
University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

IE650 Knowledge Graphs

1

Labeled Property Graphs

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Previously on “Knowledge Graphs”

• Principles:
– RDF, RDF-S, SPARQL & co

– Public Knowledge Graphs

• Today:
– Some modeling shortcomings of RDF

– Labeled Property Graphs as an alternative

– RDF*/SPARQL*

– Cypher

2

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Previously on “Knowledge Graphs”

• Classes in DBpedia
– What’s a CareerStation?

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Example from DBpedia:
– Modeling careers of athletes

• Observation:
– The information is more complex

than pure triples

4

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Each career station adds one entity and ~seven statements

5

dbr:Dirk_Nowitzki dbo:careerStation dbr:Dirk_Nowitzki__CareerStation__1 .

dbr:Dirk_Nowitzki__CareerStation__1

rdf:type dbo:CareerStation, dbo:TimePeriod, dul:TimeInterval ;

dbo:activeYearsEndYear "1998"^^xsd:gYear ;

dbo:activeYearsStartYear "1994"^^xsd:gYear ;

dbo:team dbr:DJK_Würzburg .

dbr:Dirk_Nowitzki dbo:careerStation dbr:Dirk_Nowitzki__CareerStation__2 .

dbr:Dirk_Nowitzki__CareerStation__2

rdf:type dbo:CareerStation, dbo:TimePeriod, dul:TimeInterval ;

dbo:activeYearsEndYear "2018"^^xsd:gYear ;

dbo:activeYearsStartYear "1998"^^xsd:gYear ;

dbo:team dbr:Dallas_Mavericks .

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Each career station adds one entity and ~seven statements

6

Visualization: https://issemantic.net/rdf-visualizer

https://issemantic.net/rdf-visualizer

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Example from DBpedia:
– ~2.7M nodes of type

dbo:CareerStation*

• ~45% of all entities!

– 13.5M RDF statements
describe those nodes

7

* As of October 2023

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Alternatives:
– RDF Reification

8

dbr:Dirk_Nowitzki__CareerStation__1

rdf:type rdf:Statement ;

rdf:subject dbr:Dirk_Nowitzki ;

rdf:predicate dbo:team ;

rdf:object dbr:DJK_Würzburg .

dbr:Dirk_Nowitzki__CareerStation__1

dbo:activeYearsEndYear "1998"^^xsd:gYear ;

dbo:activeYearsStartYear "1994"^^xsd:gYear .

dbr:Dirk_Nowitzki__CareerStation__2

rdf:type rdf:Statement ;

rdf:subject dbr:Dirk_Nowitzki ;

rdf:predicate dbo:team ;

rdf:object dbr:Dallas_Mavericks .

dbr:Dirk_Nowitzki__CareerStation__2

dbo:activeYearsEndYear "2018"^^xsd:gYear ;

dbo:activeYearsStartYear "1998"^^xsd:gYear .

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Alternatives:
– RDF Reification

9

Visualization: https://issemantic.net/rdf-visualizer

https://issemantic.net/rdf-visualizer

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Alternatives:
– RDF Named Graphs (e.g., TriG)

10

dbr:Dirk_Nowitzki__CareerStation_1 {

dbr:Dirk_Nowitzki dbo:team dbr:DJK_Würzburg .

}

dbr:Dirk_Nowitzki__CareerStation_2 {

dbr:Dirk_Nowitzki dbo:team dbr:Dallas_Mavericks .

}

dbr:Dirk_Nowitzki {

dbr:Dirk_Nowitzki__CareerStation_1

dbo:activeYearsEndYear "1998"^^xsd:gYear ;

dbo:activeYearsStartYear"1994"^^xsd:gYear .

dbr:Dirk_Nowitzki__CareerStation__2

dbo:activeYearsEndYear "2018"^^xsd:gYear ;

dbo:activeYearsStartYear"1998"^^xsd:gYear ;

}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Alternative: Named Graphs

11

Visualization: https://issemantic.net/rdf-visualizer

https://issemantic.net/rdf-visualizer

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Intermediate summary:
– RDF seems particularly bad at representing non-triple information

– Choice:

• Blow up RDF graph (like DBpedia)

• Use non-straightforward representation

– Reification

– Named Graphs

• Other approaches in academia (singleton property, NDFluents, …)

– Not very handy either

– Little adoption

• In any case:

– Querying gets harder

12

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Verbosity of RDF Graphs

• Motivation for labeled property graphs

• Modeling would be much easier
– If we could simply attach information to edges

• Attempt in the Semantic Web Technologies Toolstack:
– RDF* / SPARQL*

13

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Hello RDF*

• RDF:
– Subjects are URIs or blank nodes

– Predicates are URIs

– Objects are URIs, blank nodes, or literals

• RDF*:
– Subjects are URIs, blank nodes, or quoted statements

– Predicates are URIs

– Objects are URIs, blank nodes, literals, or quoted statements

14

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Hello RDF*

• Quoting triples

<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>

dbo:activeYearsStartYear 1994 ;

dbo:activeYearsEndYear 1998 .

• In this example, the subject of the statement is a triple.

15

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

The CareerStation Example in RDF*

• Annotations are added to edges

16

Visualization: https://issemantic.net/rdf-visualizer

https://issemantic.net/rdf-visualizer

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Nesting in RDF*

• RDF* statements can be subjects and objects themselves

<<

<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>

dbo:activeYearsStartYear 1994 ;

dbo:activeYearsEndYear 1998 .

>>

rdfs:definedBy <http://dbpedia.org/>

17

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Nesting in RDF*

• Visualized:

18

Visualization: https://issemantic.net/rdf-visualizer

https://issemantic.net/rdf-visualizer

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Interpretation of RDF* Graphs

• Or: is RDF* just syntactic sugar
for representing reification more nicely?

19

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Interpretation of RDF* vs. RDF

• RDF example

:s1 a rdf:Statement ;

rdf:subject :Hamburg ;

rdf:predicate rdf:type ;

rdf:object :City .

:s2 a rdf:Statement ;

rdf:subject :Hamburg ;

rdf:predicate rdf:type ;

rdf:object :Country .

:Peter :says :s1 .

:Mary :says :s2 .

:City owl:disjointWith :Country .
20

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Interpretation of RDF* vs. RDF

• Observation
– In RDF, we cannot make statements

about two contradictory statements A and B

– ...without the entire graph being contradictory

• This is not in line with “everyday semantics”. Compare
– Hamburg is a city and a country,

and nothing is a city and a country at the same time.

to

– Peter says Hamburg is a city, Mary says Hamburg is a country,

and nothing is a city and a country at the same time.

21

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Interpretation of RDF* vs. RDF

• Observation:
– In RDF, when we make a statement about a statement S,

S is automatically assumed to be true.

• In RDF*, this is not the case:
:Peter :says <<:Hamburg rdf:type :City >> .

:Mary :says <<:Hamburg rdf:type :Country >> .

:City owl:disjointWith :Country .

22

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

RDF*: Quoted vs. Asserted Triples

• Quoted triples are not automatically true

• If we want to make them true (asserted), we have to do so
explicitly:

dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg .

<<dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg>>

dbo:activeYearsStartYear 1994 ;

dbo:activeYearsEndYear 1998 .

• For this, there is a syntactic shortcut:
dbr:Dirk_Nowitzki dbo:team dbr:DJK_Wuerzburg

{| dbo:activeYearsStartYear 1994 ;

dbo:activeYearsEndYear 1998 |} .

23

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

SPARQL*: Querying RDF* Graphs

• SPARQL*:
– Just like ordinary SPARQL

– Triple patterns can contain

• Quoted triples

• Triple annotations

– Plus a few more builtin functions

• SPARQL* Results:
– A few devils in the details

24

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Hello SPARQL*

• When did Dirk Nowitzki play for
DJK Würzburg?
SELECT ?startyear ?endyear WHERE {

dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg

{| dbo:activeYearsStartYear ?startyear ;

dbo:activeYearsEndYear ?endyear |}

}

• Returns
{(?startyear=1994; ?endyear=1998)}

25

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Hello SPARQL*

• When did Dirk Nowitzki play for
DJK Würzburg?
SELECT ?startyear ?endyear WHERE {

dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg

<<dbr:Dirk_Nowitzki dbo:team :dbr:DJK_Würzburg>>

dbo:activeYearsStartYear ?startyear ;

dbo:activeYearsEndYear ?endyear

}

• Returns
{(?startyear=1994; ?endyear=1998)}

26

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

SPARQL* Return Types

• Consider the following RDF* graph:
:Julia :loves :Peter .

:Jane :knows :Julia

:Jane :knows <<:Julia :loves :Peter>> .

• We can query with SPARQL*
SELECT ?x WHERE {:Jane :knows ?x}

• Results:
{(?x = :Julia), (?x = <<:Julia :loves :Peter>>)}

27

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

SPARQL* Return Types

• SPARQL return types:
– Resource with URI

– Blank node

– Literal

– Number

• SPARQL* adds a fifth return type:
– Triple

28

isURI

isBLANK

isLITERAL

isNUMERIC

isTRIPLE

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

SPARQL* Return Types

• Consider the following RDF* graph:
:Julia :loves :Peter .

:Jane :knows :Julia .

:Jane :knows <<:Julia :loves :Peter>> .

• We can query with SPARQL*
SELECT ?x WHERE {

:Jane :knows ?x .

FILTER(isTRIPLE(?x))

}

• Results:
{(?x= <<:Julia :loves :Peter>>)}

29

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Other Query Types with SPARQL*

• ASK and DESCRIBE: work as in SPARQL

• CONSTRUCT: can also construct RDF*
CONSTRUCT {<<?x ?y ?z>> :definedIn :myDataSet}

WHERE {?x ?y ?z}

• Result on this example:
<<:Julia :loves :Peter >> :definedIn :myDataSet .

<<:Jane :knows :Julia >> :definedIn :myDataSet .

<<:Jane :knows <<:Julia :loves :Peter>> >>

:definedIn :myDataSet .

30

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Mind the Assertion Gap

• Remember: not all quoted triples are asserted

• The default graph of SPARQL results is only
asserted triples

• Consider the following RDF* graph:
:Julia :loves :Peter .

:Jane :knows :Julia .

:Jane :knows <<:Julia :loves :Peter>> .

:Julia :thinks <<:Jane :loves :Peter>> .

• Query:
SELECT ?x WHERE {?x :loves :Peter}

• Result:
{(?x = :Julia)}

31

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Mind the Assertion Gap

• Remember: not all quoted triples are asserted

• The default graph of SPARQL results is only
asserted triples

• Consider the following RDF* graph:
:Julia :loves :Peter .

:Jane :knows :Julia .

:Jane :knows <<:Julia :loves :Peter>> .

:Julia :thinks <<:Jane :loves :Peter>> .

• On the other hand:
SELECT ?x WHERE {:Julia :thinks ?x}

• Result:
{(?x = <<:Jane :loves :Peter>>)}

32

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

RDF*/SPARQL*: Not (yet) a standard,
but...

• Lots of tools support RDF* and/or SPARQL*:

33

https://www.w3.org/2021/12/rdf-star.html

https://www.w3.org/2021/12/rdf-star.html

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Semantic Web Technology Stack
(revisited)

34

Technical

Foundations

Knowledge Graph Technologies

(This lecture)

here be dragons...

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

???*

*

http://www.w3.org/2009/Talks/0120-campus-party-tbl/

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

RDF* and Inference

• Consider the following RDF* graph and RDFS schema:

<<:Berlin :capitalOf :Germany>>

{| :statedBy :Wikipedia |}

:capitalOf rdfs:subpropertyOf :locatedIn

• Would you consider the following inference legit?
<<:Berlin :locatedIn :Germany>>

{| :statedBy :Wikipedia |}

35

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

RDF* and Inference

• OK, so what about

<<:Bonn :capitalOf :Germany>>

{| :from "1949" ; :until "1990" |}

:capitalOf rdfs:subpropertyOf :locatedIn

• RDF* and inference is still an open research topic

36

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Labeled Property Graphs
in the Industry

• For a while, RDF had little adoption
in the industry
– Perceived as too verbose and cumbersome

• We saw that earlier today, too

– Underlying semantic properties impractical
in many cases

• Meanwhile, NoSQL gained a lot of traction
– i.e., property/value stores

• Labeled Property graphs
– A combination of property/value stores

and graphs
37

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

A Brief History of Cypher

• Started as a proprietary query language
for the graph database system Neo4j in 2011

• Since 2015: Open Cypher
– Most recent version: Cypher v9, 2018

• Wider adoption, e.g.,
– Amazon Neptune

– SAP HANA Graph

– ...and many others

38

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Labeled Property Graphs – Definition

• A graph consists of
– Entities (with one or more labels)

– Property keys

– Property values

– Relations (with exactly one type)

• Entities and relations can have property key/value pairs

39

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Basics of Cypher

• Like SPARQL, Cypher is based on pattern matching
– () denotes a node

– [] denotes a relation

– ()-[]->() denotes a directed path

– ()-[]-() denotes an undirected path

40

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Hello Cypher!

• Simple query: matching any node
– MATCH (n) return n

• Would return all nodes

41

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Hello Cypher!

• Simple query: matching nodes with labels
– MATCH (n:Movie) return n

• Would return only movie nodes

42

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Restrictions on Keys

• Simple query: matching any node
– MATCH (n:Movie {title: “The Matrix”}) return n

• Would return only the specific movie

• Also possible:

– MATCH (n {title: “The Matrix”) return n

• Would return any node with a title “The Matrix”

43

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Querying for Node Types

• What kind of node is “The Matrix”?
– MATCH(n {title:"The Matrix"}) return labels(n)

44

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Path Expressions

• Using paths in patterns
– MATCH (m:Movie {title: “The Matrix”)-[r]-(e)

return m,r,e

• All ingoing and outgoing edges

45

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Path Expressions

• Combining restrictions on labels
– MATCH (m:Movie {title: “The Matrix”)-[r:ACTED_IN]-(e)

return m,r,e

• All ingoing and outgoing edges with a particular label

46

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Path Expressions

• Combining restrictions on labels
– MATCH (m:Movie {title:"The Matrix"})

<-[r:PRODUCED|DIRECTED]-(e)

return m,r,e

• All ingoing edges with a particular label

47

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Querying for Relation Types

• What kind of relation does Hugo Weaving have to the Matrix?
– MATCH(Movie {title:"The Matrix"})

<-[r]-(Person {name:"Hugo Weaving"})

return type(r)

48

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Path Expressions

• Combining restrictions on properties

• Who played Agent Smith in The Matrix?
– MATCH({title: "The Matrix"})

<-[ACTED_IN {roles:["Agent Smith"]}]-(e)

return e

• All ingoing and outgoing edges with a particular label

49

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Return Types in Cypher

• So far, our return types were nodes or relations

• We can also query for specific properties:
– MATCH(m:Movie {title: "The Matrix"})

return m.released

50

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Querying for Property Values

• The return value can also be a property of a relation:

• Which role(s) did Hugo Weaving play in The Matrix?
– MATCH(Movie {title: "The Matrix"})

<-[r:ACTED_IN]-(Person {name:"Hugo Weaving"})

return r.roles

51

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Complex Paths

• So far, we have only considered one hop paths

• Which movies did both Hugo Weaving and Keanu Reeves act in?
– MATCH

(p1:Person {name:"Hugo Weaving"})-[r1:ACTED_IN]->

(m:Movie)

<-[r2:ACTED_IN]-(p2:Person {name:"Keanu Reeves"})

return m

52

OK, but how about
three actors?

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Combining Match Clauses

• We can have multiple match clauses
– By default, they are conjunctive

• Which movies did Hugo Weaving, Keanu Reeves, and
Carrie-Anne Moss act in?
– MATCH (p1:Person {name:"Hugo Weaving"})

-[r1:ACTED_IN]->(m:Movie)

MATCH (p2:Person {name:"Keanu Reeves"})

-[r2:ACTED_IN]->(m:Movie)

MATCH (p3:Person {name:"Carrie-Anne Moss"})

-[r3:ACTED_IN]->(m:Movie)

return m

53

Common

variable

in the

clauses

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Combining Match Clauses

• There can also be more than one common variable

• Which movies where directed by people who also acted in
them?
– MATCH(p:Person)-[r1:ACTED_IN]->(m:Movie)

MATCH(p:Person)-[r2:DIRECTED]->(m:Movie)

return p,m

54

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Variable Binding

• Let’s try to find people who have at least two relations to a
movie (e.g., director, actor, producer…)
– match(p:Person)-[r1]->(m:Movie)

match(p:Person)-[r2]->(m:Movie)

return p,m

LIMIT 25

55

We haven’t seen LIMIT
for Cypher yet,

but it’s straight forward

???

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Variable Binding

• Let us investigate this more closely
– MATCH(p:Person)-[r1]->(m:Movie)

MATCH(p:Person)-[r2]->(m:Movie)

return p,m,r1,r2

LIMIT 25

56

r1 and r2 have the
same binding!

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

WHERE Clauses

• Used to impose additional restrictions (like in SQL, SPARQL, …)
– MATCH(p:Person)-[r1]->(m:Movie)

MATCH(p:Person)-[r2]->(m:Movie)

WHERE(r1<>r2)

return p,m

57

visualization
artifact

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

WHERE Clauses

• Used to impose additional restrictions (like in SQL, SPARQL, …)
– MATCH(p:Person)-[r]->(m:Movie)

WITH p,m,COUNT(r)as c

WHERE c>=2

return p,m,r

58

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

WHERE Clauses

• Numeric comparisons

• All movies starring Hugo Weaving released in the 1990s
– MATCH(m:Movie)←[ACTED_IN]-

(p:Person {name:"Hugo Weaving"})

WHERE m.released>1990 AND m.released<2000

return m

59

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

WHERE Clauses

• String comparisons

• All actors whose first name is “Hugo”
(approximate solution: name starts with “Hugo”)
– MATCH(Movie)<-[ACTED_IN]-(p:Person)

WHERE (p.name STARTS WITH ("Hugo"))

return p

60

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Path Quantifiers

• Find all people connected via two ACTED_IN relations to
Keanu Reeves
(i.e., all people who co-starred with Keanu Reeves)
– MATCH

(p1:Person {name: "Keanu Reeves"})

-[ACTED_IN*2]-(p2:Person)

return p2

61

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Path Quantifiers

• Extract all one and two hop neighbors of Keanu Reeves (no
particular edge type)
– MATCH(p:Person {name: "Keanu Reeves"})-[*1..2]-(e)

return p,e

62

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Pathfinding with Quantifiers

• Find all paths of length up to 4 between Keanu Reeves and
Hugo Weaving
MATCH p = (p1:Person {name: "Keanu Reeves"})

-[*1..4]-(p2:Person {name: "Hugo Weaving"})

return p

63

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Graph Updates

• Cypher also allows for adding and deleting information

• This requires a set instead of a return statement, e.g.,
MATCH (p:Person)-[ACTED_IN]->(m:Movie)

SET p:Actor

64

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Graph Updates

• Cypher also allows for adding and deleting properties

• This requires a set instead of a return statement, e.g.,
MATCH(p:Person)-[ACTED_IN]->(m:Movie)

WITH p,count(m) AS moviecount

WHERE (moviecount>10)

SET p.famous="true"

• Notes on this query:
– Cipher allows counting (closed world semantics)

– The with construct is used for variable scoping

• Compute with first

• Compute where second

– cf. having in SQL
65

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Graph Updates

• Cypher also allows for adding and deleting nodes and edges

• This requires a create instead of a return statement, e.g.,
MATCH (p1:Person)-[r1:ACTED_IN]->(m:Movie)

MATCH (p2:Person)-[r2:ACTED_IN]->(m:Movie)

CREATE (p1)-[:KNOWS]->(p2)

66

Person, Actor

name: “Keanu Reeves”
born: “1960”

KNOWS

Movie

title: “The Matrix”
released: “1999”

Person, Actor

name: “Hugo Weaving”
born: “1960”

ACTED_IN
roles = {Agent Smith}

ACTED_IN
roles = {Neo}

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Graph Updates vs. Reasoning

• Inference in Cipher
– We can infer additional edges using SET/CREATE commands

– Those only apply for the current state of the graph

– i.e., later changes are not respected

• Consider again

MATCH (p:Person)-[ACTED_IN]->(m:Movie)

SET p:Actor

– Here, a later addition of a person acting in a movie would not get
the Actor label!

• Inference in RDF/S
– Can be updated and/or evaluated at query time

67

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Comparison LPG+Cypher vs.
RDF*/SPARQL*

• Semantics
– Open vs. closed

• Expressivitiy
– Cypher: does not support quoted statements

– Cypher: only simple properties (literal valued) on the edges,
no relations from edges to entities

→ RDF*: slightly better support for n-ary relations

– SPARQL*: limited support for path queries (e.g., no quantifiers)

• Inference
– LPG: only graph updates

– RDF*: subject to ongoing research

68

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Summary

• Labeled Property Graphs
– Close some modeling gaps of RDF

– In particular: complex relations, properties on relations

• RDF*/SPARQL*
– Quoted vs. asserted statements

• LPG/Cipher:
– Pattern based graph language

– Querying and manipulating LPGs

69

University of Mannheim | IE650 Knowledge Graphs | Labeled Property Graphs | Version 1.09.2024

Data and Web Science Group

Questions?

70

	Folie 1: Labeled Property Graphs
	Folie 2: Previously on “Knowledge Graphs”
	Folie 3: Previously on “Knowledge Graphs”
	Folie 4: Verbosity of RDF Graphs
	Folie 5: Verbosity of RDF Graphs
	Folie 6: Verbosity of RDF Graphs
	Folie 7: Verbosity of RDF Graphs
	Folie 8: Verbosity of RDF Graphs
	Folie 9: Verbosity of RDF Graphs
	Folie 10: Verbosity of RDF Graphs
	Folie 11: Verbosity of RDF Graphs
	Folie 12: Verbosity of RDF Graphs
	Folie 13: Verbosity of RDF Graphs
	Folie 14: Hello RDF*
	Folie 15: Hello RDF*
	Folie 16: The CareerStation Example in RDF*
	Folie 17: Nesting in RDF*
	Folie 18: Nesting in RDF*
	Folie 19: Interpretation of RDF* Graphs
	Folie 20: Interpretation of RDF* vs. RDF
	Folie 21: Interpretation of RDF* vs. RDF
	Folie 22: Interpretation of RDF* vs. RDF
	Folie 23: RDF*: Quoted vs. Asserted Triples
	Folie 24: SPARQL*: Querying RDF* Graphs
	Folie 25: Hello SPARQL*
	Folie 26: Hello SPARQL*
	Folie 27: SPARQL* Return Types
	Folie 28: SPARQL* Return Types
	Folie 29: SPARQL* Return Types
	Folie 30: Other Query Types with SPARQL*
	Folie 31: Mind the Assertion Gap
	Folie 32: Mind the Assertion Gap
	Folie 33: RDF*/SPARQL*: Not (yet) a standard, but...
	Folie 34: Semantic Web Technology Stack (revisited)
	Folie 35: RDF* and Inference
	Folie 36: RDF* and Inference
	Folie 37: Labeled Property Graphs in the Industry
	Folie 38: A Brief History of Cypher
	Folie 39: Labeled Property Graphs – Definition
	Folie 40: Basics of Cypher
	Folie 41: Hello Cypher!
	Folie 42: Hello Cypher!
	Folie 43: Restrictions on Keys
	Folie 44: Querying for Node Types
	Folie 45: Path Expressions
	Folie 46: Path Expressions
	Folie 47: Path Expressions
	Folie 48: Querying for Relation Types
	Folie 49: Path Expressions
	Folie 50: Return Types in Cypher
	Folie 51: Querying for Property Values
	Folie 52: Complex Paths
	Folie 53: Combining Match Clauses
	Folie 54: Combining Match Clauses
	Folie 55: Variable Binding
	Folie 56: Variable Binding
	Folie 57: WHERE Clauses
	Folie 58: WHERE Clauses
	Folie 59: WHERE Clauses
	Folie 60: WHERE Clauses
	Folie 61: Path Quantifiers
	Folie 62: Path Quantifiers
	Folie 63: Pathfinding with Quantifiers
	Folie 64: Graph Updates
	Folie 65: Graph Updates
	Folie 66: Graph Updates
	Folie 67: Graph Updates vs. Reasoning
	Folie 68: Comparison LPG+Cypher vs. RDF*/SPARQL*
	Folie 69: Summary
	Folie 70: Questions?

