MANNHEIM

w.\ "‘; S

Knowledge Graphs
Web Ontology Language (OWL)
Part Il

N @b ERER 5

Heiko Paulheim

Previously on “Knowledge Graphs”
-

* We have got to know
— OWL, a more powerful ontology language than RDFS
— Simple ontologies and some reasoning
— Sudoku solving

* Today
— New constructs in OWL2
— Russell's paradox
— Reasoning in OWL
— Complexity of ontologies

— A peek at rule languages
for Knowledge Graphs

11/14/23 Heiko Paulheim

Semantic Web Technology Stack

User Interface and Applications

g Trust
S < Proof
%, here be dragons...
Unifying Logic
Ontology: Rules:
owL RIF

) Query: 3
Semantic Web » SPARQL :
Technologies Schema: RDF-S S
(This lecture) s

Data Interchange: RDF

Technical Data Interchange: XML

Foundations
Berners-Lee (2009): Semantic Web and Linked Data _ URI Unicode

http://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

11/14/23 Heiko Paulheim

OWL2 - New Constructs and More

* Five years after the first OWL standard

« OWL2: 2009 WS(""’“
— Syntactic sugar el
— New language constructs
— OWL profiles

* We have already encountered some, e.g.,
— Qualified relations
— Reflexive, irreflexive, and antisymmetric properties

11/14/23 Heiko Paulheim

OWL2: Syntactic Sugar
-

* Disjoint classes and disjoint unions
— OWL 1:

:Wine owl:equivalentClass [
a owl:Class ;
owl:unionOf (:RedWine :RoséWine :WhiteWine)]

:RedWine owl:disjointWith :RoséWine, :WhiteWine
:RoséWine owl:disjointWith :WhiteWine

— OWL 2:

:Wine owl:disjointUnionOf
(:RedWine :RoséWine :WhiteWine).

— Also possible:

_:x a owl:AllDisjointClasses ;
owl:members (:RedWine :RoséWine WhiteWine).

11/14/23 Heiko Paulheim

OWL2: Syntactic Sugar

* Negative(Object|Data)PropertyAssertation
* Allow negated statements
* e.g.: Paul is not Peter's father

X [a owl:NegativeObjectPropertyAssertion;
owl :sourcelIndividual :Paul ;
owl:targetIndividual :Peter ;
owl:assertionProperty :fatherOf]

* |f that's syntactic sugar, it must also be possible differently
— But how?

11/14/23 Heiko Paulheim

OWL2: Syntactic Sugar

e
* Negative(Object|Data)PropertyAssertion
* Replaces less intuitive set constructs
* Paul is not Peter's father

Paul a [owl:complementOf |
a owl:Restriction ;
owl:onProperty :fatherOf ;
owl:hasValue :Peter

11/14/23 Heiko Paulheim

OWL2: Reflexive Class Restrictions

* Using hasSelf
* Example: defining the set of all autodidacts:

:AutoDidact owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :teaches ;
owl:hasSelf "true"""xsd:boolean]

11/14/23 Heiko Paulheim

OWL2: Property Chains
e

* Typically used for defining rule-like constructs, e.g.

— hasParent (X,Y) and hasParent(Y,Z2) -
hasGrandParent (X, Z2)

* OWL Syntax:

— :thasGrandparent owl:propertyChainAxiom
(:hasParent :hasParent)

hasGrandParent

hasParent >© hasParent >

11/14/23 Heiko Paulheim

OWL2: Property Chains
e

* Can be combined with inverse properties and others

— hasParent (X,Y) and hasParent(Z,Y) - hasSibling (X, 2)
* This is not a proper chain yet, so we have to rephrase it to

— hasParent (X,Y) and hasParent™(Y,Z) - hasSibling (X, Z)

* OWL Syntax:

— :hasSibling owl:propertyChainAxiom
(:hasParent [owl:inverseOf :hasParent])

hasSibling

hasParent @ hasParent Q

11/14/23 Heiko Paulheim

OWL2: Profiles

* Profiles are subsets of OWL2 DL
— EL, RLund QL
— Similar to complexity classes

* Different runtime and memory complexity
* Depending on requirements

OWL 2 (Full)

11/14/23 Heiko Paulheim

OWL2 Profile

* OWL2 EL (Expressive Language)
— Fast reasoning on many standard ontologies
— Restrictions, e.g.:
* someValuesFrom, but not allValuesFrom
* No inverse and symmetric properties
* No unionOf and complementOf

* OWL2 QL (Query Language)
— Fast query answering on relational databases
— Restrictions, e.g.:
* No unionOf, allValuesFrom, hasSelf, ...
* No cardinalities and functional properties

11/14/23 Heiko Paulheim

OWL2 Profile

* OWL2 RL (Rule Language)
— Subset similar to rule languages such as datalog
* subClassOf is translated to a rule (Person < Student)
— Restrictions, e.g.:
* Only qualified restrictions with 0 or 1
* Some restrictions for head and body

* The following holds for all three profiles:
— Reasoning can be implemented in polynomial time for each of the three
— Reasoning on the union of two profiles only possible in exponential time

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox
e

* A classic paradox by
Bertrand Russell, 1918

* |In acity, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox
e

* C(Class definitions

:People owl:disjointUnionOf
(:PeopleWhoShaveThemselves
:PeopleWhoDoNotShaveThemselves)

* Relation definitions:

:shavedBy rdfs:domain :People
:shavedBy rdfs:range :People
:shaves owl:inverseOf :shavedBy

* Every person is shaved by exactly one person:

:People rdfs:subClassOf |

a owl:Restriction ;

owl:onProperty :shavedBy ;
owl:cardinality "1"*"xsd:integer |

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox
e

* Then, we define the barber:

:Barbers rdfs:subClassOf :People ;
owl:equivalentClass [
rdf:type owl:Class ;

owl:oneOf (:theBarber)

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox
e

* Definition of people shaving themselves:

:PeopleWhoShaveThemselves owl:equivalentClass [
rdf:type owl:Class ;
owl:intersectionOf
(:People
[

a owl:Restriction ;

owl:onProperty :shavedBy ;

owl:hasSelf "true"""xsd:boolean

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox
e

* Definition of people who do not shave themselves:

:PeopleWhoDoNotShaveThemselves owl:equivalentClass [
a owl:Class ;
owl:intersectionOf (
:People
[a owl:Restriction
owl:onProperty :shavedBy ;
owl:allValuesFrom :Barbers

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox
e

Help for inconsistent ontologies x|

@ Your ontology is inconsistent which means that the OWL reasoner will no longer be able to
provide any useful information about the ontology.

You have several options at this point:

@ Click the Explain button to fry the Protege explanation fadility.

& If you think you know what the problem is, dick Cancel to fix the ontology yourself,

@ Some reasoners come with command line tools that will provide complete explanations
for inconsistent ontologies.

Explain Cancel

11/14/23 Heiko Paulheim

OWL2 Example: Russell's Paradox

A inconsistent ontology explanation x|

® Show regular justifications All justifications
Showe laconic justifications ® Limit justifications to
1
Explanation 1 Display laconic explanation

Ezplanation for: Thing SubClass0f Mothing

PersonsWhoDoNotShaveThemselves(?x) shaves(the-barber, ?x) 1
PersonsWhoDoNotShaveThemselves DisjointWith PersonsWhoShaveThemselves ALL
Barber SubClassOf Person ALL
shaves(?x, 7x) PersonsWhoShaveThemselves(?x) ALL
shaves(the-barber, %) PersonsWwhoDoNotShaveThemselves(?x) 1
PersonsWhoShaveThemselves(?x) shaves(?%, 7%) ALL

Person EquivalentTo PersonsWhoDoNotShaveThemselves or PersonswhoShaveThemselves ALL
the-barber Type Barber ALL

Ok

11/14/23 Heiko Paulheim

Reasoning in OWL DL
-

* We have seen reasoning for RDFS
— Forward chaining algorithm
— Derive axioms from other axioms

* Limitations of forward chaining

— :Motorbike owl:intersectionOf
(: TwoWheeledVehicle :MotorVehicle)

:xX a :Motorbike
N
:x a TwoWheeledVehicle, :MotorVehicle
— :TwoWheeledVehicle owl:unionOf (:Bicycle :Motorbike)

:X a :Motorbike

— ?

11/14/23 Heiko Paulheim

Reasoning in OWL DL

* Reasoning for OWL DL is more difficult
— Forward chaining may have scalability issues
— Conjunction (e.g., unionOf) is not supported by forward chaining
* same holds for some other constructs
* no negation
— Different approach: Tableau Reasoning
— Underlying idea: find contradictions in ontology

* i.e., both a statement and its opposite
can be derived from the ontology

11/14/23 Heiko Paulheim

Typical Reasoning Tasks
-

* What do we want to know from a reasoner?
— Subclass relations
* e.g., Are all birds flying animals?
— Equivalent classes
* e.g., Are all birds flying animals and vice versa?
— Disjoint classes
* e.g., Are there animals that are mammals and birds at the same time?
— Class consistency
* e.g., Can there be mammals that lay eggs?
— Class instantiation
* e.g., Is Flipper a dolphin?
— Class enumeration
* e.g., List all dolphins

11/14/23 Heiko Paulheim

Example: A Simple Contradiction
e

 Given:

:Human a owl:Class
:Animal a owl:Class

:Human owl:disjointWith :Animal .

:Jimmy a :Animal .
:Jimmy a :Human .

11/14/23 Heiko Paulheim

Example: A Simple Contradiction

* We can derive:
— Human m :Animal = &
owl:Nothing owl:intersectionOf (:Human :Animal)
— Jimmy e (:Human n :Animal)

:Jimmy a [a owl:Class; owl:intersectionOf
(:Human :Animal)]

* le.
— Jimmy e &
:Jimmy a owl:Nothing .
— That means: the instance must not exist

— but it does

11/14/23 Heiko Paulheim

Reasoning Tasks Revisited
-

* Subclass Relations
Student c Person < ,Every student is a person®

* Proof method: Reductio ad absurdum
— "Invent" an instance i
— Define Student(i) and —Person(i)
— Check for contradictions
* If there is one: Student < Person has to hold

* If there is none: Student — Person cannot be derived
— Note: it may still hold!

11/14/23 Heiko Paulheim

Example: Subclass Relations

e
* Ontology:

:Student owl:subClassOf :UniversityMember
:UniversityMember owl:subClassOf :Person

* Invented instance:

:1 a :Student

:1 a [owl:complementOf :Person]
* We have

:1 a :Student
:Student owl:subClassOf :UniversityMember

Thus

:1 a :UniversityMember
* And from

:UniversityMember owl:subClassOf :Person

* \We further derive that

:1 a Person

11/14/23 Heiko Paulheim

Example: Subclass Relations

* Now, we have

:1 a :Person .

:1 a [owl:complementOf :Person |
l.e.,
:1 a [owl:intersectionOf
(:Person [owl:complementOf :Person])]

 from which we derive

:1 a owl:Nothing .

11/14/23 Heiko Paulheim

Reasoning Tasks Revisited
-

* Class equivalence
— Person = Human
* Splitinto
— Person < Human and
— Human < Person
* i.e., show subclass relation twice
— We have seen that

* Class disjointness
— Are C and D disjoint?
— "Invent" an instance i
— Define C(i) and D(i)
* We have done set (the Jimmy example)

11/14/23 Heiko Paulheim

Class Consistency
-

* (Can a class have instances?
— e.g., married bachelors

:Bachelor owl:subClassOf :Man
:Bachelor owl:subClassOf
[a owl:Restriction;
owl :onProperty :marriedTo;
owl:cardinality 0]
:MarriedPerson owl:subClassOf [
a owl:Restriction;
owl:onProperty :marriedTo;
owl:cardinality 1]

:MarriedBachelor owl:intersectionOf
(:Bachelor :MarriedPerson)

* Now: invent an instance of the class
— And check for contradictions

11/14/23 Heiko Paulheim

Reasoning Tasks Revisited
-

* Class Instantiation
— Is Flipper a dolphin?

* Check:
— define —Dolphin(Flipper)
— Check for contradiction

* Class enumeration
— Repeat class instantiation for all known instances

11/14/23 Heiko Paulheim

Typical Reasoning Tasks Revisited
e

* What do we want to know from a reasoner?
— Subclass relations
* e.g., Are all birds flying animals?
— Equivalent classes
* e.g., Are all birds flying animals and vice versa?
— Disjoint classes
* e.g., Are there animals that are mammals and birds at the same time?
— Class consistency
* e.g., Can there be mammals that lay eggs?
— Class instantiation
* e.g., Is Flipper a dolphin?
— Class enumeration
* e.g., List all dolphins

11/14/23 Heiko Paulheim

Typical Reasoning Tasks Revisited
e

* We have seen
— All reasoning tasks can be reduced to the same basic task
— i.e., consistency checking

* This means: for building a reasoner that can solve those tasks,
— we only need a reasoner capable of consistency checking

11/14/23 Heiko Paulheim

OWL DL

* The DL stands for “Description Logics”
* Alogic formalism dating back to the 1980s

11/14/23 Heiko Paulheim

Ontologies in Description Logics Notation
-

* Classes and Instances
- C(x) —x a C .
- R(X,y) < xRy .
- CLCD < C rdfs:subClassOf D
- C=D < C owl:equivalentClass D
— CE-D e C owl:disjointWith D
— C=-D e C owl:complementOf D
— C=EDnNE & C owl:intersectionOf (D E)
— C=DUE & C owl:unionOf (D E)
- T < owl:Thing
i <~ owl:Nothing

11/14/23 Heiko Paulheim

Ontologies in Description Logics Notation
-

* Domains, ranges, and restrictions
— dR.T EC & R rdfs:domain C
— VR.C < R rdfs:range C

— CLVR.D « C owl:subClassOf
[a owl:Restriction;
owl :onProperty R;
owl:allValuesFrom D]

— CL3IR.D « C owl:subClassOf
[a owl:Restriction;
owl :onProperty R;
owl:someValuesFrom D |

— CC>nR & C owl:subClassOf
[a owl:Restriction;
owl:onProperty R;
owl:minCardinality n]

11/14/23 Heiko Paulheim

Global Statements in Description Logic
-

* So far, we have seen mostly statements about single classes
- eg.,CLD

* In Description Logics, we can also make global statements
— e.g.,,DUE
— This means: every single instance is a member of D or E (or both)

* Those global statements are heavily used in the reasoning process

11/14/23 Heiko Paulheim

Negation Normal Form (NNF)
-

* Transforming ontologies to Negation Normal Form:
— L und = are not used
— Negation only for atomic classes and axioms

* A simplified notation of ontologies
* Used by tableau reasoners

11/14/23 Heiko Paulheim

Negation Normal Form (NNF)
-

11/14/23

Eliminating L:

* Replace CED by -CuD

* Note: this is a shorthand notation for vx: —C(x) V D(x)

Why does this hold?

* CLDisequivalentto C(x) — D(x)

C(x) D(x) C(x) - D(X) | —=C(x)V D(x)
true true true true
true false false false
false true true true
false false true true

Heiko Paulheim

Negation Normal Form (NNF)
-

* Eliminating =:
* Replace C=DbyCLEDandDELC
* Proceed as before
* i.e..C =D becomes
CCD
DCC
— and thus
—CubD
—DuC

11/14/23 Heiko Paulheim

Negation Normal Form (NNF)
-

 Further transformation rules

— NNF(C) =C (for atomic C)
— NNF(-C) = —C (for atomic C)
— NNF(——=C) =C

— NNF(CuD) = NNF(C) u NNF(D)
— NNF(C D) = NNF(C) " NNF(D)

— NNF(=(CrD)) = NNF(-=C) = NNF(-D)
— NNF(=(CuD)) = NNF(-=C) " NNF(-D)

— NNF(VR.C) = VR.NNF(C)
— NNF(3R.C) = 3R.NNF(C)
— NNF(=VR.C) = 3R.NNF(=C)
— NNF(=3R.C) = VR.NNF(-C)

11/14/23 Heiko Paulheim

The Basic Tableau Algorithm
-

* Tableau: Collection of derived axioms
— Is subsequently extended
— As for forward chaining

* In case of conjunction
— Split the tableau

C(a), D
o o o2

11/14/23 Heiko Paulheim

When is an Ontology Free of Contradictions?
-

* Tableau is continuously extended and split

* Free of contradictions if...
— No further axioms can be created
— At least one partial tableau is free of contradictions

— A partial tableau has a contradiction if it contains
both an axiom and its negation

* e.g.. Person(Peter) und —Person(Peter)
* The partial tableau is then called closed

11/14/23 Heiko Paulheim

The Basic Tableau Algorithm

* Given: an ontology O in NNF

While not all partial tableaus are closed

* Choose a non-closed partial tableau Tandan A € O UT
If A'is not contained in T
If A is an atomic statement
add AtoT
back to *
If A is a non-atomic statement
Choose an individual i € O UT
Add A(i))to T
back to *
else
Extend the tableau with consequences from A
back to *

11/14/23 Heiko Paulheim

The Basic Tableau Algorithm
-

* Extending a tableau with consequences

C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (CnD)(a) Add C(a) and D(a)
5 (CuD)(a) Split tableau into T1 and T2.

Add C(a)to T1, D(a) to T2

6 (3FR.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (VYR.C)(a) For all b with R(a,b) € T: add C(b)

11/14/23 Heiko Paulheim

A Simple Example
e

* Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl.disjointWith :Human .

:Seth a :Human .

:Seth a :Insect .

* |s this knowledge graph consistent?

11/14/23 Heiko Paulheim

A Simple Example
e

* Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl.disjointWith :Human .

:Seth a :Human .

:Seth a :Insect .

— The same ontology in DL-NNF:

—Animal U —Human

Animal u(—-Mammal m—Bird m—Fish m—Insect m—Reptile)
—Animal u (Mammal v Bird U Fish u Insect U Reptile)
Human(Seth)

Insect(Seth)

* Let's try how reasoning works now!

11/14/23 Heiko Paulheim

A Simple Example
e

Human(Seth), Insect(Seth)

1 C(a) Add C(a)

11/14/23 Heiko Paulheim

A Simple Example
e

Human(Seth), Insect(Seth),
(-Animal v —=Human)(Seth)

Choose an individual a, add C(a)

11/14/23 Heiko Paulheim

A Simple Example
e

Human(Seth), Insect(Seth),
(-Animal v —Human)(Seth)
—Animal(Seth)

CHuman(Seth), Insect(Seth),

(/ﬁAnimaI U —Human)(Seth)
(<Human(Sethp

5 (CuD)(a) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

11/14/23 Heiko Paulheim

A Simple Example
e

Human(Seth), Insect(Seth),
(-Animal v —=Human)(Seth)

—Animal(Seth)
Animal u (-Mammal m —-Bird m —Fish m —Insect)(Seth)

Human(Seth), Insect(Seth),
(-=Animal v —=Human)(Seth)
—Human(Seth)

Choose an individual a, add C(a)

11/14/23 Heiko Paulheim

A Simple Example

Human(Seth), Insect(Seth),

j;mmaluﬁ\j;‘man)(Seth)
——=Animal(Set

Ani U (=Mammal n —=Bird 1 —Fish n —Insect)(Seth)
CAnimal(Seth

Human(Seth), Insect(Seth),
(-Animal v —=Human)(Seth)

—Animal(Seth)
Animal u (-Mammal n —Bird n —Fish n —Insect)(Seth)
(=Mammal n —=Bird 1 —Fish n —Insect)(Seth)

N\

Human(Seth), Insect(Seth),
(=Animal v —=Human)(Seth)
—Human(Seth)

5 (CuD)(a) Split the tableau into T1 and T2.
Add C(a)toT1, D(a) to T2

11/14/23 Heiko Paulheim

A Simple Example

Human(Seth ?‘@!@!E’

(-Animal v —=Human)(Seth)

—Animal(Seth)

Animal u (-Mammal n —Bird n —Fish m —Insect)(Seth)
(-Mammal n —-Bird n —Fish M —Insect M —Reptile)(Seth)
—Mammal(Seth)

—Bird(Seth)
—Fish(Seth
<g1/nsé(cT(S\e)th®

4 (CnD)(a) Add C(a) and D(a)

11/14[4\) 1 ICINV I QUIlITILTI

Another Example

* Again, a simple ontology:

:Woman rdfs:subClassOf :Person
:Man rdfs:subClassOf :Person
:hasChild rdfs:domain :Person
:hasChild rdfs:range :Person
:Peter :hasChild :Julia

:Julia a :Woman

:Peter a :Man

11/14/23 Heiko Paulheim

Another Example

* in DL NNF:

—Man uPerson
—Woman uPerson
—3hasChild.T v Person
vhasChild.Person
hasChild(Peter,Julia)
Woman(Julia)
Man(Peter)

11/14/23 Heiko Paulheim

Another Example
e

hasChild(Peter,Julia)

2 R(a,b) Add R(a,b)

11/14/23 Heiko Paulheim

Another Example
e

hasChild(Peter,Julia), Woman(Julia)

1 C(a) Add C(a)

11/14/23 Heiko Paulheim

Another Example
e

hasChild(Peter,Julia), Woman(Julia),
(=3hasChild.T v Person)(Peter)

Choose an individual a, add C(a)

11/14/23 Heiko Paulheim

Another Example
e

hasChild(Peter,Julia), Woman(Julia),
(=3hasChild.T u Person)(Peter),

—3hasChild.T(Peter)
hasChild(Peter,Julia), Woman(Julia),

(=3hasChild.T)(Peter),
Person(Peter)

5 (CuD)(a) Split the tableau into T1 and T2.
Add C(a) toT1, D(a) to T2

11/14/23 Heiko Paulheim

Another Example
e

hasChild(Peter,Julia), Woman(Julia),
(=3hasChild.T u Person)(Peter),

—3hasChild.T(Peter)
hasChild(Peter,Julia), Woman(Julia),
(=3hasChild.T)(Peter),

Person(Peter),
—hasChild(Peter,b0),T(b0)

6 (3R.C)(a) Add R(a,b) und C(b) for a new Individual b

11/14/23 Heiko Paulheim

Another Example
e

hasChild(Peter,Julia), Woman(Julia),
(=3hasChild.T u Person)(Peter),

—3hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(—=3hasChild.T)(Peter),
Person(Peter),
—hasChild(Peter,b0),T(b0),
—hasChild(Peter,b1),T(b1),

6 (3R.C)(a) Add R(a,b) und C(b) for a new Individual b

11/14/23 Heiko Paulheim

Introducing Rule Blocking
-

* Observation
— The tableau algorithm does not necessarily terminate
— We can add arbitrarily many new axioms

6 (3R.C)(a) Add R(a,b) und C(b) for a new Individual b

 |dea: avoid rule 6 if no new information is created

— l.e., if we already created one instance b_ for instance a,
then block using rule 6 for a.

11/14/23 Heiko Paulheim

Tableau Algorithm with Rule Blocking

* Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A € O UT
If A'is not contained in T
If A is an atomic statement
add AtoT
back to *
If A is a non-atomic statement
Choose an individual i € O UT
Add A(i)to T
back to *
else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

11/14/23 Heiko Paulheim

Example with Rule Blocking

hasChild(Peter,Julia), Woman(Julia),
(=3hasChild.T u Person)(Peter),

—3hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(—=3hasChild.T)(Peter), now it will

Person(Peter), | terminate
—hasChild(Peter,b0),T(b0) E uItimate/hL)/

o
e Adom Acion .

6 (3FR.C)(a) Add R(a,b) und C(b) for a new Individual b,
block rule 6 for a

11/14/23 Heiko Paulheim

Tableau Algorithm: Wrap Up
e

* An algorithm for description logic based ontologies
— works for OWL Lite and DL

* We have seen examples for some OWL expressions
— Other OWL DL expressions can be “translated” to DL as well
— And they come with their own expansion rules
— Reasoning may become more difficult
* e.g., dynamic blocking and unblocking

11/14/23 Heiko Paulheim

Optimizing Tableau Reasoners

* Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

non-closed partial tableau T and a non-blocked A € O UT
If A'is not contained in T
If A is an atomic statement
add AtoT
back to *
If A is a non-atomic statement
Choose an individual i € O UT
Add A(i)to T
back to *
else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

11/14/23 Heiko Paulheim

OWL Lite vs DL Revisited
e

* Recap: OWL Lite has some restrictions
— Those are meant to allow for faster reasoning

* Restrictions only with cardinalities 0 and 1
— Higher cardinalities make blocking more complex

* unionOf, disjointWith, complementOf, closed classes, ...
— they all introduce more disjunctions
— I.e., more splitting operations

11/14/23 Heiko Paulheim

Complexity of Ontologies
-

* Reasoning is usually expensive

* Reasoning performance depends on ontology complexity
— Rule of thumb: the more complexity, the more costly

* Most useful ontologies are in OWL DL
— But there are differences
— In detail: complexity classes

11/14/23 Heiko Paulheim

Simple Ontologies: ALC

e
* ALC: Attribute Language with Complement

* Allowed:
— subClassOf, equivalentClass
— unionOf, complementOf, disjointWith
— Restrictions: allValuesFrom, someValuesFrom
— domain, range
— Deéfinition of individuals

11/14/23 Heiko Paulheim

SHIQ, SHOIN & co
e

* Complexity classes are noted as letter sequences
* Using
— S = ALC plus transitive properties (basis for most ontologies)
— H = Property hierarchies (subPropertyOf)
— O = closed classes (oneOf)
— | =inverse properties (inversePropertyOf)
— N = numeric restrictions (min/maxCardinality)
— F = functional properties
— Q = qualified numerical restrictions (OWL2)
— (D) = Usage of datatype properties

11/14/23 Heiko Paulheim

Some Tableau Reasoners
eSS

* Fact
— University of Manchester, free
— SHIQ
* Fact++/JFact
— Extension of Fact, free
— SHOIQ(and a little D), OWL-DL + OWL2
* Pellet
— Clark & Parsia, free for academic use
— SHOIN(D), OWL-DL + OWL2
* RacerPro

— Racer Systems, commercial
— SHIQ(D)

11/14/23 Heiko Paulheim

Sudoku Revisited
e

* Recap: we used a closed class
— Plus some disjointness

* Resulting complexity: SO

* Which reasoners do support that?
— Fact: SHIQ :-(A E l
— RacerPro: SHIQ(D) :-(6 1]19]5
— Pellet: SHOIN(D) :-) | [9[8] | |6
— HermiT: SHOIQ :-) 8 _ 6 3
- 8 3 1
7 2 | 6
b 2|8
41119 5
8 719

11/14/23 Heiko Paulheim

Rules: Beyond OWL

User Interface and Applications

d Trust
s < Proof
%, here be dragons...
Unifying Logic
> Ontology: Rules:
OWL RIF
. Query: 3
Semantic Web < SPARQL E‘
Technologies Schema: RDF-S S
(This lecture) s
Data Interchange: RDF
Technical Data Interchange: XML
Foundations
URI Unicode
N

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

11/14/23 Heiko Paulheim

Limitations of OWL

* Some things are hard or impossible to express in OWL

* Example:

— If Ais a woman and the child of B
then A is the daughter of B

childOf

'subPropertyOf
erOf

11/14/23 Heiko Paulheim

Limitations of OWL

e
* Let's try this in OWL.:

:Woman rdfs:subClassOf :Human

:childOf a owl:0bjectProperty ;
rdfs:domain :Human ;
rdfs:range :Human

:daughterOf a owl:0bjectProperty ;
rdfs:subPropertyOf :childOf ;
rdfs:domain :Woman

11/14/23 Heiko Paulheim

Limitations of OWL
e

* What can a reasoner conclude with this ontology?

* Example:
:Julia :daughterOf :Peter .

- :Julia a :Woman .

* What we would like to have instead:

:Julia :childOf :Peter .
:Julia a :Woman .

— :Julia :daughterOf :Peter .

11/14/23 Heiko Paulheim

Limitations of OWL
e

* What we would like to have:
daughterOf(X,Y) < childOf(X,Y) AWoman(X) .

 Rules are flexible

* There are rules in the Semantic Web, e.qg.
— Semantic Web Rule Language (SWRL)
— Rule Interchange Format (RIF)
— See lecture in a few weeks

* Some reasoners do (partly) support rules

11/14/23 Heiko Paulheim

Wrap Up
e
* OWL comes in many flavours
— OWL Lite, OWL DL, OWL Full
— Detailed complexity classes of OWL DL

— Additions and profiles from OWL2
— However, there are still some things that cannot be expressed...

* Reasoning is typically done using the Tableau algorithm

11/14/23 Heiko Paulheim

Questions?

s

11/14/23 Heiko Paulheim

