23 Heiko Paulheim 4

Why “Linked” Open Data?

:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
:p :hasAddress :a .
:a :street "Main Street" .
:a :number "14"^^xsd:int .
:a :city "Smalltown" .
:p :hasOpeningHours [
 a rdf:Bag ;
 [:day :Monday;
 :from "9"^^xsd:int;
 :to "11"^^xsd:int;
]
 ...

:s a :City .
:s :name "Smalltown" .
:s :lat "49.86"^^xsd:double .
:s :long "8.65"^^xsd:double .
:s :district "Birmingham" .
...

:d a :District .
:d :name "Birmingham" .
:d :pop "347891"^^xsd:int .
:d :locatedIn "England" .
...

9/26/23 Heiko Paulheim 5

Why “Linked” Open Data?

• Information is scattered on the Web

– Publishing your own knowledge graph online just adds a scattered piece

– “information silos”

• HTML has a concept for interlinking scattered information

– known as hyperlink

– More information at W3C

• Linked Open Data uses that principle, too

9/26/23 Heiko Paulheim 6

Why “Linked” Open Data?

:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
:p :hasAddress :a .
:a :street "Main Street" .
:a :number "14"^^xsd:int .
:a :city
 <http://.../smalltown> .
:p :hasOpeningHours [
 a rdf:Bag ;
 [:day :Monday;
 :from "9"^^xsd:int;
 :to "11"^^xsd:int;
]
 ...

:s a :City .
:s :name "Smalltown" .
:s :lat "49.86"^^xsd:double .
:s :long "8.65"^^xsd:double .
:s :district
 <http://.../birmingham> .
...

:d a :District .
:d :name "Birmingham" .
:d :pop "347891"^^xsd:int .
:d :locatedIn "England" .
...

9/26/23 Heiko Paulheim 7

Why “Linked” Open Data?

• Linked Open Data is RDF data

– which is provided in a distributed manner

• URIs

– have been used as simple identifiers so far

– in LOD: links to data

• resolvable!

• "dereferencable URIs" (URLs)

• can be used together with content negotiation, RDFa, etc.

9/26/23 Heiko Paulheim 8

Why “Linked” Open Data?

• Example:

– <#Heiko> :worksIn <http://dbpedia.org/resource/Mannheim> .

9/26/23 Heiko Paulheim 9

Why “Linked” Open Data?

• Example:

– <#Heiko> :worksIn <http://dbpedia.org/resource/Mannheim> .

9/26/23 Heiko Paulheim 10

HTML Links vs. Links in Linked Open Data

• Compare

Heiko works in Mannheim.

to
:Heiko :worksIn <http://dbpedia.org/resource/Mannheim> .

• Observation:

– Links in Linked Open Data are always explicitly typed

– The semantics of the link is thus interpretable

• given that the predicate is defined in a schema

9/26/23 Heiko Paulheim 11

Links in Linked Open Data

• Important special case: owl:sameAs*

* We don't know OWL yet, never mind, we'll get to that...

:Heiko
 owl:sameAs
 <http://dblp.l3s.de/d2r/page/
 authors/Heiko_Paulheim>

9/26/23 Heiko Paulheim 12

Links in Linked Open Data

• Important special case: owl:sameAs*

• Links two identical resources
– This is required due to the non-unique naming assumption

• One of the most commonly misused concepts in the Semantic Web...

• Use:
– Two datasets with information about the same person

• Abuse:
– A dataset with information about a person and the person's homepage

– The Starbucks in O7 and the company Starbucks

– The state and the city of Hamburg

– The parliament as an institution and the parliament as a building

* We don't know OWL yet, never mind, we'll get to that...

9/26/23 Heiko Paulheim 13

Links in Linked Open Data

• Alternatives to abusing owl:sameAs*

– General link to other resources
rdfs:seeAlso

– Link to (HTML) homepage:
e.g., foaf:homepage

* We don't know OWL yet, never mind, we'll get to that...

9/26/23 Heiko Paulheim 14

Linking to a Schema

• Another important special case:

– linking to a schema

– luckily, everything is identified by a URI
(also properties and classes)

:Heiko
 <http://xmlns.com/foaf/0.1/name>
 "Heiko Paulheim" .

9/26/23 Heiko Paulheim 15

Linking to a Schema

• btw: this also works for
“built in” schemas

:Heiko rdf:type :Person .
...

http://www.w3.org/1999/
02/22-rdf-syntax-ns#type

9/26/23 Heiko Paulheim 16

Four Principles of Linked Open Data

• The four Principles by Tim Berners-Lee (2006)

1) Use URIs to identify things

2) Use derefencable URIs

3) Provide useful information upon derefencable URIs, use standards

4) Add links to other datasets

9/26/23 Heiko Paulheim 17

What Data to Serve at a URI?

• Basic principle: provide a complete RDF molecule at the URI

• Definition of a complete RDF molecule:

– All triples that have the URI as a subject or an object

– Every blank node is connected by at least two predicates

9/26/23 Heiko Paulheim 18

RDF Molecules

• Avoid dead ends in browsing

Peter knows

Julia

father Of

9/26/23 Heiko Paulheim 19

RDF Molecules

• Recap: Blank Nodes for multi-valued predicates

– avoid (potentially useless) partial information

Recipe has ingredient

amount

ingredient

Sugar

"100"

gram

value

unit

9/26/23 Heiko Paulheim 20

RDF Molecules: Theory and Practice

• Definition of a complete RDF molecule:

– All triples that have the URI as a subject or an object

– Every blank node is connected by at least two predicates

• Consequences:

– Triples are duplicated (in the subject's and the object's molecule)

• redundancy, depending on serving strategy

– Molecules can become very big

9/26/23 Heiko Paulheim 21

RDF Molecules: Theory and Practice

:Heiko a :Person .
:Heiko :worksIn
 <http://.../Mannheim>
...

:Mannheim a :City .
<http://.../Heiko> :worksIn
 :Mannheim .
...

• In theory, all triples have to be served

• Pragmatic approach:

– Which information is interesting for a user?

– For a person: the city of residence

• but for a city: all persons who reside here?

9/26/23 Heiko Paulheim 22

RDF Molecules: Theory and Practice

• Example Graph

Peter Julia

Uni MA

Stefan

Uni KA

Mannheim Karlsruhe

studies at studies at studies at

inin

knows

lives in

lives in

lives in

01-12-1986 Jule

born nick

nearby

9/26/23 Heiko Paulheim 23

The Five Star Schema

• Five Star Scheme (Tim Berners-Lee, 2010)

* Available on the web with an open license

** Available as machine-readable, structured data

*** like ** plus using a non-proprietary format

**** like*** plus using open standards by the W3C

***** like **** plus links to other datasets

9/26/23 Heiko Paulheim 24

Linked Open Data Best Practices

• as defined by Heath and Bizer, 2011

1) Provide dereferencable URIs

2) Set RDF links pointing at other data sources

3) Use terms from widely deployed vocabularies

4) Make proprietary vocabulary terms dereferencable

5) Map proprietary vocabulary terms to other vocabularies

6) Provide provenance metadata

7) Provide licensing metadata

8) Provide data-set-level metadata

9) Refer to additional access methods

9/26/23 Heiko Paulheim 25

The Linked Open Data Cloud

http://lod-cloud.net/

9/26/23 Heiko Paulheim 26

What is the Linked Open Data Cloud?

• Viewpoint 1: a set of
interconnected
knowledge graphs

– People have published
~1,000 knowledge graphs

– They are linked
to one another

• Viewpoint 2: one
huge knowledge graph

– In its entirety, the LOD cloud
forms a large knowledge graph

– This graph is very heterogeneous
(i.e., uses different schemata)

9/26/23 Heiko Paulheim 27

The Linked Open Data Cloud

• In numbers:
– >1,250 Data sets

– Several billion triples

– Several million interlinks

• Topical domains:
– Government

– Publications

– Life sciences

– User-generated content

– Cross-domain

– Media

– Geographic

– Social web
http://lod-cloud.net/

9/26/23 Heiko Paulheim 28

The Linked Open Data Cloud

• Domains by number of datasets in Linked Open Data

– As of 2019

– Classified based on data provider tags

– More than half of the datasets are government and life sciences

Cross Domain

Geography

Government

Life Sciences

Linguistics

Media

Publications

Social Networking

User Generated

9/26/23 Heiko Paulheim 29

A Short History of Linked Open Data

Linking Open Data cloud diagram,
by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

• March 2008:

• August 2017• August 2014

• May 2007:

• September 2023

9/26/23 Heiko Paulheim 30

Examples: Government Data

9/26/23 Heiko Paulheim 31

Linguistics Example: BabelNet

9/26/23 Heiko Paulheim 32

Cross-Domain Example: DBpedia

• General knowledge on almost five million entities

• Hundreds of millions of triples

• Linked to ~100 other datasets

– the most interlinked dataset

http://lod-cloud.net/

9/26/23 Heiko Paulheim 33

DBpedia: How It Is built

9/26/23 Heiko Paulheim 34

DBpedia: Further Sources

9/26/23 Heiko Paulheim 35

DBpedia: Contents

• Data from different infoboxes (extracted from multiple languages)

• Redirects and disambiguations

• External web links

• Abstracts in multiple languages

• Instance type information

– DBpedia Ontology

– YAGO*

– schema.org*

– DOLCE**

– ...and others

* later today
** in a few weeks

9/26/23 Heiko Paulheim 36

The DBpedia Ontology

• Classes:

– ~1,800 classes

– partial hierarchy

• Properties:

– ~1,200 relations

• many with domain/range

– ~1,700 data properties

• i.e., literal-valued

– a bit of hierarchy

9/26/23 Heiko Paulheim 37

YAGO

9/26/23 Heiko Paulheim 38

YAGO

• Also derived from Wikipedia

– ~4.6M entities

– ~26M statements

• Uses Wikipedia categories for typing

– a class hierarchy of ~500,000 types

• Tries to capture time

– i.e., statements that held true for a period of time

– e.g., soccer players playing for teams

– uses reification

9/26/23 Heiko Paulheim 39

Wikidata

• Collaboratively edited knowledge base

• Size

– ~15M instances

– ~66M statements

• Ontology

– ~23k classes

– ~1.6k properties

• Special

– provenance information

– i.e., evidence: where did that statement come from?

9/26/23 Heiko Paulheim 40

Wikidata

9/26/23 Heiko Paulheim 41

Further Example Datasets

• Linked Movie Database

– Movies, actors, directors...

• MusicBrainz

– Artists, albums, ...

• Open Library

– books, authors, publishers

• DBLP

– computer science publications

9/26/23 Heiko Paulheim 42

Further Example Datasets

• Linked Open Numbers

– Numbers and their names
in different languages

– roman and arabic notations,
binary, hex etc.

9/26/23 Heiko Paulheim 43

Vocabularies

• Recap: LOD Best Practices, Principle 3:

– Use terms from widely deployed vocabularies

• So, what are common widely deployed vocabularies?

9/26/23 Heiko Paulheim 44

Dublin Core

• We have already encountered this

• Usage: Metadata for resources and documents

• Namespace http://purl.org/dc/elements/1.1/

• Common prefix: dc

• defines properties, e.g.,

– creator

– subject

– date

• Resources: DCMI Type Vocabulary:

– Text

– Image

– Software

– ...

9/26/23 Heiko Paulheim 45

FOAF (Friend of a Friend)

• Persons and their relations

• Created for personal home pages

– but used widely beyond that

• Namespace http://xmlns.com/foaf/0.1/

• Common prefix: foaf:

• Important properties

– name, firstName, lastName

– phone, mbox, homepage

– knows

– currentProject, pastProject

– ...

• Important classes

– Person

– Group

– Organization

– Project

– ...

9/26/23 Heiko Paulheim 46

FOAF (Friend of a Friend)

Peter

foaf:nick

Julia

"Pete"

"Peter"

"Smith"

foaf:firstname

foaf:lastname

foaf:knows

9/26/23 Heiko Paulheim 47

rdf:type

DBLP: Combining FOAF and DC

dblp:Paulheim11

"Improving the usability of integrated
applications by using visualizations
of linked data"@en

rdfs:label,
dc:title

foaf:Document

rdf:type

2011
dcterms:
issued

dblp:Heiko_
Paulheim

foaf:maker,
dc:creator

foaf:Agent

"Heiko Paulheim"

rdfs:label
foaf:name

dcmitype:Text

dc:type

9/26/23 Heiko Paulheim 48

WGS 84

• Encodes geographic data

• World Geodetic System 1984

• 3D reference model

• Namespace http://www.w3.org/2003/01/geo/wgs84_pos#

• Common prefix: geo:

• Properties:
– latitude

– longitude

– altitude

– location

• Classes:
– SpatialThing

– Point

9/26/23 Heiko Paulheim 49

Vocabularies

• Where to search for vocabulary terms?

– One possibility:https://lov.linkeddata.es/dataset/lov/

https://lov.linkeddata.es/dataset/lov/

9/26/23 Heiko Paulheim 50

Vocabularies

• Where to search for prefix definitions?

– One possibility:http://prefix.cc/

http://prefix.cc/

9/26/23 Heiko Paulheim 51

Publishing Linked Open Data

• Possible variants

– hand coded

– from triple stores

– from relational databases

9/26/23 Heiko Paulheim 52

Linked Data from Triple Stores

• Triple Store: RDF storage engine

– e.g., Virtuoso

• Pubby: Front end for triple stores

• Supports content negotiation etc.

Triple StorePubby

Intelligent
Agent

Browser

RDF

HTML

9/26/23 Heiko Paulheim 53

Knowledge Graphs from Databases

Relational
Database

D2R
Server Mapping

Intelligent
Agent

Browser

• D2R: Linked Open Data interface on relational databases

– e.g., MySQL

RDF

HTML

9/26/23 Heiko Paulheim 54

ID (int) name (text) location (int)

1327890123 "Heiko" "Mannheim"

...

Knowledge Graphs from Databases

map:Person a d2rq:ClassMap;
 d2rq:dataStorage map:Database1.
 d2rq:class foaf:Person;
 d2rq:uriPattern "http://foo.bar/p@@Person.ID@@";
 .
map:personName a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Person;
 d2rq:property foaf:name;
 d2rq:column "Person.name";
 d2rq:datatype xsd:string;
 .
map:location a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Person;
 d2rq:property foaf:basedNear;
 d2rq:column "Person.location";
 d2rq:datatype xsd:string;
 . <http://foo.bar/p1327890123> a foaf:Person .

<http://foo.bar/p1327890123> foaf:name "Heiko" .
<http://foo.bar/p1327890123> foaf:basedNear "Mannheim" .

9/26/23 Heiko Paulheim 55

Knowledge Graphs from Databases

• Note:

– In this case, the knowledge graph does not replicate the data

– It is only a “virtual” knowledge graph,
providing a knowledge graph view on data from another system

– Combining such virtual knowledge graphs can provide
a unified view of data from different sources

Relational
Database

D2R
Server Mapping

Intelligent
Agent

Browser

HTML

RDF

9/26/23 Heiko Paulheim 56

Microdata and schema.org

• We have already seen that in the last lecture

<div itemscope
itemtype="http://schema.org/PostalAddress">
 Data and Web Science Group
 Mannheim,
 68131
 Germany
</div>

_:1 a <http://schema.org/PostalAddress> .
_:1 <http://schema.org/name> "Data and Web Science Group" .
_:1 <http://schema.org/addressLocality> "Mannheim" .
_:1 <http://schema.org/postalCode> "68131" .
_:1 <http://schema.org/adressCounty> "Germany" .

9/26/23 Heiko Paulheim 57

Microdata and schema.org

• schema.org defines (among others)

– products

– product offers

– businesses and local businesses (stores, cafés, …)

– books, movies, records

– events

– recipes

– persons

– ...

9/26/23 Heiko Paulheim 58

schema.org

9/26/23 Heiko Paulheim 59

WebPage

Blog

PostalAddress

Product

Article

BlogPosting

Offer

LocalBusiness

Organization

AggregateRating

Person

ImageObject

Review

other

Deployment of schema.org

• Main topics of schema.org:

– Meta information on web page content (web page, blog...)

– Business data (products, offers, …)

– Contact data (businesses, persons, ...)

– (Product) reviews and ratings

• ...and a massive long tail

9/26/23 Heiko Paulheim 60

Growth of schema.org

• Note: schema.org is mainly used with Microdata

– ...and Microdata is mainly used with schema.org

http://webdatacommons.org/structureddata/

9/26/23 Heiko Paulheim 61

Microdata/schema.org vs. Linked Open Data

• Commonalities

– Both encode machine-interpretable knowledge

– Schema.org uses a standard vocabulary

– Both can be encoded as RDF

9/26/23 Heiko Paulheim 62

Microdata/schema.org vs. Linked Open Data

• Differences

– Microdata is embedded in the DOM tree

• i.e., the resulting RDF is always a set of trees

• not a general directed graph

• no cycles, no reification

– Microdata uses only blank nodes and literals

9/26/23 Heiko Paulheim 63

Microdata/schema.org vs. Linked Open Data

• Linked Data Principles (Tim Berners-Lee 2006)

– Use URIs as names for things

– Use HTTP URIs that can be looked up

– When someone looks up a HTTP URI,
provide useful information using a standard HTML5+MD is a standard

Blank nodes cannot be looked up

MD2RDF creates blank nodes

<div itemscope
itemtype="http://schema.org/PostalAddress">
 Data and Web Science Group
 Mannheim,
 68131
 Germany
</div>

<http://foo.bar/#1> a <http://schema.org/PostalAddress> .
<http://foo.bar/#1> <http://schema.org/name> "Data and Web
Science Group" .
<http://foo.bar/#1> <http://schema.org/addressLocality>
"Mannheim" .
<http://foo.bar/#1> <http://schema.org/postalCode> "68131" .
<http://foo.bar/#1> <http://schema.org/adressCounty> "Germany" .

9/26/23 Heiko Paulheim 64

Microdata/schema.org vs. Linked Open Data

• Linked Data Principles (TimBL 2006)

– Use URIs as names for things

– Use HTTP URIs that can be looked up

– When someone looks up a HTTP URI,
provide useful information using a standard

– Include links to other URIs
This is possible with
schema.org/sameas

• Linkage within schema.org Microdata:
– Only 0.02% of all data providers

use schema.org/sameas

9/26/23 Heiko Paulheim 65

Microdata/schema.org vs. LOD

• Five Star Scheme (TimBL 2010)

* Available on the web with an open license

** Available as machine-readable, structured data

*** as (**), using a non-proprietary format

**** plus: using open standards by the W3C

***** plus: links to other datasets

• What's the license of web data?

9/26/23 Heiko Paulheim 66

Intermediate Summary

• Until today, we have dealt with the Semantic Web as a vision

• Today, we have seen two incarnations of that vision

– Linked Open Data

– schema.org/Microdata

• Both have a lot in common

• Linked Open Data:

– A set of interconnected knowledge graphs, or a large knowledge graph

• schema.org/Microdata

– A very large set of small knowledge graphs

9/26/23 Heiko Paulheim 67

And Now for Something Completely Different

9/26/23 Heiko Paulheim 68

Programming with Knowledge Graphs

• Let's start with a simple application

– a Hello World application for
reading data from a knowledge graph

9/26/23 Heiko Paulheim 69

Using only Plain Java

URL url = new URL("http://dbpedia.org/resource/Mannheim");

URLConnection conn = url.openConnection();

conn.addRequestProperty("Accept", "text/rdf+n3");

BufferedReader BR = new BufferedReader(
 new InputStreamReader(conn.getInputStream())
);

while(BR.ready()) {

 String triple = BR.readLine();

 StringTokenizer tokenizer = new StringTokenizer(triple, " ");

 String subject = tokenizer.nextToken();

 String predicate = tokenizer.nextToken();

 String object = tokenizer.nextToken();

 ...

}

9/26/23 Heiko Paulheim 70

Using only Plain Java

• Let's start with a simple application

– a Hello World application for
reading data from a knowledge graph

• Using plain Java is possible

– but not very comfortable

– there are more sophisticated frameworks

9/26/23 Heiko Paulheim 71

Programming with Jena

• Jena is a well-known Semantic Web programming framework

• started in 2000 at HP Labs

• Apache open source project since 2010

• Central concepts

– Models (class Model) are RDF graphs

– Resources (class Resource) are resources in RDF graphs

• Special features

– Database connectors for persistence

– Support for reasoning

– Rule engines

– Support for SPARQL (see next lecture)

9/26/23 Heiko Paulheim 72

Programming with Jena

• Reading a model from a derefencable URI

model.read("http://dbpedia.org/resource/Mannheim");

• Navigating within a model

Resource mannheim =
 model.getResource("http://dbpedia.org/resource/
 Mannheim");

Resource countryOfMannheim =
 model.getProperty(
 "http://dbpedia.org/ontology/country").
 getResource();

9/26/23 Heiko Paulheim 73

Programming with Jena

• Working with literals

Literal lit = mannheim.getProperty(
 "http://www.w3.org/2000/01/rdf-schema#label").
 getLiteral();

lit.getString();

lit.getLanguage();

lit.getDatatype();

9/26/23 Heiko Paulheim 74

Programming with Jena

• Working with multi-valued relations

– StmtIterator iter = mannheim.getProperty(
"http://www.w3.org/2000/01/rdf-schema#label");

– while(iter.hasNext()) {

Statement s = iter.next();

RDFNode node = s.getObject();

if(node.isLiteral())
System.out.println(node.asLiteral().getString());

}

creates an iterator over all triples
with the subject node

and the given predicate

9/26/23 Heiko Paulheim 75

Iterators in Jena

• Jena uses the iterator pattern quite frequently

• e.g.:

StmtIterator iter = mannheim.getProperty(
"http://www.w3.org/2000/01/rdf-schema#label");

• But there is no such thing as

Collection<Statement> triples =
mannheim.getProperty(
"http://www.w3.org/2000/01/rdf-schema#label");

• Why?

9/26/23 Heiko Paulheim 76

Iterators in Jena

• Knowledge graphs can be very large

• e.g., reading all triples from DBpedia

– stored in List<Statement> would kill the main memory

– iterators allow a more efficient memory use

9/26/23 Heiko Paulheim 77

Programming with Jena

• Manipulating models

p1.addProperty("http://xmlns.com/foaf/0.1/knows",p2);

• Watching model changes

class MyListener implements ModelChangedListener...
MyListener listener = new MyListener();
model.add(listener);

9/26/23 Heiko Paulheim 78

Reasoning with Jena

• Recap: we can derive information from a schema (T-Box)
and data (A-box)

:knows rdfs:domain :Person .
:knows rdfs:range :Person .
:Peter :knows :Tom .

→ :Peter a :Person .
→ :Tom a :Person .

• Jena also supports reasoning

9/26/23 Heiko Paulheim 79

Reasoning with Jena

• Given: a schema and some data

Model schemaModel = ModelFactory.createDefaultModel();

InputStream IS = new
FileInputStream("data/example_schema.rdf");

schemaModel.read(IS);

Model dataModel = ModelFactory.createDefaultModel();

IS = new FileInputStream("data/example_data.rdf");

dataModel.read(IS);

Model reasoningModel =
 ModelFactory.createRDFSModel(schemaModel, dataModel);

• Now, reasoningModel contains all derived facts

9/26/23 Heiko Paulheim 80

Reasoning with Jena

• Now, reasoningModel contains all derived facts

StmtIterator it =
 reasoningModel.listStatements();
while(it.hasNext()) {
 Statement s = it.next();
 System.out.println(s);
}

• Output:

9/26/23 Heiko Paulheim 81

Programming with RDFLib (Python)

• RDFLib is a Python library for working with RDF

• initial release 4 June, 2002 by Daniel Krech

– Now being developed by the community at github:
https://github.com/RDFLib/rdflib/

• it contains parsers and serializers for

– RDF/XML, N3, NTriples, N-Quads, Turtle, TriX, RDFa and
Microdata

• graph interface which can be backed by store implementations

– memory storage

– persistent storage on top of the Berkeley DB

• reasoning possible (https://github.com/RDFLib/OWL-RL)

• SPARQL 1.1 implementation (see next lecture)

https://github.com/RDFLib/rdflib/
https://github.com/RDFLib/OWL-RL

9/26/23 Heiko Paulheim 82

Programming with RDFLib (Python)

• primary interface is a Graph

– represented a s a set of 3-item triples

[

(subject, predicate, object),

(subject1, predicate1, object1),

...

(subjectN, predicateN, objectN)

]

9/26/23 Heiko Paulheim 83

Programming with RDFLib (Python)

• Reading a model from a derefencable URI
import rdflib
g=rdflib.Graph()
g.load('http://dbpedia.org/resource/Mannheim')

• Print out all RDF triples
for s,p,o in g:
 print(s,p,o)

• Navigating within a graph
print(g.value(

 URIRef("http://dbpedia.org/resource/Mannheim"),

 URIRef("http://dbpedia.org/ontology/country")

))

http://dbpedia.org/ontology/country

9/26/23 Heiko Paulheim 84

Programming with RDFLib (Python)

• Most often reduced to basic triple matching

• Graph.triples(subject, predicate, object)

– each of them can be None (similar to null in Java)
for s,p,o in g.triples((None, RDF.type, FOAF.Person)):
 print("%s is a person"%s)

• Special functions for returning only specific parts

– Graph.subjects(predicate, object) – returns only subjects

– Graph.predicate(subject, object)

– Graph.objects(subject, predicate)

– Graph.subject_objects(predicate)

– Graph.subject_predicates(object)

– Graph.predicate_objects(subject)

– Graph.value(subject, predicate)

• For just one value and not a generator/iterator

9/26/23 Heiko Paulheim 85

Programming with RDFLib (Python)

• create URIs
mannheim = URIRef('http://example.com/Mannheim')

• create literals
mannheim_literal = Literal("Mannheim")

• Add triples to graph
g.add((mannheim, RDFS.label, mannheim_literal))
g.add((mannheim, RDFS.label, Literal("Mannheim", lang="de")))

• Serialize graph
print(g.serialize(format='n3'))

9/26/23 Heiko Paulheim 86

Wrap-Up

• Today, we have seen

– two incarnations of knowledge graphs as publicly available data

• i.e., Linked Open Data

• and Microdata/schema.org

• ...and we have learned how to write programs
consuming data in knowledge graphs

– Jena & RDFlib programming frameworks

– loading RDF from files and from URLs

– performing reasoning

9/26/23 Heiko Paulheim 87

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87

