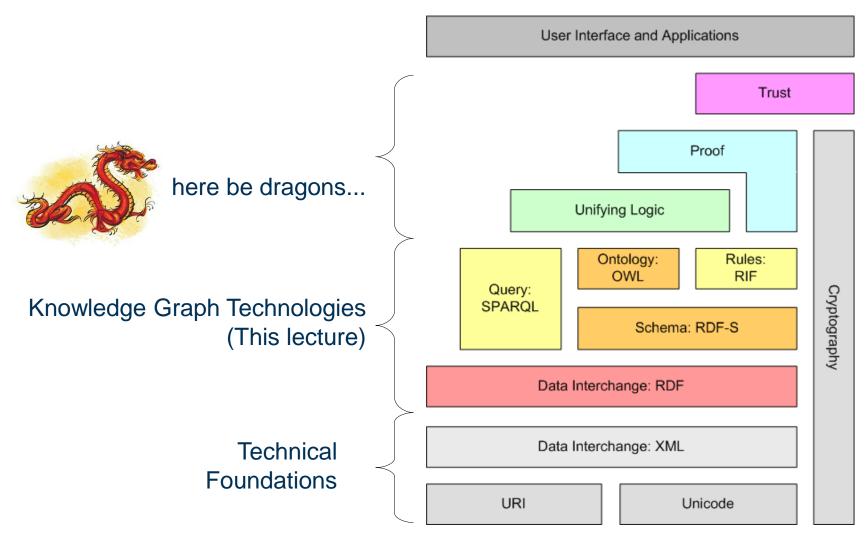
RDF Schema (RDFS) IE650 Knowledge Graphs

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

Previously on "Knowledge Graphs"

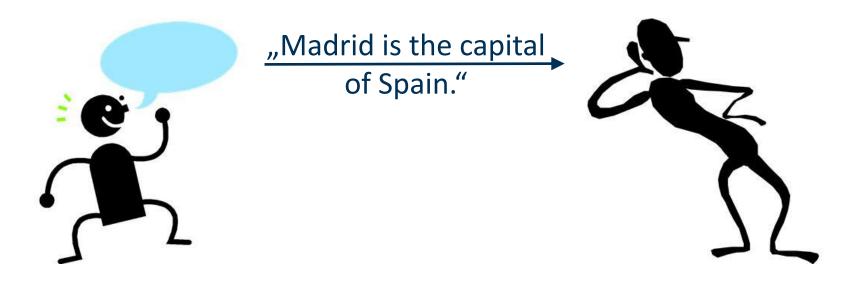
- Is RDF more powerful than XML?
- XML is a markup language
- for information
- In XML, arbitrary elements and attributes can be defined
- XML tag names are meaningless
 for a computer

- RDF is a markup language for information
- In RDF, arbitrary classes and predicates can be defined
- RDF class and predicate names are meaningless for a computer


Today: Schemas and Ontologies

- Last week's slides:
 - Node types ("classes") and edge types ("properties")
 - Are also referred to the "schema" of the graph (aka "ontology")
 - Can be defined with further restrictions
 - e.g., an edge of type "author" links a publication to a person
- Schemas and ontologies bring semantics to knowledge graphs
- Today:
 - Building simple ontologies with RDF Schema
 - Elements of RDF Schema
 - Automatic deduction with RDF Schema

The Semantic Web Stack

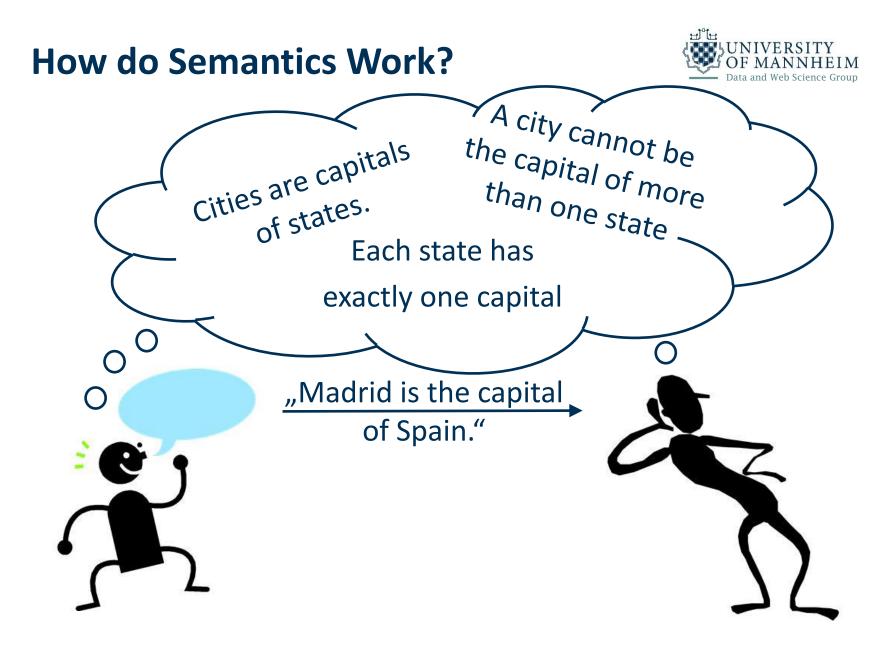

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

What is Missing up to Now?

- Basic premise: knowledge graphs should encode information so that humans and computers can understand it
- But what does understand actually mean?

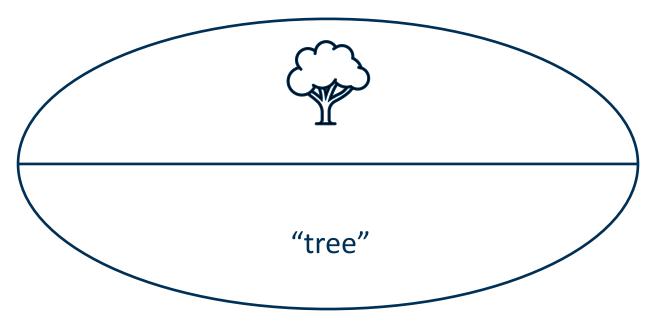
Semantics



- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- Published in a knowledge graph (i.e., using RDF):
 - :Madrid :capitalOf :Spain .
- How many pieces of information can we (i.e., humans) derive from that sentence?
 - (1 piece of information = 1 statement <S,P,O>)
 - Estimations? Opinions?

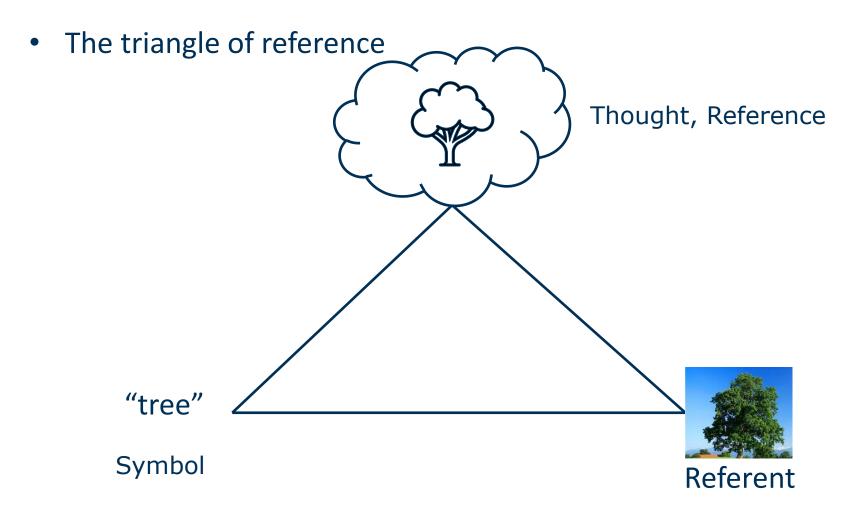
Semantics

- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- We can get the following information:
 - "Madrid is the capital of Spain."
 - "Spain is a state."
 - "Madrid is a city."
 - "Madrid is located in Spain."
 - "Barcelona is not the capital of Spain."
 - "Madrid is not the capital of France."
 - "Madrid is not a state."



University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

An Excursion to Linguistics

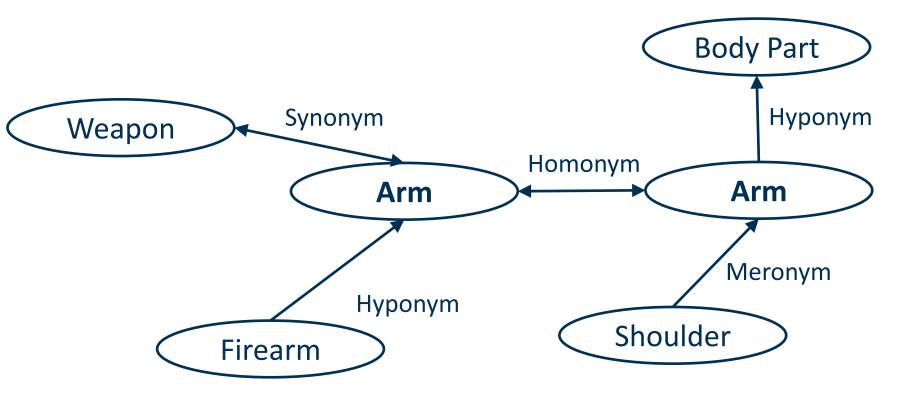


- Saussure's idea of a linguistic sign
- Ferdinand de Saussure (1857-1913):
 - Signifier (signifiant) and signified (signifié) cannot be separated from each other

An Excursion to Linguistics

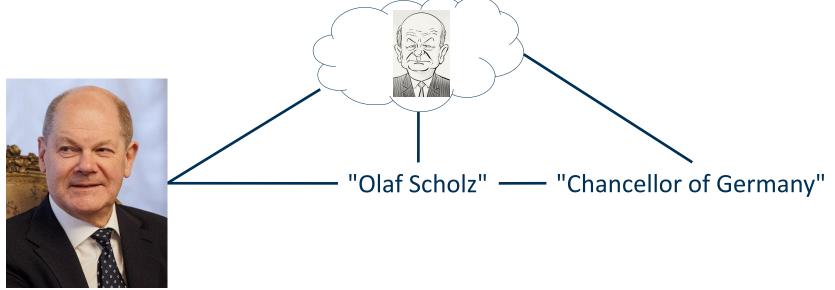
University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024 Charles Odgen (1923): The Meaning of Meaning.

So, how do Semantics Work?


- Lexical semantics
 - Meaning of a word is defined by relations to other words
- Extensional semantics
 - Meaning of a word is defined by the set of its instances
- Intensional semantics, e.g., feature-based semantics
 - Meaning of a word is defined by features of the instances
- Prototype semantics
 - Meaning of a word is defined by proximity to a prototypical instance

• Each type of semantic is discussed in the following slides

Lexical Semantics


• Defining semantics by establishing relations between words

Extensional Semantics

- Listing instances
 - EU members are Austria, Belgium, Bulgaria, ..., Sweden.
- Olaf Scholz == Chancellor of Germany
 - both terms have the same extension

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024 https://commons.wikimedia.org/wiki/File:Olaf Scholz 2024.jpg

Intensional Semantics

- Describes features of things, i.e., semes
- A seme is a feature that distinguishes the meaning of two words

Word	has wings	can swim	has fur	can fly
Duck	+	+	-	+
Bird	+	0	-	0
Bee	+	-	-	+
Dolphin	-	+	-	-
•••				

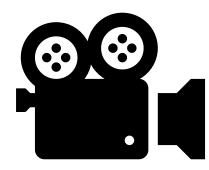
Intensional vs. Extensional Semantics

- Intensionally different things can have the same extension
- Classic example: morning star and evening star

Word	Celestial body	bright	visible in the morning	visible in the evening
Morning star	+	+	+	-
Evening star	+	+	-	+

• both have the same extension (i.e., Venus)

Intensional vs. Extensional Semantics



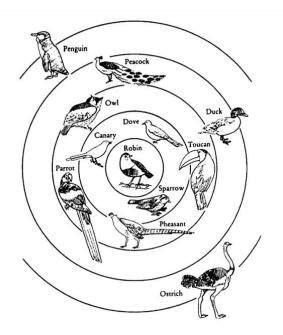
- The extension can change over time without the intension changing
 - e.g., "student"
 - does that change the semantics?
- Intension may also change over time
 - technological achievements (e.g., intension of *ship*)
 - changes in moral values (e.g., intension of *marriage*)
- Extension may also be empty, e.g.
 - Unicorn
 - Martian
 - Yeti (?)

Intensional vs. Extensional Semantics

• ...explained by two well-known experts in the field :-)

https://www.youtube.com/watch?v=o8TVAhMQQZg https://www.youtube.com/watch?v=dvTFv5xJUQc

Prototype Semantics



- A small experiment:
 - Close your eyes, and imagine a bird!

Prototype Semantics

- So far, intensional and extensional semantics are based on boolean logics (i.e., there's only "true" and "false")
- Prototype Semantics: a more fuzzy variant

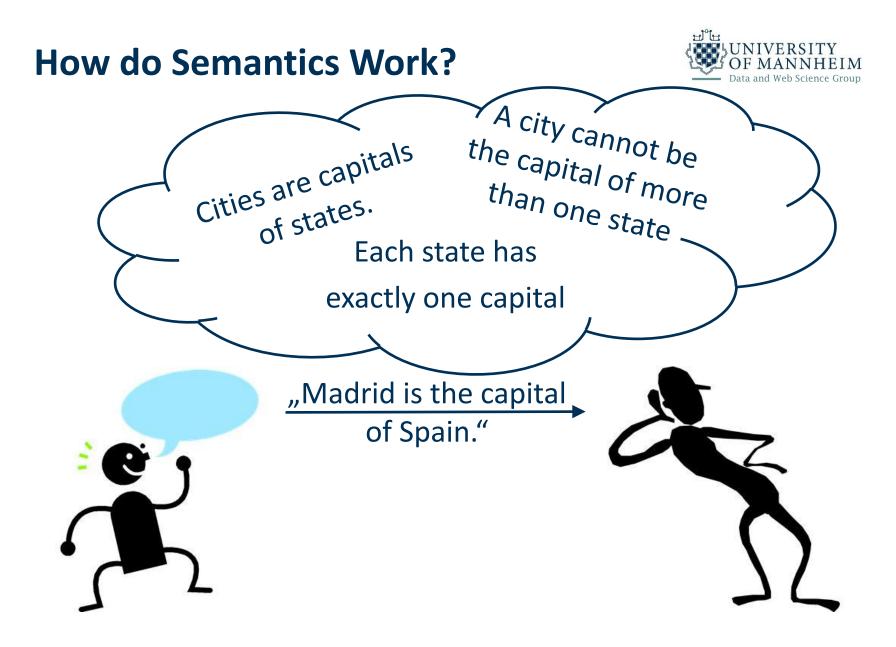
University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024 Jean Aitchison: Words in the Mind (1987)

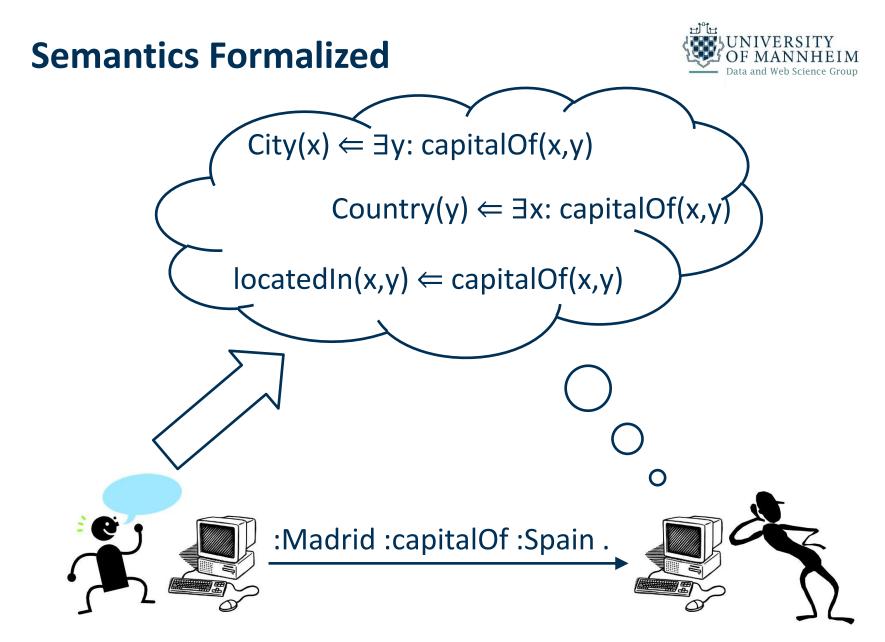
Semantic Shift

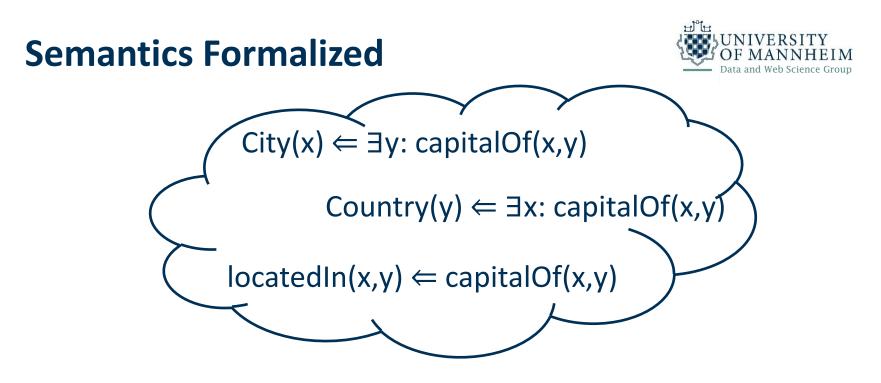
"Mask" 2019

"Mask" 2022

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024


How do Semantics Work?


- We have learned: Semantics define the meaning of words
- That is what we do with ontologies
 - Using methods from lexical, intensional, and extensional semantics



University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.202 http://walkinthewords.blogspot.com/2008/05/linguistic-cartoon-favorites-semantics.html

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

- "An ontology is an explicit specification of a conceptualization."
 Gruber (1993): Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In: International Journal Human-Computer Studies Vol. 43, Issues 5-6, pp. 907-928.
- Ontologies encode the knowledge about a domain
- They form a common vocabulary
 - and describe the semantics of its terms

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

What is an Ontology?

- Ontology (without a or the) is the philosophical study of being
 - greek: $\delta v \tau o \varsigma$ (things that are), $\lambda \delta \gamma o \varsigma$ (the study)
 - A sub discipline of philosophy
- In computer science (with a or the)
 - A formalized description of a domain
 - A shared vocabulary
 - A logical theory

Ontologies – Further Definitions

• Guarino und Giaretta (1995):

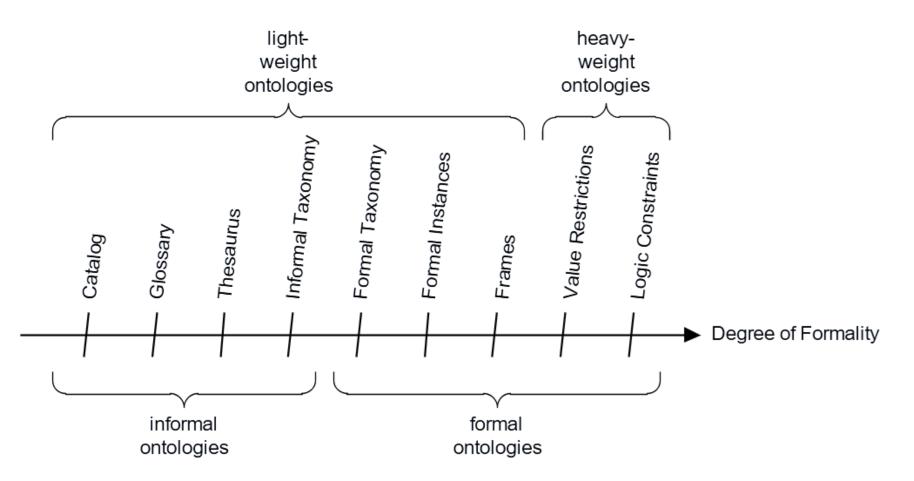
"a logical theory which gives an **explicit**, **partial** account of a conceptualization"

• Uschold und Gruninger (1996):

"shared understanding of some domain of interest" "an explicit account or representation of some part of a conceptualisation"

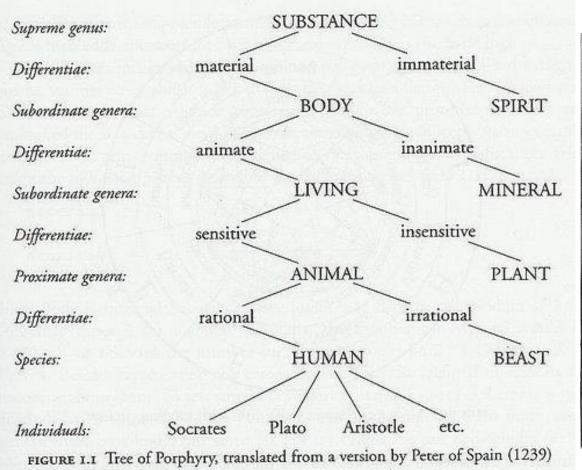
• Guarino (1998):

"a set of **logical axioms** designed to account for the intended meaning of a vocabulary"


Essential Properties of Ontologies

- Explicit
 - Meaning is not "hidden" between the lines
- Formal
 - e.g., using logic or rule languages
- Shared
 - An ontology just for one person does not make much sense
- Partial
 - There will (probably) never be a full ontology of everything in the world

Classifications of Ontologies



Lassila & McGuiness (2001): The Role of Frame-Based Representation on the Semantic Web. In: Linköping Electronic Articles in Computer and Information Science 6(5). University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

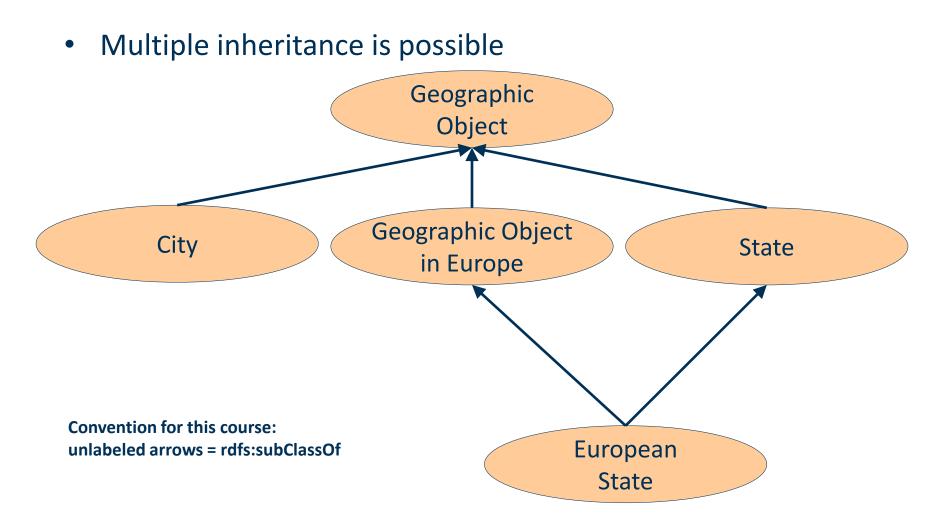
Classifications of Ontologies

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024 Porphyry, Greek philosopher, ca. 234-305

Encoding Simple Ontologies: RDFS

• A W3C Standard since 2004

• Most important element: classes


:State a rdfs:Class .

• Classes form hierarchies

:EuropeanState rdfs:subClassOf :State .

Class Hierarchies in RDF Schema

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

Properties in RDF Schema

- Properties are the other important element
- Resemble two-valued predicates in predicate logic

:Madrid :capitalOf :Spain .
:capitalOf a rdf:Property .

• Properties also form hierarchies

:capitalOf rdfs:subPropertyOf :locatedIn .

Domains and Ranges of Properties

- In general, properties exist independently from classes
 - i.e., they are *first class citizens*
 - this is different than OOP or ERM
- Defining the domain and range of a property:
 - :capitalOf rdfs:domain :City .
 - :capitalOf rdfs:range :Country .
- Domain and range are inherited by sub properties
 - They can also be further restricted

Predefined Properties

- We have already seen
 - rdf:type
 rdfs:subClassOf
 rdfs:subPropertyOf
 - rdfs:domain
 - rdfs:range

Further Predefined Properties

• Labels:

- :Germany rdfs:label "Deutschland"@de .
- :Germany rdfs:label "Germany"@en .
- Comments:
 - :Germany rdfs:comment "Germany as a political entity."@en .
- Links to other resources:
 - :Germany rdfs:seeAlso <http://www.deutschland.de/>
- Link to defining schema:
 - :Country rdfs:isDefinedBy
 <http://foo.bar/countries.rdfs> .

URIs vs. Labels

- A URI is only a unique identifier
 - It does not need to be interpretable
 - http://www.countries.org/4327893
- Labels are made for human interpretation
- ...and can come in different languages: countries:4327893 rfds:label "Deutschland"@de . countries:4327893 rdfs:label "Germany"@en . countries:4327893 rdfs:label "Tyskland"@sv .

URIs vs. Labels

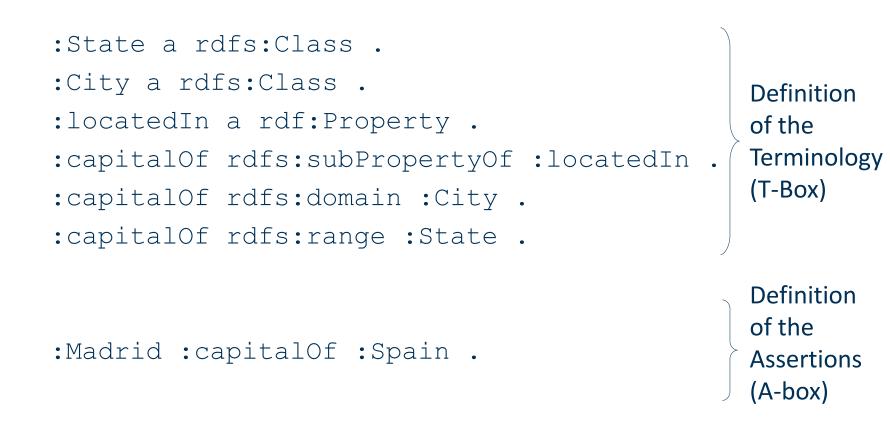
• Labels and comments can also be assigned to RDFS elements:

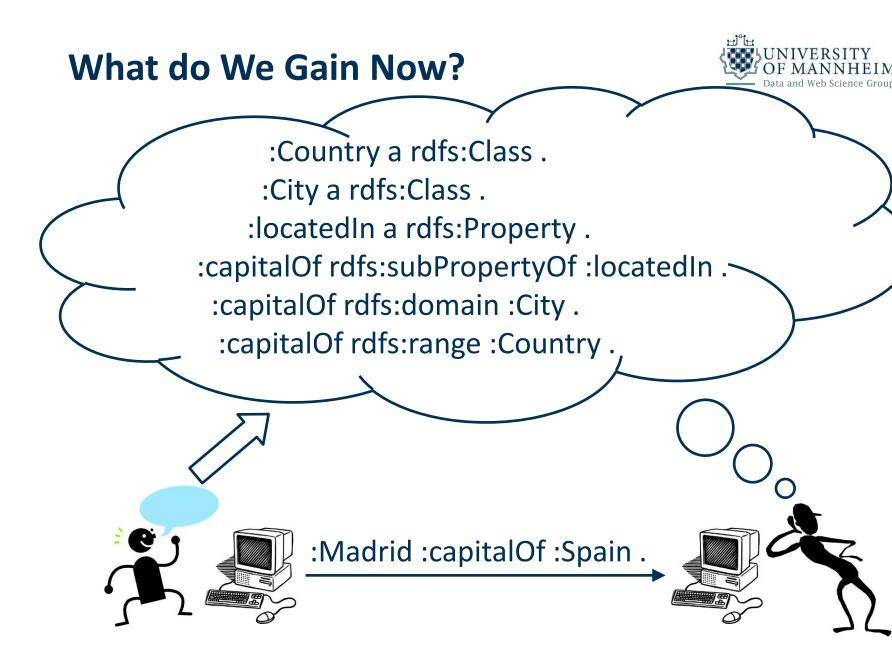
:Country a rdfs:Class. :Country rdfs:label "Land"@de. :Country rdfs:label "Country"@en.

:locatedIn a rdf:Property .

- :locatedIn rdfs:label "liegt in"@de.
- :locatedIn rdfs:label "is located in"@en.
- :locatedIn rdfs:comment "refers to geography"@en.

RDF Schema and RDF




- Every RDF Schema document is also an RDF document
- This means: all properties of RDF also hold for RDFS!
- Non-unique Naming Assumption schemal:Country a rdfs:Class . schema2:State a rdfs:Class .
- Open World Assumption
 - :Country rdfs:subClassOf :GeographicObject .
 - :City rdfs:subClassOf : GeographicObject .

Our First Ontology

• States, cities, and capitals

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

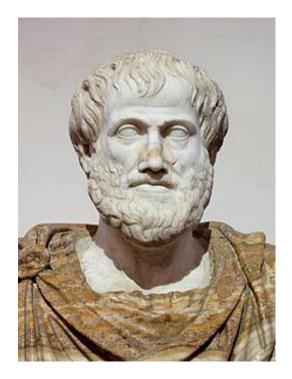
What do We Gain Now?

:Madrid :capitalOf :Spain . + :capitalOf rdfs:domain :City → :Madrid a :City .

> :Madrid :capitalOf :Spain . + :capitalOf rdfs:range:Country → :Spain a :Country .

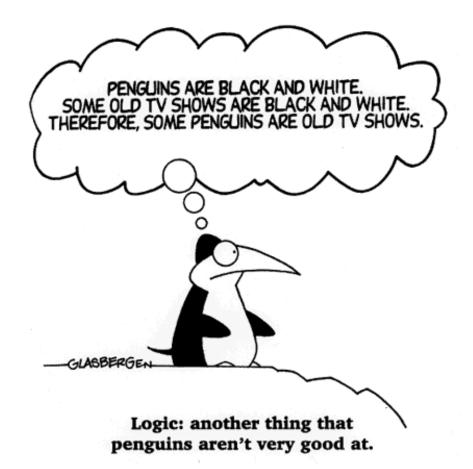
> > :Madrid :capitalOf :Spain .
> > + :capitalOf rdfs:subPropertyOf :locatedIn .
> > → :Madrid :locatedIn :Spain .

Reasoning with RDF



- RDF Schema allows for *deductive* reasoning on RDF
- This means:
 - given facts and rules,
 - we can derive new facts
- The corresponding tools are called *reasoner*
- Opposite of deduction: *induction*
 - deriving models from facts
 - see, e.g., lectures on data mining and machine learning

A Bit of History



- Aristotle (384 322 BC)
- Syllogisms
 - Deriving facts using rules
- Example:
 - All men are mortal.
 - Socrates is a man.
 - \rightarrow Socrates is mortal.

A Bit of History

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024 Cartoon Copyright: Randy Glasbergen, http://www.glasbergen.com/

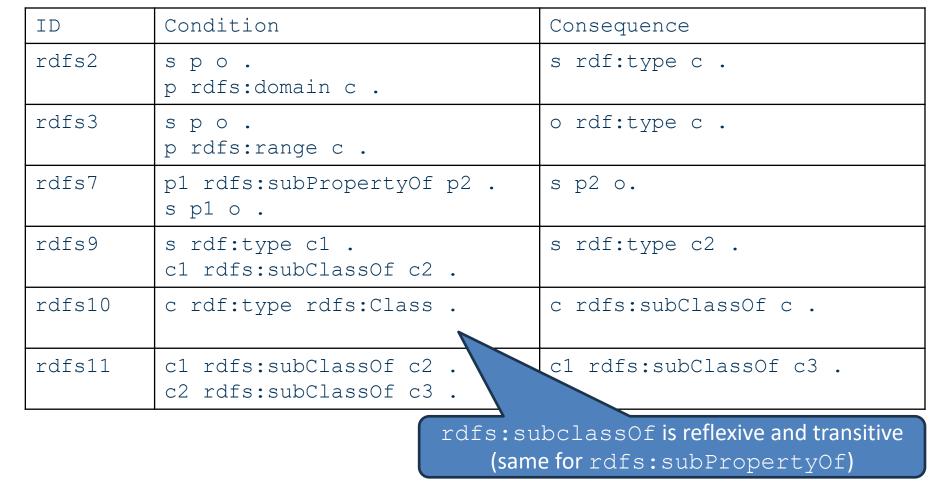
Interpretation and Entailment

- Entailment
 - The set of all consequences of a graph
- Mapping a graph to an entailment is called *interpretation*
- Simplest Interpretation:
 - $\langle s, p, o \rangle \in G \rightarrow \langle s, p, o \rangle \in Entailment$
- This interpretation creates all statements explicitly contained in the graph.
- But the *implicit* statements are the interesting ones!

Interpretation using Deduction Rules

- RDF interpretation can be done using RDFS deduction rules
- Those create an entailment
 - using existing resources, literals, and properties
 - creating additional triples like <s,p,o>
 - e.g.,
 - <Madrid, rdf:type, City>
 - <Madrid, located_in, Spain>
- Note:
 - no new resources, literals, or properties are created!

Reasoning with Deduction Rules



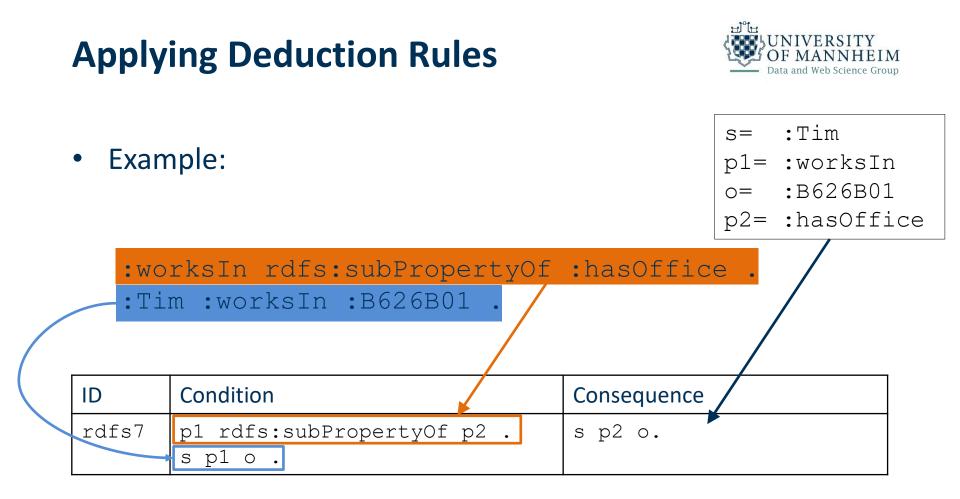
- Deduction rules are an interpretation function
- Simple reasoning algorithm (a.k.a. *forward chaining*):

```
Given: an RDF Graph G and
       a set of deduction rules R
Entailment E = G
Repeat
    M := \{ \}
    For all rules in R
            For each statement S in E
                    Apply R to S
                    If E does not contain consequence
                            Add consequence to M
    Add all elements in M to E
until M = \{ \}
```

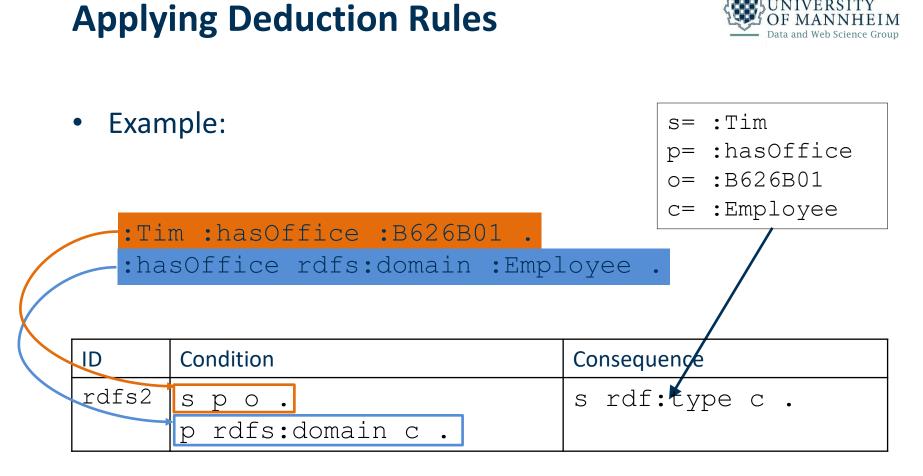
University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

Deduction Rules RDF Schema (Selection)

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024 W3C (2004): *RDF Semantics*. <u>http://www.w3.org/TR/rdf-mt/</u> (Section 7.3 RDFS Entailment Rules)


Applying Deduction Rules

• Example:


- :Employee a rdfs:Class .
- :Employee rdfs:subClassOf :Human .
- :Room a rdfs:Class .
- :worksIn rdfs:subPropertyOf :hasOffice .
- :hasOffice rdfs:domain :Employee .
- :hasOffice rdfs:range :Room .

:Tim :worksIn :B626B01 .

- \rightarrow :Tim :hasOffice :B626B01 .

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

 \rightarrow :Tim rdf:type :Employee .

 \rightarrow :Tim rdf:type :Human .

Applying Deduction Rules

• Example:

$\left(\right)$		<mark>m rdf:type :Employee.</mark> ployee rdfs:subClassOf :H	luman .
	ID	Condition	Consequence
	rdfs9	s rdf:type c1 . c1 rdfs:subClassOf c2 .	s rdf:type c2 .

s= :Tim

c2=:Human

c1=:Employee

Forward Chaining

Example revisited: ٠

- :Employee a rdfs:Class .
- :Employee rdfs:subClassOf :Human .
- :Room a rdfs:Class .
- :worksIn rdfs:subPropertyOf :hasOffice .
- :hasOffice rdfs:domain :Employee .
- :hasOffice rdfs:range :Room .

:Tim :worksIn :B626B01 .

- \rightarrow :Tim hasOffice :B626B01
- \rightarrow :Tim nasorrow . \rightarrow :Tim rdf:type Employee .
- \rightarrow :Tim rdf:type Human .

What if there are Multiple Domains/ Ranges?

• Example for social networks:

:knows rdfs:domain :Person .

- :knows rdfs:domain :MemberOfSocialNetwork .
- What should be the semantics here?
 - Everybody who knows someone
 is a person *and* a member of a social network
 - Everybody who knows someone
 is a person *or* a member of a social network

The Rules will Tell Us

:knows	s rdfs:dom	ain	:Person.	(a0)
:knows	s rdfs:dom	ain	:MemberOfSocialNetwork	.(a1)
:Peter	: knows :	Step	hen .	(a2)
(rdfs2+a0+a2) :Peter	rdf:type	:Pei	rson .	(a3)
(rdfs2+a1+a2) :Peter	rdf:type	:Mer	nberOfSocialNetwork .	(a4)

- This chain works for each object
 - it is always contained in both classes
 - \rightarrow i.e., the intersection semantics hold

What have We Gained?

- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- We can get the following information:
 - "Madrid is the capital of Spain." \checkmark
 - − "Spain is a state." ✓
 - "Madrid is a city." \checkmark
 - "Madrid is located in Spain." \checkmark
 - "Barcelona is not the capital of Spain." imes
 - "Madrid is not the capital of France." imes
 - "Madrid is not a state." ×

. . .

- "Every state has exactly one capital"
 - Property cardinalities
- "Every city can only be the capital of one state."
 - Functional properties
- "A city cannot be a state at the same time."
 - Class disjointness

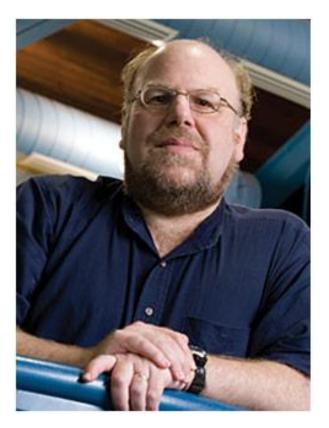
• For those, we need more expressive languages than RDFS!

- "Every state has exactly one capital"
 - i.e., "A state cannot have more than one capital."
- "Every city can only be the capital of one state."
 i.e., "A city cannot be the capital of two different states."
- "A city cannot be a state at the same time."

- Note: there is no negation in RDF and RDFS
- This means, we cannot produce any contradictions
 - This makes reasoning easy
 - But it also restricts the utility
 - Example:
 - Mammals do not lay eggs
 - Penguins lay eggs
 - \rightarrow Penguins are not mammals
- We will get to know formalisms that support negation
 - and learn how to do reasoning with them

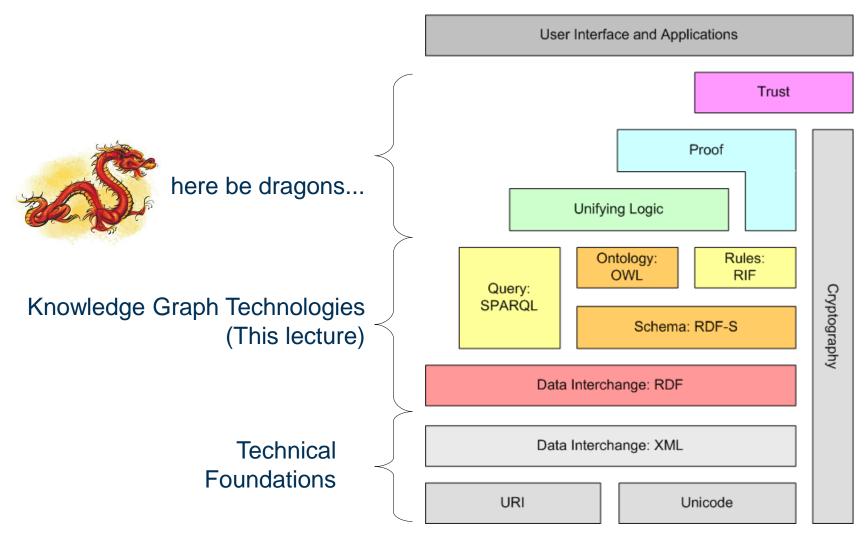
University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

- The missing negation perfectly fits the AAA principle
 - Anybody can say anything about anything
- ...and the Open World Assumption
- Any new knowledge will always fit to the knowledge that is already there
 - This principle is called "monotonicity"



- Kurt Gödel (1906-1978)
- Logic systems are either
 - not very powerful or
 - not free of contradictions
- RDF Schmea belongs to the first class

- Jim Hendler (*1957)
- "A little semantics goes a long way."


Just a moment

- "We cannot produce any contradictions"
- so what about
 - :Peter a :Baby .
 - :Peter a :Adult .
- That is a contradiction!
- Well, it is for us human beings
- But a computer will not know
 - Non-unique name assumption!

The Semantic Web Stack

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Questions?

University of Mannheim | IE650 Knowledge Graphs | RDFS | Version 25.09.2024