
Knowledge Graphs
Web Ontology Language (OWL)

Part II

Heiko Paulheim



11/14/23 Heiko Paulheim 2 

Previously on “Knowledge Graphs”

• We have got to know

– OWL, a more powerful ontology language than RDFS

– Simple ontologies and some reasoning

– Sudoku solving

• Today

– New constructs in OWL2

– Russell's paradox

– Reasoning in OWL

– Complexity of ontologies

– A peek at rule languages 
for Knowledge Graphs



11/14/23 Heiko Paulheim 3 

Semantic Web Technology Stack

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...



11/14/23 Heiko Paulheim 4 

OWL2 – New Constructs and More

• Five years after the first OWL standard

• OWL2: 2009

– Syntactic sugar

– New language constructs

– OWL profiles

• We have already encountered some, e.g.,

– Qualified relations

– Reflexive, irreflexive, and antisymmetric properties



11/14/23 Heiko Paulheim 5 

OWL2: Syntactic Sugar

• Disjoint classes and disjoint unions

– OWL 1:

:Wine owl:equivalentClass [
  a owl:Class ;
  owl:unionOf (:RedWine :RoséWine :WhiteWine) ] .

:RedWine  owl:disjointWith :RoséWine, :WhiteWine .
:RoséWine owl:disjointWith :WhiteWine .

– OWL 2:

:Wine owl:disjointUnionOf 
  (:RedWine :RoséWine :WhiteWine ).

– Also possible:

_:x a owl:AllDisjointClasses ;
    owl:members (:RedWine :RoséWine WhiteWine ).



11/14/23 Heiko Paulheim 6 

OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertation

• Allow negated statements

• e.g.: Paul is not Peter's father

_x [ a owl:NegativeObjectPropertyAssertion;
       owl:sourceIndividual :Paul ;

   owl:targetIndividual :Peter ;
   owl:assertionProperty :fatherOf ] .

      

• If that's syntactic sugar, it must also be possible differently

– But how?



11/14/23 Heiko Paulheim 7 

OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertion

• Replaces less intuitive set constructs

• Paul is not Peter's father

Paul a [ owl:complementOf [
a owl:Restriction ;
owl:onProperty :fatherOf ;
owl:hasValue :Peter 

          ] 
        ].



11/14/23 Heiko Paulheim 8 

OWL2: Reflexive Class Restrictions

• Using hasSelf

• Example: defining the set of all autodidacts:

:AutoDidact owl:equivalentClass [
  a owl:Restriction ;
  owl:onProperty :teaches ;
  owl:hasSelf "true"^^xsd:boolean ] .
  



11/14/23 Heiko Paulheim 9 

OWL2: Property Chains

• Typically used for defining rule-like constructs, e.g.

– hasParent(X,Y) and hasParent(Y,Z) → 
hasGrandParent(X,Z)

• OWL Syntax:

– :hasGrandparent  owl:propertyChainAxiom  
( :hasParent  :hasParent ) .

hasParent hasParent

hasGrandParent



11/14/23 Heiko Paulheim 10 

OWL2: Property Chains

• Can be combined with inverse properties and others

– hasParent(X,Y) and hasParent(Z,Y) → hasSibling(X,Z)

• This is not a proper chain yet, so we have to rephrase it to

– hasParent(X,Y) and hasParent-1(Y,Z) → hasSibling(X,Z)

• OWL Syntax:

– :hasSibling  owl:propertyChainAxiom  
( :hasParent  [ owl:inverseOf :hasParent ] ) .

hasParent hasParent

hasSibling



11/14/23 Heiko Paulheim 11 

OWL2: Profiles

• Profiles are subsets of OWL2 DL

– EL, RL und QL

– Similar to complexity classes

• Different runtime and memory complexity

• Depending on requirements



11/14/23 Heiko Paulheim 12 

OWL2 Profile

• OWL2 EL (Expressive Language)

– Fast reasoning on many standard ontologies

– Restrictions, e.g.:

• someValuesFrom, but not allValuesFrom

• No inverse and symmetric properties

• No unionOf and complementOf

• OWL2 QL (Query Language)

– Fast query answering on relational databases

– Restrictions, e.g.:

• No unionOf, allValuesFrom, hasSelf, …

• No cardinalities and functional properties



11/14/23 Heiko Paulheim 13 

OWL2 Profile

• OWL2 RL (Rule Language)

– Subset similar to rule languages such as datalog

• subClassOf is translated to a rule (Person ← Student)

– Restrictions, e.g.:

• Only qualified restrictions with 0 or 1

• Some restrictions for head and body

• The following holds for all three profiles:

– Reasoning can be implemented in polynomial time for each of the three

– Reasoning on the union of two profiles only possible in exponential time



11/14/23 Heiko Paulheim 14 

OWL2 Example: Russell's Paradox

• A classic paradox by 
Bertrand Russell, 1918

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?



11/14/23 Heiko Paulheim 15 

OWL2 Example: Russell's Paradox

• Class definitions

:People owl:disjointUnionOf 
(:PeopleWhoShaveThemselves 
 :PeopleWhoDoNotShaveThemselves ) .

• Relation definitions:

:shavedBy rdfs:domain :People .
:shavedBy rdfs:range :People .
:shaves owl:inverseOf :shavedBy .

• Every person is shaved by exactly one person:

:People rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :shavedBy ;
owl:cardinality "1"^^xsd:integer ] .



11/14/23 Heiko Paulheim 16 

OWL2 Example: Russell's Paradox

• Then, we define the barber:

:Barbers rdfs:subClassOf :People ;
         owl:equivalentClass [ 
             rdf:type owl:Class ;

             owl:oneOf ( :theBarber ) 
         ] .



11/14/23 Heiko Paulheim 17 

OWL2 Example: Russell's Paradox

• Definition of people shaving themselves:

:PeopleWhoShaveThemselves owl:equivalentClass [ 
  rdf:type owl:Class ;
  owl:intersectionOf 
  ( :People 
    [ 
      a owl:Restriction ;
      owl:onProperty :shavedBy ;
      owl:hasSelf "true"^^xsd:boolean 
    ] 
   ) 
] .



11/14/23 Heiko Paulheim 18 

OWL2 Example: Russell's Paradox

• Definition of people who do not shave themselves:

:PeopleWhoDoNotShaveThemselves owl:equivalentClass [ 
   a owl:Class ;
   owl:intersectionOf ( 
    :People
    [ a owl:Restriction 
      owl:onProperty :shavedBy ;
      owl:allValuesFrom :Barbers
    ]
   )
] .

                               



11/14/23 Heiko Paulheim 19 

OWL2 Example: Russell's Paradox



11/14/23 Heiko Paulheim 20 

OWL2 Example: Russell's Paradox



11/14/23 Heiko Paulheim 21 

Reasoning in OWL DL

• We have seen reasoning for RDFS

– Forward chaining algorithm

– Derive axioms from other axioms

• Limitations of forward chaining

– :Motorbike owl:intersectionOf 
(:TwoWheeledVehicle :MotorVehicle)

:x a :Motorbike

→

:x a TwoWheeledVehicle, :MotorVehicle .

– :TwoWheeledVehicle owl:unionOf (:Bicycle :Motorbike)

:x a :Motorbike

→ ?



11/14/23 Heiko Paulheim 22 

Reasoning in OWL DL

• Reasoning for OWL DL is more difficult

– Forward chaining may have scalability issues

– Conjunction (e.g., unionOf) is not supported by forward chaining

• same holds for some other constructs

• no negation

– Different approach: Tableau Reasoning

– Underlying idea: find contradictions in ontology

• i.e., both a statement and its opposite 
can be derived from the ontology



11/14/23 Heiko Paulheim 23 

Typical Reasoning Tasks

• What do we want to know from a reasoner?

– Subclass relations

• e.g., Are all birds flying animals? 

– Equivalent classes

• e.g., Are all birds flying animals and vice versa?

– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?

– Class consistency

• e.g., Can there be mammals that lay eggs?

– Class instantiation

• e.g., Is Flipper a dolphin?

– Class enumeration

• e.g., List all dolphins



11/14/23 Heiko Paulheim 24 

Example: A Simple Contradiction

• Given:

:Human a owl:Class .

:Animal a owl:Class .

:Human owl:disjointWith :Animal .

:Jimmy a :Animal .
:Jimmy a :Human .



11/14/23 Heiko Paulheim 25 

Example: A Simple Contradiction

• We can derive:

– :Human  :Animal = 

owl:Nothing owl:intersectionOf (:Human :Animal) .

– :Jimmy  (:Human  :Animal)

:Jimmy a [ a owl:Class; owl:intersectionOf 
                       (:Human :Animal)] .

• i.e.:

– :Jimmy  

:Jimmy a owl:Nothing .

– That means: the instance must not exist

– but it does



11/14/23 Heiko Paulheim 26 

Reasoning Tasks Revisited

• Subclass Relations

Student  Person  „Every student is a person“

• Proof method: Reductio ad absurdum

– "Invent" an instance i

– Define Student(i) and Person(i)

– Check for contradictions

• If there is one: Student  Person has to hold

• If there is none: Student  Person cannot be derived
– Note: it may still hold!



11/14/23 Heiko Paulheim 27 

Example: Subclass Relations

• Ontology:

:Student owl:subClassOf :UniversityMember .
:UniversityMember owl:subClassOf :Person .

• Invented instance:

:i a :Student .

:i a [ owl:complementOf :Person ] .

• We have

:i a :Student . 
:Student owl:subClassOf :UniversityMember .

Thus

:i a :UniversityMember .

• And from

:UniversityMember owl:subClassOf :Person .

• We further derive that

:i a Person .



11/14/23 Heiko Paulheim 28 

Example: Subclass Relations

• Now, we have

:i a :Person .
:i a [ owl:complementOf :Person ] .

i.e.,

:i a [ owl:intersectionOf 
(:Person [ owl:complementOf :Person ])] .

• from which we derive

:i a owl:Nothing .



11/14/23 Heiko Paulheim 29 

Reasoning Tasks Revisited

• Class equivalence
– Person  Human

• Split into
– Person  Human and

– Human  Person

• i.e., show subclass relation twice
– We have seen that

• Class disjointness
– Are C and D disjoint?

– "Invent" an instance i

– Define C(i) and D(i)

• We have done set (the Jimmy example)



11/14/23 Heiko Paulheim 30 

Class Consistency

• Can a class have instances?

– e.g., married bachelors

:Bachelor owl:subClassOf :Man .
:Bachelor owl:subClassOf 
  [ a owl:Restriction;
    owl:onProperty :marriedTo;
    owl:cardinality 0 ] .
:MarriedPerson owl:subClassOf [
    a owl:Restriction;
    owl:onProperty :marriedTo;
    owl:cardinality 1 ] .

:MarriedBachelor owl:intersectionOf 
  (:Bachelor :MarriedPerson) .

• Now: invent an instance of the class

– And check for contradictions



11/14/23 Heiko Paulheim 31 

Reasoning Tasks Revisited

• Class Instantiation 

– Is Flipper a dolphin?

• Check:

– define Dolphin(Flipper)

– Check for contradiction

• Class enumeration

– Repeat class instantiation for all known instances



11/14/23 Heiko Paulheim 32 

Typical Reasoning Tasks Revisited

• What do we want to know from a reasoner?

– Subclass relations

• e.g., Are all birds flying animals? 

– Equivalent classes

• e.g., Are all birds flying animals and vice versa?

– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?

– Class consistency

• e.g., Can there be mammals that lay eggs?

– Class instantiation

• e.g., Is Flipper a dolphin?

– Class enumeration

• e.g., List all dolphins



11/14/23 Heiko Paulheim 33 

Typical Reasoning Tasks Revisited

• We have seen

– All reasoning tasks can be reduced to the same basic task

– i.e., consistency checking

• This means: for building a reasoner that can solve those tasks,

– we only need a reasoner capable of consistency checking



11/14/23 Heiko Paulheim 34 

OWL DL

• The DL stands for “Description Logics”

• A logic formalism dating back to the 1980s



11/14/23 Heiko Paulheim 35 

Ontologies in Description Logics Notation

• Classes and Instances

– C(x) ↔ x a C .

– R(x,y) ↔ x R y .

– C ⊑ D ↔ C rdfs:subClassOf D

– C ≡ D ↔ C owl:equivalentClass D

– C ⊑ D ↔ C owl:disjointWith D

– C ≡ D ↔ C owl:complementOf D

– C ≡ D  ⊓ E ↔ C owl:intersectionOf (D E) .

– C ≡ D ⊔ E ↔ C owl:unionOf (D E) .

– T ↔ owl:Thing

–  ↔ owl:Nothing



11/14/23 Heiko Paulheim 36 

Ontologies in Description Logics Notation

• Domains, ranges, and restrictions

– R.T ⊑ C  ↔ R rdfs:domain C .

– R.C  ↔ R rdfs:range C .

– C ⊑ R.D  ↔ C owl:subClassOf 
      [ a owl:Restriction;
          owl:onProperty R;
          owl:allValuesFrom D ] .

– C ⊑ R.D  ↔ C owl:subClassOf 
      [ a owl:Restriction;
          owl:onProperty R;
          owl:someValuesFrom D ] .

– C ⊑ nR  ↔ C owl:subClassOf 
      [ a owl:Restriction;
          owl:onProperty R;
          owl:minCardinality n ] .



11/14/23 Heiko Paulheim 37 

Global Statements in Description Logic

• So far, we have seen mostly statements about single classes

– e.g., C ⊑ D

• In Description Logics, we can also make global statements

– e.g., D ⊔ E

– This means: every single instance is a member of D or E (or both)

• Those global statements are heavily used in the reasoning process



11/14/23 Heiko Paulheim 38 

Negation Normal Form (NNF)

• Transforming ontologies to Negation Normal Form:

– ⊑ und ≡ are not used

– Negation only for atomic classes and axioms

• A simplified notation of ontologies

• Used by tableau reasoners



11/14/23 Heiko Paulheim 39 

Negation Normal Form (NNF)

• Eliminating ⊑:
• Replace C ⊑ D by C ⊔ D
• Note: this is a shorthand notation for x: C(x) ⋁ D(x)

• Why does this hold?
• C ⊑ D is equivalent to C(x)  D(x)→

C(x) D(x) C(x) → D(x) C(x) ⋁ D(x)

true true true true

true false false false

false true true true

false false true true



11/14/23 Heiko Paulheim 40 

Negation Normal Form (NNF)

• Eliminating ≡:
• Replace C ≡ D by C ⊑ D and D ⊑ C

• Proceed as before

• i.e.: C ≡ D becomes

C ⊑ D

D ⊑ C

– and thus

C ⊔ D

D ⊔ C



11/14/23 Heiko Paulheim 41 

Negation Normal Form (NNF)

• Further transformation rules

– NNF(C) = C (for atomic C)

– NNF(C) = C (for atomic C)

– NNF( C) = C

– NNF(C ⊔ D) = NNF(C) ⊔ NNF(D)

– NNF(C ⊓ D) = NNF(C) ⊓ NNF(D)

– NNF((C ⊓ D)) = NNF(C) ⊔ NNF(D)

– NNF((C ⊔ D)) = NNF(C) ⊓ NNF(D)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)



11/14/23 Heiko Paulheim 42 

The Basic Tableau Algorithm

• Tableau: Collection of derived axioms

– Is subsequently extended

– As for forward chaining

• In case of conjunction

– Split the tableau

C(a), D(a)

C(a), E(a)
C(a) D(a) ⊔ E(a)



11/14/23 Heiko Paulheim 43 

When is an Ontology Free of Contradictions?

• Tableau is continuously extended and split

• Free of contradictions if...

– No further axioms can be created

– At least one partial tableau is free of contradictions

– A partial tableau has a contradiction if it contains 
both an axiom and its negation

• e.g.. Person(Peter) und Person(Peter)
• The partial tableau is then called closed



11/14/23 Heiko Paulheim 44 

The Basic Tableau Algorithm

• Given: an ontology O in NNF

While not all partial tableaus are closed

* Choose a non-closed partial tableau T and an A ∊ O ∪ T
  If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

   else
Extend the tableau with consequences from A
back to *



11/14/23 Heiko Paulheim 45 

The Basic Tableau Algorithm

• Extending a tableau with consequences

Nr Axiom Action

1 C(a) Add C(a)

2 R(a,b) Add R(a,b)

3 C Choose an individual a, add C(a)

4 (C ⊓ D)(a) Add C(a) and D(a)

5 (C ⊔ D)(a) Split tableau into T1 and T2. 
Add C(a) to T1, D(a) to T2

6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b

7 (R.C)(a) For all b with R(a,b)  T: add C(b)∊



11/14/23 Heiko Paulheim 46 

A Simple Example

• Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .

• Is this knowledge graph consistent?



11/14/23 Heiko Paulheim 47 

A Simple Example

• Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .

– The same ontology in DL-NNF:

Animal  ⊔ Human
Animal  (⊔ Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect  ⊓ Reptile)
Animal ⊔ (Mammal  ⊔ Bird  ⊔ Fish  ⊔ Insect  Reptile⊔ )
Human(Seth)
Insect(Seth)

• Let's try how reasoning works now!



11/14/23 Heiko Paulheim 48 

A Simple Example

Human(Seth), Insect(Seth)

Nr Axiom Action

1 C(a) Add C(a)



11/14/23 Heiko Paulheim 49 

A Simple Example

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)

Nr Axiom Action

3 C Choose an individual a, add C(a)



11/14/23 Heiko Paulheim 50 

A Simple Example

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Human(Seth)

Nr Axiom Action

5 (C ⊔ D)(a) Split the tableau into T1 and T2. 
Add C(a) to T1, D(a) to T2



11/14/23 Heiko Paulheim 51 

A Simple Example

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Animal(Seth)
Animal  (⊔ Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect)(Seth)

Human(Seth), Insect(Seth), 
(Animal  ⊔ Human)(Seth)
Human(Seth)

Nr Axiom Action

3 C Choose an individual a, add C(a)



11/14/23 Heiko Paulheim 52 

A Simple Example

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Animal(Seth)
Animal  (⊔ Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect)(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Animal(Seth) 
Animal  (⊔ Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect)(Seth)
(Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect)(Seth)

Human(Seth), Insect(Seth), 
(Animal  ⊔ Human)(Seth)
Human(Seth)

Nr Axiom Action

5 (C ⊔ D)(a) Split the tableau into T1 and T2. 
Add C(a) to T1, D(a) to T2



11/14/23 Heiko Paulheim 53 

A Simple Example

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Animal(Seth) 
Animal  (⊔ Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect)(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
(Animal  ⊔ Human)(Seth)
Animal(Seth) 
Animal  (⊔ Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect)(Seth)
(Mammal  ⊓ Bird  ⊓ Fish  ⊓ Insect  ⊓ Reptile)(Seth)
Mammal(Seth)
Bird(Seth)
Fish(Seth)
Insect(Seth)
Reptile(Seth)
Human(Seth), Insect(Seth), 
(Animal  ⊔ Human)(Seth)
Human(Seth)

Nr Axiom Action

4 (C ⊓ D)(a) Add C(a) and D(a)



11/14/23 Heiko Paulheim 54 

Another Example

• Again, a simple ontology:

:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassOf :Person .
:hasChild rdfs:domain :Person .
:hasChild rdfs:range :Person .
:Peter :hasChild :Julia .
:Julia a :Woman .
:Peter a :Man .



11/14/23 Heiko Paulheim 55 

Another Example

• in DL NNF:
Man ⊔ Person
Woman ⊔ Person
hasChild.T ⊔ Person
hasChild.Person
hasChild(Peter,Julia)
Woman(Julia)
Man(Peter)



11/14/23 Heiko Paulheim 56 

Another Example

hasChild(Peter,Julia)

Nr Axiom Action

2 R(a,b) Add R(a,b)



11/14/23 Heiko Paulheim 57 

Another Example

hasChild(Peter,Julia), Woman(Julia)

Nr Axiom Action

1 C(a) Add C(a)



11/14/23 Heiko Paulheim 58 

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter)

Nr Axiom Action

3 C Choose an individual a, add C(a)



11/14/23 Heiko Paulheim 59 

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter),
hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter)

Nr Axiom Action

5 (C ⊔ D)(a) Split the tableau into T1 and T2. 
Add C(a) to T1, D(a) to T2



11/14/23 Heiko Paulheim 60 

Another Example

hasChild(Peter,Julia), Woman(Julia), 
(hasChild.T ⊔ Person)(Peter), 
hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0)

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b



11/14/23 Heiko Paulheim 61 

Another Example

hasChild(Peter,Julia), Woman(Julia), 
(hasChild.T ⊔ Person)(Peter), 
hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0),
hasChild(Peter,b1),T(b1),
...

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b



11/14/23 Heiko Paulheim 62 

Introducing Rule Blocking

• Observation

– The tableau algorithm does not necessarily terminate

– We can add arbitrarily many new axioms

• Idea: avoid rule 6 if no new information is created

– i.e., if we already created one instance b
a
 for instance a, 

then block using rule 6 for a.

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b



11/14/23 Heiko Paulheim 63 

Tableau Algorithm with Rule Blocking

• Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊ O ∪ T
  If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

   else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *



11/14/23 Heiko Paulheim 64 

Example with Rule Blocking

hasChild(Peter,Julia), Woman(Julia), 
(hasChild.T ⊔ Person)(Peter), 
hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0)

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b,
block rule 6 for a

now it will
terminate
ultimately



11/14/23 Heiko Paulheim 65 

Tableau Algorithm: Wrap Up

• An algorithm for description logic based ontologies

– works for OWL Lite and DL

• We have seen examples for some OWL expressions

– Other OWL DL expressions can be “translated” to DL as well

– And they come with their own expansion rules

– Reasoning may become more difficult

• e.g., dynamic blocking and unblocking



11/14/23 Heiko Paulheim 66 

Optimizing Tableau Reasoners

• Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊ O ∪ T
  If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

   else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *



11/14/23 Heiko Paulheim 67 

OWL Lite vs DL Revisited

• Recap: OWL Lite has some restrictions

– Those are meant to allow for faster reasoning

• Restrictions only with cardinalities 0 and 1

– Higher cardinalities make blocking more complex

• unionOf, disjointWith, complementOf, closed classes, ...

– they all introduce more disjunctions

– i.e., more splitting operations



11/14/23 Heiko Paulheim 68 

Complexity of Ontologies

• Reasoning is usually expensive

• Reasoning performance depends on ontology complexity

– Rule of thumb: the more complexity, the more costly

• Most useful ontologies are in OWL DL

– But there are differences

– In detail: complexity classes



11/14/23 Heiko Paulheim 69 

Simple Ontologies: ALC

• ALC: Attribute Language with Complement

• Allowed:

– subClassOf, equivalentClass

– unionOf, complementOf, disjointWith

– Restrictions: allValuesFrom, someValuesFrom

– domain, range

– Definition of individuals



11/14/23 Heiko Paulheim 70 

SHIQ, SHOIN & co

• Complexity classes are noted as letter sequences

• Using

– S = ALC plus transitive properties (basis for most ontologies)

– H = Property hierarchies (subPropertyOf)

– O = closed classes (oneOf)

– I = inverse properties (inversePropertyOf)

– N = numeric restrictions (min/maxCardinality)

– F = functional properties

– Q = qualified numerical restrictions (OWL2)

– (D) = Usage of datatype properties



11/14/23 Heiko Paulheim 71 

Some Tableau Reasoners

• Fact

– University of Manchester, free

– SHIQ

• Fact++/JFact

– Extension of Fact, free

– SHOIQ(and a little D), OWL-DL + OWL2

• Pellet

– Clark & Parsia, free for academic use

– SHOIN(D), OWL-DL + OWL2

• RacerPro

– Racer Systems, commercial

– SHIQ(D)



11/14/23 Heiko Paulheim 72 

Sudoku Revisited

• Recap: we used a closed class

– Plus some disjointness

• Resulting complexity: SO

• Which reasoners do support that?

– Fact: SHIQ :-(

– RacerPro: SHIQ(D) :-(

– Pellet: SHOIN(D) :-)

– HermiT: SHOIQ :-)



11/14/23 Heiko Paulheim 73 

Rules: Beyond OWL

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...



11/14/23 Heiko Paulheim 74 

Limitations of OWL

• Some things are hard or impossible to express in OWL

• Example:

– If A is a woman and the child of B
then A is the daughter of B

Woman

Human

childOf

daughterOf

                                    subPropertyOf



11/14/23 Heiko Paulheim 75 

Limitations of OWL

• Let's try this in OWL:

:Woman rdfs:subClassOf :Human .
:childOf    a owl:ObjectProperty ;
            rdfs:domain :Human ;
            rdfs:range :Human .
:daughterOf a owl:ObjectProperty ;
            rdfs:subPropertyOf :childOf ;
            rdfs:domain :Woman .



11/14/23 Heiko Paulheim 76 

Limitations of OWL

• What can a reasoner conclude with this ontology?

• Example:

:Julia :daughterOf :Peter .

→ :Julia a :Woman .

• What we would like to have instead:

:Julia :childOf :Peter .
:Julia a :Woman .

→ :Julia :daughterOf :Peter .



11/14/23 Heiko Paulheim 77 

Limitations of OWL

• What we would like to have:

daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X) .

• Rules are flexible

• There are rules in the Semantic Web, e.g.

– Semantic Web Rule Language (SWRL)

– Rule Interchange Format (RIF)

– See lecture in a few weeks

• Some reasoners do (partly) support rules



11/14/23 Heiko Paulheim 78 

Wrap Up

• OWL comes in many flavours

– OWL Lite, OWL DL, OWL Full

– Detailed complexity classes of OWL DL

– Additions and profiles from OWL2

– However, there are still some things that cannot be expressed...

• Reasoning is typically done using the Tableau algorithm



11/14/23 Heiko Paulheim 79 

Questions?


