
University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

IE650 Knowledge Graphs

1

Web Ontology Language (OWL) Part II

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Previously on “Knowledge Graphs”

• We have got to know
– OWL, a more powerful ontology language than RDFS

– Simple ontologies and some reasoning

– Sudoku solving

• Today
– New constructs in OWL2

– Russell's paradox

– Reasoning in OWL

– Complexity of ontologies

– A peek at rule languages
for Knowledge Graphs

2

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Semantic Web Technology Stack

3

Technical

Foundations

Knowledge Graph Technologies

(This lecture)

here be dragons...

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

http://www.w3.org/2009/Talks/0120-campus-party-tbl/

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 – New Constructs and More

• Five years after the first OWL standard

• OWL2: 2009
– Syntactic sugar

– New language constructs

– OWL profiles

• We have already encountered some, e.g.,
– Qualified restrictions

– Reflexive, irreflexive, and antisymmetric properties

4

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Syntactic Sugar

• Disjoint classes and disjoint unions
– OWL 1:

:Wine owl:equivalentClass [

a owl:Class ;

owl:unionOf (:RedWine :RoséWine :WhiteWine)].

:RedWine owl:disjointWith :RoséWine, :WhiteWine.

:RoséWine owl:disjointWith :WhiteWine .

– OWL 2:

:Wine owl:disjointUnionOf

(:RedWine :RoséWine :WhiteWine).

– Also possible:

_:x a owl:AllDisjointClasses ;

owl:members (:RedWine :RoséWine WhiteWine).

5

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertation

• Allow negated statements

• e.g.: Paul is not Peter's father
_:x [

a owl:NegativeObjectPropertyAssertion;

owl:sourceIndividual :Paul ;

owl:targetIndividual :Peter ;

owl:assertionProperty :fatherOf

] .

• If that's syntactic sugar, it must also be possible differently
– But how?

6

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertion

• Replaces less intuitive set constructs

• Paul is not Peter's father
:Paul a [

owl:complementOf [

a owl:Restriction ;

owl:onProperty :fatherOf ;

owl:hasValue :Peter

]

].

7

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Reflexive Class Restrictions

• Using hasSelf

• Example: defining the set of all autodidacts:
:AutoDidact owl:equivalentClass [

a owl:Restriction ;

owl:onProperty :teaches ;

owl:hasSelf "true"^^xsd:boolean

] .

8

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Property Chains

• Typically used for defining rule-like constructs, e.g.
hasParent(X,Y) and hasParent(Y,Z) →

hasGrandParent(X,Z)

• OWL Syntax:
:hasGrandparent owl:propertyChainAxiom

(:hasParent :hasParent) .

9

hasParent hasParent

hasGrandParent

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Property Chains

• Can be combined with inverse properties and others
hasParent(X,Y) and hasParent(Z,Y) → hasSibling(X,Z)

• This is not a proper chain yet, so we have to rephrase it to
hasParent(X,Y) and hasParent-1(Y,Z) → hasSibling(X,Z)

• OWL Syntax:
:hasSibling owl:propertyChainAxiom

(:hasParent [owl:inverseOf :hasParent]) .

10

hasParent hasParent

hasSibling

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2: Profiles

• Profiles are subsets of OWL2 DL
– EL, RL und QL

– Similar to complexity classes

• Different runtime and memory complexity

• Depending on requirements

11

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Profile

• OWL2 EL (Expressive Language)
– Fast reasoning on many standard ontologies

– Restrictions, e.g.:

• someValuesFrom, but not allValuesFrom

• No inverse and symmetric properties

• No unionOf and complementOf

• OWL2 QL (Query Language)
– Fast query answering on relational databases

– Restrictions, e.g.:

• No unionOf, allValuesFrom, hasSelf, …

• No cardinalities and functional properties

12

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Profile

• OWL2 RL (Rule Language)
– Subset similar to rule languages such as datalog

• subClassOf is translated to a rule (Person ← Student)

– Restrictions, e.g.:

• Only qualified restrictions with 0 or 1

• Some restrictions for head and body

• The following holds for all three profiles:
– Reasoning can be implemented in

polynomial time for each of the three

– Reasoning on the union of two profiles
only possible in exponential time

13

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

• A classic paradox by
Bertrand Russell, 1918

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?

14

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.
Who shaves the barber?

• Assume:
– The barber shave himself:

• he ceases to be the barber specified
because he only shaves those who do not
shave themselves

– The barber does not shave himself:

• then he fits into the group of people

who would be shaved by the specified

barber, and thus, as that barber, he

must shave himself.

15

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

• Class definitions
:People owl:disjointUnionOf

(:PeopleWhoShaveThemselves

:PeopleWhoDoNotShaveThemselves) .

• Relation definitions:
:shavedBy rdfs:domain :People .

:shavedBy rdfs:range :People .

:shaves owl:inverseOf :shavedBy .

• Every person is shaved by exactly one person:
:People rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty :shavedBy ;

owl:cardinality "1"^^xsd:integer

] .
16

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

• Then, we define the barber:
:Barbers rdfs:subClassOf :People ;

owl:equivalentClass [

rdf:type owl:Class ;

owl:oneOf (:theBarber)

] .

17

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

• Definition of people shaving themselves:
:PeopleWhoShaveThemselves owl:equivalentClass [

a owl:Class ;

owl:intersectionOf (

:People

[

a owl:Restriction ;

owl:onProperty :shavedBy ;

owl:hasSelf "true"^^xsd:boolean

]

)

] .

18

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

• Definition of people who do not shave themselves:
:PeopleWhoDoNotShaveThemselves owl:equivalentClass [

a owl:Class ;

owl:intersectionOf (

:People

[

a owl:Restriction

owl:onProperty :shavedBy ;

owl:allValuesFrom :Barbers

]

)

] .

19

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

20

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL2 Example: Russell's Paradox

21

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Reasoning in OWL DL

• We have seen reasoning for RDFS
– Forward chaining algorithm

– Derive axioms from other axioms

• Limitations of forward chaining
– :Motorbike owl:intersectionOf

(:TwoWheeledVehicle :MotorVehicle).

:x a :Motorbike.

→

:x a TwoWheeledVehicle, :MotorVehicle .

– :TwoWheeledVehicle owl:unionOf (:Bicycle :Motorbike).

:x a :TwoWheeledVehicle

→

?
22

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Reasoning in OWL DL

• Reasoning for OWL DL is more difficult
– Forward chaining may have scalability issues

– Disjunction (e.g., unionOf) is not supported by forward chaining

• Same holds for some other constructs

• No negation

– Different approach: Tableau Reasoning

– Underlying idea: find contradictions in ontology

• i.e., both a statement and its opposite
can be derived from the ontology

23

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Reasoning in OWL DL

• What do we want to know from a reasoner?
– Subclass relations

• e.g., Are all birds flying animals?

– Equivalent classes

• e.g., Are all birds flying animals and vice versa?

– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?

– Class consistency

• e.g., Can there be mammals that lay eggs?

– Class instantiation

• e.g., Is Flipper a dolphin?

– Class enumeration

• e.g., List all dolphins

24

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Example: A Simple Contradiction

• Given:

:Human a owl:Class .

:Animal a owl:Class .

:Human owl:disjointWith :Animal .

:Jimmy a :Animal .

:Jimmy a :Human .

25

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Example: A Simple Contradiction

• We can derive:

– :Human  :Animal = 

owl:Nothing owl:intersectionOf (:Human :Animal).

– :Jimmy  (:Human  :Animal)

:Jimmy a [

a owl:Class;

owl:intersectionOf (:Human :Animal)

] .

• i.e.:

– :Jimmy  

:Jimmy a owl:Nothing .

– That means: the instance must not exist

– But it does
26

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Reasoning Tasks Revisited

• Subclass Relations

Student  Person  „Every student is a person“

• Proof method: Reductio ad absurdum
– "Invent" an instance i

– Define Student(i) and  Person(i)

– Check for contradictions

• If there is one: Student  Person has to hold

• If there is none: Student  Person cannot be derived

– Note: it may still hold!

27

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Example: Subclass Relations

• Ontology:

:Student owl:subClassOf :UniversityMember .

:UniversityMember owl:subClassOf :Person .

• Invented instance:

:i a :Student .

:i a [owl:complementOf :Person] .

• We have

:i a :Student .

:Student owl:subClassOf :UniversityMember .

• Thus :i a :UniversityMember .

• And from

:UniversityMember owl:subClassOf :Person .

• We further derive that :i a Person .

28

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Example: Subclass Relations

• Now, we have
:i a :Person .

:i a [owl:complementOf :Person] .

i.e.,
:i a [

owl:intersectionOf (

:Person

[owl:complementOf :Person]

)

] .

• from which we derive
:i a owl:Nothing .

29

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Reasoning Tasks Revisited

• Class equivalence

– Person  Human

• Split into

– Person  Human and

– Human  Person

• i.e., show subclass relation twice
– We have seen that

• Class disjointness
– Are C and D disjoint?

– "Invent" an instance i

– Define C(i) and D(i)

• We have done set (the Jimmy example)

30

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Class Consistency

• Can a class have instances? e.g., married bachelors
:Bachelor owl:subClassOf :Man,

[a owl:Restriction;

owl:onProperty :marriedTo;

owl:cardinality 0] .

:MarriedPerson owl:subClassOf [

a owl:Restriction;

owl:onProperty :marriedTo;

owl:cardinality 1] .

:MarriedBachelor owl:intersectionOf

(:Bachelor :MarriedPerson) .

• Now: invent an instance of the class
– And check for contradictions

31

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Reasoning Tasks Revisited

• Class Instantiation
– Is Flipper a dolphin?

• Check:

– Define  Dolphin(Flipper)

– Check for contradiction

• Class enumeration
– Repeat class instantiation for all known instances

32

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Typical Reasoning Tasks Revisited

• What do we want to know from a reasoner?
– Subclass relations

• e.g., Are all birds flying animals?

– Equivalent classes

• e.g., Are all birds flying animals and vice versa?

– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?

– Class consistency

• e.g., Can there be mammals that lay eggs?

– Class instantiation

• e.g., Is Flipper a dolphin?

– Class enumeration

• e.g., List all dolphins

33

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Typical Reasoning Tasks Revisited

• We have seen
– All reasoning tasks can be reduced to the same basic task

– i.e., consistency checking

• This means:
for building a reasoner that can solve those tasks,
– We only need a reasoner capable of consistency checking

34

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL DL

• The DL stands for “Description Logics”

• A logic formalism dating back to the 1980s

35

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Ontologies in Description Logics
Notation

• Classes and Instances
– C(x) x a C .

– R(x,y) x R y .

– C ⊑ D C rdfs:subClassOf D

– C ≡ D C owl:equivalentClass D

– C ⊑ D C owl:disjointWith D

– C ≡ D C owl:complementOf D

– C ≡ D ⊓ E C owl:intersectionOf (D E) .

– C ≡ D ⊔ E C owl:unionOf (D E) .

– T owl:Thing

– ⊥ owl:Nothing

36

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Ontologies in Description Logics
Notation

• Domains, ranges, and restrictions
– R.T ⊑ C R rdfs:domain C .

– R.C R rdfs:range C .

– C ⊑ R.D C rdfs:subClassOf [

a owl:Restriction;

owl:onProperty R;

owl:allValuesFrom D] .

– C ⊑ R.D C rdfs:subClassOf [

a owl:Restriction;

owl:onProperty R;

owl:someValuesFrom D] .

– C ⊑ nR C rdfs:subClassOf [

a owl:Restriction;

owl:onProperty R;

owl:minCardinality n] .

37

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Global Statements in
Description Logic

• So far, we have seen mostly statements about single classes
– e.g., C ⊑ D

• In Description Logics, we can also make global statements
– e.g., D ⊔ E

– This means: every single instance is a member of D or E (or both)

• Those global statements are heavily used
in the reasoning process

38

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Negation Normal Form (NNF)

• Transforming ontologies to Negation Normal Form:
– ⊑ und ≡ are not used

– Negation only for atomic classes and axioms

• A simplified notation of ontologies

• Used by tableau reasoners

39

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Negation Normal Form (NNF)

• Eliminating ⊑:

– Replace C ⊑ D by C ⊔ D

– Note: this is a shorthand notation for x: C(x) v D(x)

• Why does this hold?

– C ⊑ D is equivalent to C(x) → D(x)

40

C(x) D(x) C(x) → D(x) C(x) v D(x)

true true true true

true false false false

false true true true

false false true true

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Negation Normal Form (NNF)

• Eliminating ≡
– Replace C ≡ D by C ⊑ D and D ⊑ C

– Proceed as before

• i.e.: C ≡ D becomes
C ⊑ D

D ⊑ C

– and thus

C ⊔ D

D ⊔ C

41

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Negation Normal Form (NNF)

• Further transformation rules
– NNF(C) = C (for atomic C)

– NNF( C) =  C (for atomic C)

– NNF(  C) = C

– NNF(C ⊔ D) = NNF(C) ⊔ NNF(D)

– NNF(C ⊓ D) = NNF(C) ⊓ NNF(D)

– NNF((C ⊓ D)) = NNF( C) ⊔ NNF( D)

– NNF((C ⊔ D)) = NNF( C) ⊓ NNF( D)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)

– NNF( R.C) = R.NNF( C)

– NNF( R.C) = R.NNF( C)

42

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

The Basic Tableau Algorithm

• Tableau: Collection of derived axioms
– Is subsequently extended

– As for forward chaining

• In case of conjunction
– Split the tableau

43

C(a), D(a)

C(a), E(a)
C(a) D(a) ⊔ E(a)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

When is an Ontology Free of
Contradictions?

• Tableau is continuously extended and split

• Free of contradictions if...
– No further axioms can be created

– At least one partial tableau is free of contradictions

– A partial tableau has a contradiction if it contains
both an axiom and its negation

• e.g. Person(Peter) und Person(Peter)

• The partial tableau is then called closed

44

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

The Basic Tableau Algorithm

• Given: an ontology O in NNF

• While not all partial tableaus are closed
* Choose a non-closed partial tableau T and an A ∊ O ∪ T
If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

else
Extend the tableau with consequences from A
back to *

45

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

The Basic Tableau Algorithm

• Extending a tableau with consequences

46

Nr Axiom Action

1 C(a) Add C(a)

2 R(a,b) Add R(a,b)

3 C Choose an individual a, add C(a)

4 (C ⊓ D)(a) Add C(a) and D(a)

5 (C ⊔ D)(a) Split tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b

7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

• Given the following ontology:
:Animal owl:disjointWith :Human .

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile).

:Seth a :Human .

:Seth a :Insect .

• Is this knowledge graph consistent?

47

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

• Given the following ontology:
:Animal owl:disjointWith :Human .

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile).

:Seth a :Human .

:Seth a :Insect .

• The same ontology in DL-NNF:
Animal ⊔ Human
Animal ⊔ (Mammal ⊓  Bird ⊓  Fish ⊓  Insect ⊓  Reptile)
 Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
Human(Seth)
Insect(Seth)

• Let's try how reasoning works now!

48

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

49

Human(Seth), Insect(Seth)

a) Animal ⊔ Human
b) Animal ⊔ (Mammal ⊓  Bird ⊓  Fish ⊓  Insect ⊓  Reptile)
c)  Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
d) Human(Seth)
e) Insect(Seth)

1d, 1e

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

50

Human(Seth), Insect(Seth)

a) Animal ⊔ Human
b) Animal ⊔ (Mammal ⊓  Bird ⊓  Fish ⊓  Insect ⊓  Reptile)
c)  Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
d) Human(Seth)
e) Insect(Seth)

1d, 1e

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

Human(Seth), Insect(Seth),
(Animal ⊔ Human)(Seth)

3a

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

51

Human(Seth), Insect(Seth)

a) Animal ⊔ Human
b) Animal ⊔ (Mammal ⊓  Bird ⊓  Fish ⊓  Insect ⊓  Reptile)
c)  Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
d) Human(Seth)
e) Insect(Seth)

1d, 1e

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

Human(Seth), Insect(Seth),
(Animal ⊔ Human)(Seth)

3a

5

Human(Seth), Insect(Seth),
Animal(Seth)

Human(Seth), Insect(Seth),
Human(Seth)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

52

a) Animal ⊔ Human
b) Animal ⊔ (Mammal ⊓  Bird ⊓ Fish ⊓ Insect ⊓  Reptile)
c)  Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
d) Human(Seth)
e) Insect(Seth)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

5

Human(Seth), Insect(Seth),
Animal(Seth)

Human(Seth), Insect(Seth),
Human(Seth)

3b

Human(Seth), Insect(Seth),
Animal(Seth)
Animal ⊔ (Mammal ⊓ Bird ⊓ Fish ⊓ Insect)(Seth)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

53

a) Animal ⊔ Human
b) Animal ⊔ (Mammal ⊓  Bird ⊓  Fish ⊓  Insect ⊓  Reptile)
c)  Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
d) Human(Seth)
e) Insect(Seth)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

5

Human(Seth), Insect(Seth),
Animal(Seth)

Human(Seth), Insect(Seth),
Human(Seth)

3b

Human(Seth), Insect(Seth),
Animal(Seth)
Animal ⊔ (Mammal ⊓ Bird ⊓ Fish ⊓ Insect)(Seth)

5

Human(Seth), Insect(Seth),
Animal(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
Animal(Seth)
Mammal ⊓ Bird ⊓ Fish ⊓ Insect)(Seth)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

A Simple Example

54

a) Animal ⊔ Human
b) Animal ⊔ (Mammal ⊓  Bird ⊓  Fish ⊓  Insect ⊓  Reptile)
c)  Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
d) Human(Seth)
e) Insect(Seth)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

5

Human(Seth), Insect(Seth),
Animal(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
Animal(Seth)
(Mammal ⊓ Bird ⊓ Fish ⊓ Insect)(Seth)

4

Human(Seth), Insect(Seth),
Animal(Seth)
Mammal(Seth)
Bird(Seth)
Fish(Seth)
Insect(Seth)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Another Example

• Again, a simple ontology:
:Woman rdfs:subClassOf [

a owl:Restriction;

owl:onProperty :hasMother;

owl:someValuesFrom :Woman

].

:Jane a :Woman.

55

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Another Example

• Again, a simple ontology:
:Woman rdfs:subClassOf [

a owl:Restriction;

owl:onProperty :hasMother;

owl:someValuesFrom :Woman

].

:Jane a :Woman.

56

• in DL NNF:

 Woman ⊔ ∃hasMother.Woman

Woman(Jane)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

57

a)  Woman ⊔ ∃hasMother.Woman
b) Woman(Jane)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

1b, 3a

Woman(Jane),  Woman ⊔ ∃hasMother.Woman(Jane)

Another Example

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

58

a)  Woman ⊔ ∃hasMother.Woman
b) Woman(Jane)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

1b, 3a

Woman(Jane),  Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane),  Woman (Jane) Woman(Jane), ∃hasMother.Woman(Jane)

Another Example

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

59

a)  Woman ⊔ ∃hasMother.Woman
b) Woman(Jane)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

1b, 3a

Woman(Jane),  Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane),  Woman (Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane)

Woman(Jane), ∃hasMother.Woman(Jane)
hasMother(Jane, b0), Woman(b0)

Another Example

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

60

a)  Woman ⊔ ∃hasMother.Woman
b) Woman(Jane)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

1b, 3a

Woman(Jane),  Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane),  Woman (Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane)

Woman(Jane), ∃hasMother.Woman(Jane)
hasMother(Jane, b0), Woman(b0)

Another Example

6

Woman(Jane), ∃hasMother.Woman(Jane)
hasMother(Jane, b0), Woman(b0)
hasMother(Jane, b1), Woman(b1)

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

61

a)  Woman ⊔ ∃hasMother.Woman
b) Woman(Jane)

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b
7 (R.C)(a) For all b with R(a,b) ∊ T: add C(b)

1b, 3a

Woman(Jane),  Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane),  Woman (Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane)

Woman(Jane), ∃hasMother.Woman(Jane)
hasMother(Jane, b0), Woman(b0)

Another Example

6

Woman(Jane), ∃hasMother.Woman(Jane)
hasMother(Jane, b0), Woman(b0)
hasMother(Jane, b1), Woman(b1)

6

…

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Introducing Rule Blocking

• Observation
– The tableau algorithm does not necessarily terminate

– We can add arbitrarily many new axioms

• Idea: avoid rule 6 if no new information is created
– i.e., if we already created one instance ba for instance a,

then block using rule 6 for a.

62

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Tableau Algorithm with Rule Blocking

• Given: an ontology O in NNF

• While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊ O ∪ T

If A is not contained in T
If A is an atomic statement

add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

else
Extend the tableau with consequences from A
If rule 6 was used, block A for T

back to *
63

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Example with Rule Blocking

64

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b,
block rule 6 for a

1b, 3a

Woman(Jane),  Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane),  Woman (Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane)

Woman(Jane), ∃hasMother.Woman(Jane)
hasMother(Jane, b0), Woman(b0)

now it will terminate
ultimately Block Rule 6 for Jane

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Tableau Algorithm: Wrap Up

• An algorithm for description logic based ontologies
– Works for OWL Lite and DL

• We have seen examples for some OWL expressions
– Other OWL DL expressions can be “translated” to DL as well

– And they come with their own expansion rules

– Reasoning may become more difficult

• e.g., dynamic blocking and unblocking

65

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Optimizing Tableau Reasoners

• Given: an ontology O in NNF

• While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊ O ∪ T

If A is not contained in T
If A is an atomic statement

add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

else
Extend the tableau with consequences from A
If rule 6 was used, block A for T

back to *
66

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

OWL Lite vs DL Revisited

• Recap: OWL Lite has some restrictions
– Those are meant to allow for faster reasoning

• Restrictions only with cardinalities 0 and 1
– Higher cardinalities make blocking more complex

• unionOf, disjointWith, complementOf, closed classes, ...
– They all introduce more disjunctions

– i.e., more splitting operations

67

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Complexity of Ontologies

• Reasoning is usually expensive

• Reasoning performance depends on ontology complexity
– Rule of thumb: the more complexity, the more costly

• Most useful ontologies are in OWL DL
– But there are differences

– In detail: complexity classes

68

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Simple Ontologies: ALC

• ALC: Attribute Language with Complement

• Allowed:
– subClassOf, equivalentClass

– unionOf, complementOf, disjointWith

– Restrictions: allValuesFrom, someValuesFrom

– domain, range

– Definition of individuals

69

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

SHIQ, SHOIN & co

• Complexity classes are noted as letter sequences

• Using
– S = ALC plus transitive properties (basis for most ontologies)

– H = Property hierarchies (subPropertyOf)

– O = closed classes (oneOf)

– I = inverse properties (inversePropertyOf)

– N = numeric restrictions (min/maxCardinality)

– F = functional properties

– Q = qualified numerical restrictions (OWL2)

– (D) = Usage of datatype properties

70

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Some Tableau Reasoners

• Fact
– University of Manchester, free

– SHIQ

• Fact++/JFact
– Extension of Fact, free

– SHOIQ(and a little D), OWL-DL + OWL2

• Pellet
– Clark & Parsia, free for academic use

– SHOIN(D), OWL-DL + OWL2

• RacerPro
– Racer Systems, commercial

– SHIQ(D)

71

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Sudoku Revisited

• Recap: we used a closed class
– Plus some disjointness

• Resulting complexity: SO

• Which reasoners do support that?
– Fact: SHIQ :-(

– RacerPro: SHIQ(D) :-(

– Pellet: SHOIN(D) :-)

– HermiT: SHOIQ :-)

72

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Rules: Beyond OWL

73

Technical

Foundations

Semantic Web Technologies

(This lecture)

here be dragons...

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

http://www.w3.org/2009/Talks/0120-campus-party-tbl/

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Limitations of OWL

• Some things are hard or impossible to express in OWL

• Example:
– If A is a woman and the child of B

then A is the daughter of B

74

Woman

Human

daughterOf

childOf

subProbertyOf

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Limitations of OWL

• Let's try this in OWL:
:Woman rdfs:subClassOf :Human .

:childOf a owl:ObjectProperty ;

rdfs:domain :Human ;

rdfs:range :Human .

:daughterOf a owl:ObjectProperty ;

rdfs:subPropertyOf :childOf ;

rdfs:domain :Woman .

75

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Limitations of OWL

• What can a reasoner conclude with this ontology?

• Example:
:Julia :daughterOf :Peter .

→ :Julia a :Woman .

• What we would like to have instead:
:Julia :childOf :Peter .

:Julia a :Woman .

→ :Julia :daughterOf :Peter .

76

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Limitations of OWL

• What we would like to have:
daughterOf(X,Y) ← childOf(X,Y) ∧Woman(X) .

• Rules are flexible

• There are rules in the Semantic Web, e.g.
– Semantic Web Rule Language (SWRL)

– Rule Interchange Format (RIF)

– See lecture in a few weeks

• Some reasoners do (partly) support rules

77

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Wrap Up

• OWL comes in many flavours
– OWL Lite, OWL DL, OWL Full

– Detailed complexity classes of OWL DL

– Additions and profiles from OWL2

– However, there are still some things that cannot be expressed...

• Reasoning is typically done using the Tableau algorithm

78

University of Mannheim | IE650 Knowledge Graphs | Web Ontology Language (OWL) Part II | Version 1.09.2024

Data and Web Science Group

Questions?

79

	Organization of Course
	Folie 1: Web Ontology Language (OWL) Part II
	Folie 2: Previously on “Knowledge Graphs”
	Folie 3: Semantic Web Technology Stack
	Folie 4: OWL2 – New Constructs and More
	Folie 5: OWL2: Syntactic Sugar
	Folie 6: OWL2: Syntactic Sugar
	Folie 7: OWL2: Syntactic Sugar
	Folie 8: OWL2: Reflexive Class Restrictions
	Folie 9: OWL2: Property Chains
	Folie 10: OWL2: Property Chains
	Folie 11: OWL2: Profiles
	Folie 12: OWL2 Profile
	Folie 13: OWL2 Profile
	Folie 14: OWL2 Example: Russell's Paradox
	Folie 15: OWL2 Example: Russell's Paradox
	Folie 16: OWL2 Example: Russell's Paradox
	Folie 17: OWL2 Example: Russell's Paradox
	Folie 18: OWL2 Example: Russell's Paradox
	Folie 19: OWL2 Example: Russell's Paradox
	Folie 20: OWL2 Example: Russell's Paradox
	Folie 21: OWL2 Example: Russell's Paradox
	Folie 22: Reasoning in OWL DL
	Folie 23: Reasoning in OWL DL
	Folie 24: Reasoning in OWL DL
	Folie 25: Example: A Simple Contradiction
	Folie 26: Example: A Simple Contradiction
	Folie 27: Reasoning Tasks Revisited
	Folie 28: Example: Subclass Relations
	Folie 29: Example: Subclass Relations
	Folie 30: Reasoning Tasks Revisited
	Folie 31: Class Consistency
	Folie 32: Reasoning Tasks Revisited
	Folie 33: Typical Reasoning Tasks Revisited
	Folie 34: Typical Reasoning Tasks Revisited
	Folie 35: OWL DL
	Folie 36: Ontologies in Description Logics Notation
	Folie 37: Ontologies in Description Logics Notation
	Folie 38: Global Statements in Description Logic
	Folie 39: Negation Normal Form (NNF)
	Folie 40: Negation Normal Form (NNF)
	Folie 41: Negation Normal Form (NNF)
	Folie 42: Negation Normal Form (NNF)
	Folie 43: The Basic Tableau Algorithm
	Folie 44: When is an Ontology Free of Contradictions?
	Folie 45: The Basic Tableau Algorithm
	Folie 46: The Basic Tableau Algorithm
	Folie 47: A Simple Example
	Folie 48: A Simple Example
	Folie 49: A Simple Example
	Folie 50: A Simple Example
	Folie 51: A Simple Example
	Folie 52: A Simple Example
	Folie 53: A Simple Example
	Folie 54: A Simple Example
	Folie 55: Another Example
	Folie 56: Another Example
	Folie 57: Another Example
	Folie 58: Another Example
	Folie 59: Another Example
	Folie 60: Another Example
	Folie 61: Another Example
	Folie 62: Introducing Rule Blocking
	Folie 63: Tableau Algorithm with Rule Blocking
	Folie 64: Example with Rule Blocking
	Folie 65: Tableau Algorithm: Wrap Up
	Folie 66: Optimizing Tableau Reasoners
	Folie 67: OWL Lite vs DL Revisited
	Folie 68: Complexity of Ontologies
	Folie 69: Simple Ontologies: ALC
	Folie 70: SHIQ, SHOIN & co
	Folie 71: Some Tableau Reasoners
	Folie 72: Sudoku Revisited
	Folie 73: Rules: Beyond OWL
	Folie 74: Limitations of OWL
	Folie 75: Limitations of OWL
	Folie 76: Limitations of OWL
	Folie 77: Limitations of OWL
	Folie 78: Wrap Up
	Folie 79: Questions?

