Web Ontology Language (OWL) Part II

IE650 Knowledge Graphs

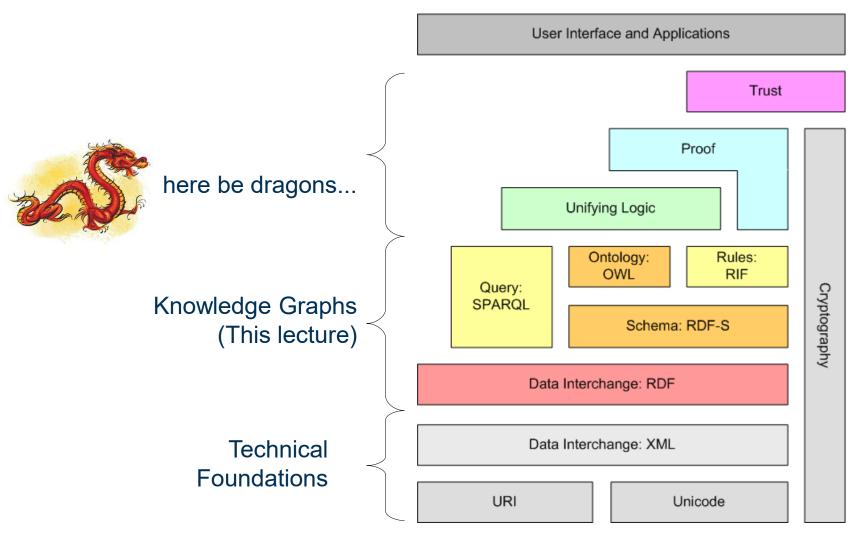
Previously on "Knowledge Graphs"

- We have got to know
 - OWL, a more powerful ontology language than RDFS
 - Simple ontologies and some reasoning
 - Sudoku solving

Today

- New constructs in OWL2
- Russell's paradox
- Reasoning in OWL
- Complexity of ontologies
- A peek at rule languages for Knowledge Graphs

Semantic Web Technology Stack



OWL2 - New Constructs and More

- Five years after the first OWL standard
- OWL2: 2009
 - Syntactic sugar
 - New language constructs
 - OWL profiles
- We have already encountered some, e.g.,
 - Qualified restrictions
 - Reflexive, irreflexive, and antisymmetric properties

OWL2: Syntactic Sugar

Disjoint classes and disjoint unions

- OWL 1: :Wine owl:equivalentClass [a owl:Class; owl:unionOf (:RedWine :RoséWine :WhiteWine)]. :RedWine owl:disjointWith :RoséWine, :WhiteWine. :RoséWine owl:disjointWith :WhiteWine . - OWI 2: :Wine owl:disjointUnionOf (:RedWine :RoséWine :WhiteWine). – Also possible: :x a owl:AllDisjointClasses ; owl:members (:RedWine :RoséWine WhiteWine).

OWL2: Syntactic Sugar

- Negative(Object | Data)PropertyAssertion
- Allow negated statements

```
e.g.: Paul is not Peter's father
```

```
_:x [
    a owl:NegativeObjectPropertyAssertion;
    owl:sourceIndividual :Paul ;
    owl:targetIndividual :Peter ;
    owl:assertionProperty :fatherOf
] .
```

- If that's syntactic sugar, it must also be possible differently
 - But how?

OWL2: Syntactic Sugar

- Negative(Object | Data)PropertyAssertion
- Allow negated statements
 - Replaces less intuitive set constructs
 - Paul is not Peter's father

```
:Paul a [
   owl:complementOf [
        a owl:Restriction ;
        owl:onProperty :fatherOf ;
        owl:hasValue :Peter
   ]
].
```

OWL2: Reflexive Class Restrictions

- Using hasSelf
- Example: defining the set of all autodidacts:

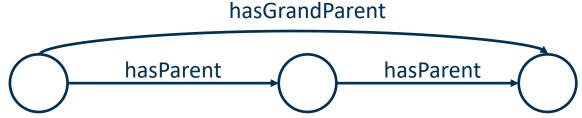
```
:AutoDidact owl:equivalentClass [
    a owl:Restriction ;
    owl:onProperty :teaches ;
    owl:hasSelf "true"^^xsd:boolean
] .
```

OWL2: Property Chains

Typically used for defining rule-like constructs, e.g.

```
hasParent(X,Y) and hasParent(Y,Z) \rightarrow hasGrandParent(X,Z)
```

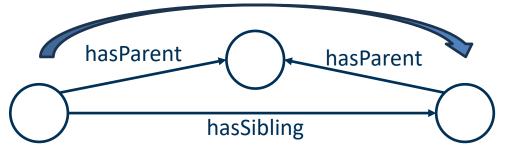
OWL Syntax:



OWL2: Property Chains

hasParent(X,Y) and hasParent(Z,Y) \rightarrow hasSibling(X,Z)

This is not a proper chain yet, so we have to rephrase it to



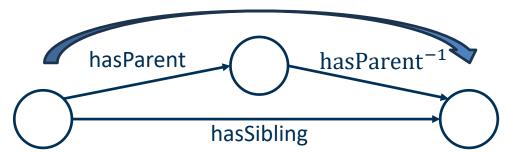
OWL2: Property Chains

hasParent(X,Y) and hasParent(Z,Y) \rightarrow hasSibling(X,Z)

- This is not a proper chain yet, so we have to rephrase it to
 hasParent(X,Y) and hasParent⁻¹(Y,Z) → hasSibling(X,Z)
 - Property Chains can be combined with inverse properties and others

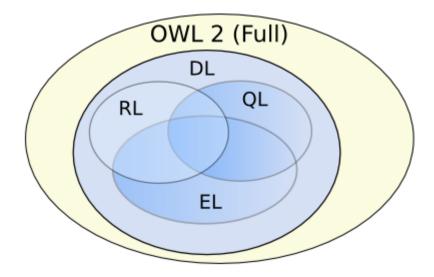
OWL Syntax:

```
:hasSibling owl:propertyChainAxiom
   ( :hasParent [ owl:inverseOf :hasParent ] ) .
```



OWL2: Profiles

- Profiles are subsets of OWL2 DL
 - EL, RL und QL
 - Similar to complexity classes
- Different runtime and memory complexity
- Depending on requirements



OWL2 Profile

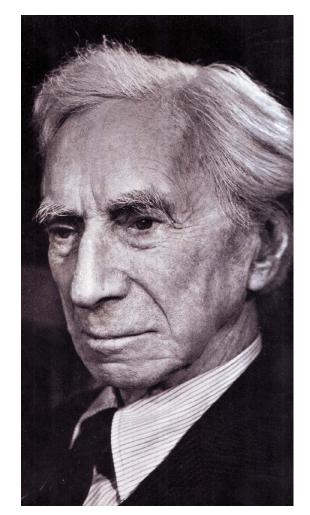
- OWL2 EL (Expressive Language)
 - Fast reasoning on many standard ontologies
 - Restrictions, e.g.:
 - someValuesFrom, but not allValuesFrom
 - No inverse and symmetric properties
 - No unionOf and complementOf
- OWL2 QL (Query Language)
 - Fast query answering on relational databases
 - Restrictions, e.g.:
 - No unionOf, allValuesFrom, hasSelf, ...
 - No cardinalities and functional properties

OWL2 Profile

- OWL2 RL (Rule Language)
 - Subset similar to rule languages such as datalog
 - subClassOf is translated to a rule (Person ← Student)
 - Restrictions, e.g.:
 - Only qualified restrictions with 0 or 1
 - Some restrictions for head and body
- The following holds for all three profiles:
 - Reasoning can be implemented in polynomial time for each of the three
 - Reasoning on the union of two profiles only possible in exponential time

- A classic paradox by Bertrand Russell, 1918
- In a city, there is exactly one barber who shaves everybody who does not shave themselves.

Who shaves the barber?



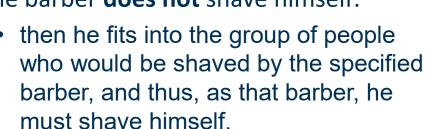
In a city, there is exactly one barber who shaves everybody who does not shave themselves.

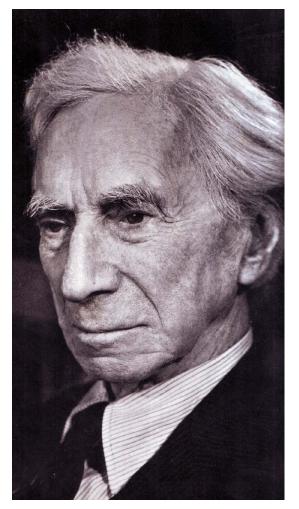
Who shaves the barber?

Assume:

The barber **shave himself**:

- he ceases to be the barber specified because he only shaves those who do not shave themselves
- The barber does not shave himself:
 - then he fits into the group of people who would be shaved by the specified barber, and thus, as that barber, he





Class definitions

```
:People owl:disjointUnionOf
    (:PeopleWhoShaveThemselves
         :PeopleWhoDoNotShaveThemselves ) .
```

Relation definitions:

```
:shavedBy rdfs:domain :People .
:shavedBy rdfs:range :People .
:shaves owl:inverseOf :shavedBy .
```

Every person is shaved by exactly one person:

```
:People rdfs:subClassOf [
    a owl:Restriction ;
    owl:onProperty :shavedBy ;
    owl:cardinality "1"^^xsd:integer
```


Then, we define the barber:

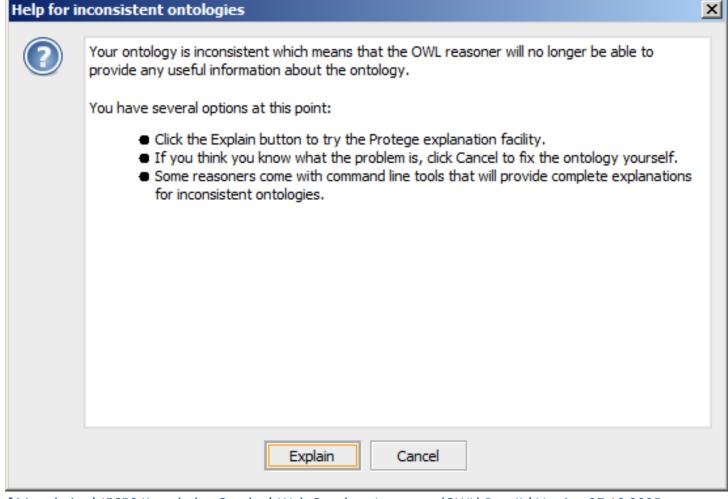
```
:Barbers rdfs:subClassOf :People ;
    owl:equivalentClass [
        rdf:type owl:Class ;
        owl:oneOf ( :theBarber )
] .
```


Definition of people shaving themselves:

```
:PeopleWhoShaveThemselves owl:equivalentClass
  a owl:Class;
  owl:intersectionOf (
      :People
          a owl:Restriction;
          owl:onProperty :shavedBy ;
          owl:hasSelf "true"^^xsd:boolean
```


Definition of people who do not shave themselves:

```
:PeopleWhoDoNotShaveThemselves owl:equivalentClass
  a owl:Class;
  owl:intersectionOf (
      :People
          a owl:Restriction
          owl:onProperty :shavedBy ;
          owl:allValuesFrom :Barbers
```

	anation for: Thing Sub Class Of Nothing	
1)	PersonsWhoDoNotShaveThemselves(?x) -> shaves(the-barber, ?x)	In 1 other justifications
2)	$Persons Who Do Not Shave Themselves \ \textbf{DisjointWith}\ Persons Who Shave Themselves$	In ALL other justifications
3)	Barber SubClassOf Person	In ALL other justifications
4)	<pre>shaves(?x, ?x) -> PersonsWhoShaveThemselves(?x)</pre>	In ALL other justifications
5)	<pre>shaves(the-barber, ?x) -> PersonsWhoDoNotShaveThemselves(?x)</pre>	In 1 other justifications 🕝
6)	PersonsWhoShaveThemselves(?x) -> shaves(?x, ?x)	In ALL other justifications
7)	Person EquivalentTo PersonsWhoDoNotShaveThemselves or PersonsWhoShaveThem	nselves ALL other justifications
8)	the-barber Type Barber	In ALL other justifications

Reasoning in OWL DL

- We have seen reasoning for RDFS
 - Forward chaining algorithm
 - Derive axioms from other axioms
- Limitations of forward chaining

```
- :Motorbike owl:intersectionOf
      (:TwoWheeledVehicle :MotorVehicle).
  :x a :Motorbike.
  \rightarrow
  :x a TwoWheeledVehicle, :MotorVehicle .
 :TwoWheeledVehicle owl:unionOf (:Bicycle :Motorbike).
  :x a :TwoWheeledVehicle
  \rightarrow
```

Reasoning in OWL DL

- Reasoning for OWL DL is more difficult
 - Forward chaining may have scalability issues
 - Disjunction (e.g., unionOf) is not supported by forward chaining
 - Same holds for some other constructs
 - No negation
 - Different approach: Tableau Reasoning
 - Underlying idea: find contradictions in ontology
 - i.e., both a statement and its opposite can be derived from the ontology

Reasoning in OWL DL

- What do we want to know from a reasoner?
 - Subclass relations
 - e.g., Are all birds flying animals?
 - Equivalent classes
 - e.g., Are all birds flying animals and vice versa?
 - Disjoint classes
 - e.g., Are there animals that are mammals and birds at the same time?
 - Class consistency
 - e.g., Can there be mammals that lay eggs?
 - Class instantiation
 - e.g., Is Flipper a dolphin?
 - Class enumeration
 - e.g., List all dolphins

Example: A Simple Contradiction

Given:

```
:Human a owl:Class .
:Animal a owl:Class .
:Human owl:disjointWith :Animal .
:Jimmy a :Animal .
:Jimmy a :Human .
```

Example: A Simple Contradiction

We can derive:

- i.e.:
 - :Jimmy ∈ Ø:Jimmy a owl:Nothing .
 - That means: the instance must not exist
 - But it does

Reasoning Tasks Revisited

- Subclass Relations
 - Student ⊆ Person ⇔ "Every student is a person"
- Proof method: Reductio ad absurdum
 - "Invent" an instance i
 - Define Student(i) and ¬ Person(i)
 - Check for contradictions
 - If there is one: Student
 ⊆ Person has to hold
 - - Note: it may still hold!

Example: Subclass Relations

Ontology:

```
:Student owl:subClassOf :UniversityMember .
:UniversityMember owl:subClassOf :Person .
```

Invented instance:

```
:i a :Student .
:i a [ owl:complementOf :Person ] .
```

We have

```
:i a :Student .
:Student owl:subClassOf :UniversityMember .
```

- Thus :i a :UniversityMember .
- And from

```
:UniversityMember owl:subClassOf :Person .
```

• We further derive that :i a Person .

Example: Subclass Relations

Now, we have

```
:i a :Person .
:i a [ owl:complementOf :Person ] .
i.e.,
:i a [
   owl:intersectionOf (
        :Person
        [ owl:complementOf :Person ]
   )
] .
```

from which we derive

```
:i a owl:Nothing
```

Reasoning Tasks Revisited

- Class equivalence
 - Person ≡ Human
- Split into
 - Person ⊆ Human and
 - Human ⊆ Person
- i.e., show subclass relation twice
 - We have seen that
- Class disjointness
 - Are C and D disjoint?
 - "Invent" an instance i
 - Define C(i) and D(i)
 - We have done set (the Jimmy example)

Class Consistency

Can a class have instances? e.g., married bachelors

```
:Bachelor owl:subClassOf :Man,
        [ a owl:Restriction;
        owl:onProperty :marriedTo;
        owl:cardinality 0 ] .
:MarriedPerson owl:subClassOf [
        a owl:Restriction;
        owl:onProperty :marriedTo;
        owl:cardinality 1 ] .
:MarriedBachelor owl:intersectionOf
        (:Bachelor :MarriedPerson) .
```

- Now: invent an instance of the class
 - And check for contradictions

Reasoning Tasks Revisited

- Class Instantiation
 - Is Flipper a dolphin?
- Check:
 - Define ¬ Dolphin(Flipper)
 - Check for contradiction
- Class enumeration
 - Repeat class instantiation for all known instances

Typical Reasoning Tasks Revisited

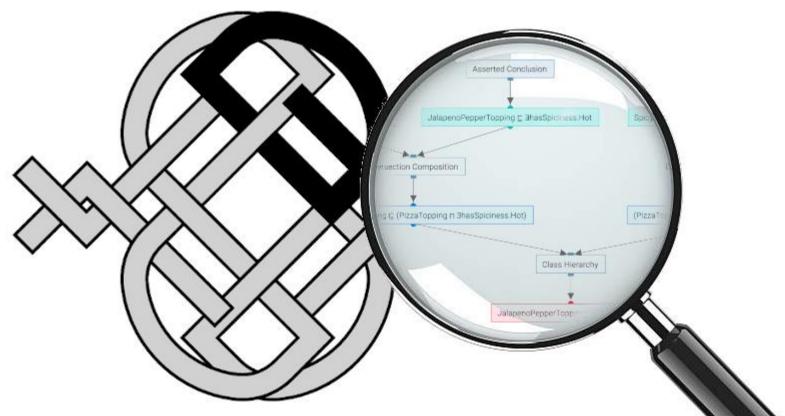
- What do we want to know from a reasoner?
 - Subclass relations
 - e.g., Are all birds flying animals?
 - Equivalent classes
 - e.g., Are all birds flying animals and vice versa?
 - Disjoint classes
 - e.g., Are there animals that are mammals and birds at the same time?
 - Class consistency
 - e.g., Can there be mammals that lay eggs?
 - Class instantiation
 - e.g., Is Flipper a dolphin?
 - Class enumeration
 - e.g., List all dolphins

Typical Reasoning Tasks Revisited

- We have seen
 - All reasoning tasks can be reduced to the same basic task
 - i.e., consistency checking
- This means:
 - for building a reasoner that can solve those tasks,
 - We only need a reasoner capable of consistency checking

OWL DL

- The DL stands for "Description Logics"
- A logic formalism dating back to the 1980s



Classes and Instances

```
- C(x) \longleftrightarrow x a C.
- R(x,y) \longleftrightarrow x R y .
- C \sqsubseteq D \longleftrightarrow C rdfs:subClassOf D
-C \equiv D \longleftrightarrow C \text{ owl:equivalentClass } D
- C \sqsubseteq \neg D \longleftrightarrow C \text{ owl:disjointWith D}
-C \equiv \neg D \longleftrightarrow C \text{ owl:complementOf } D
- C \equiv D \sqcap E \leftrightarrow C owl:intersectionOf (D E).
- C \equiv D \sqcup E \leftrightarrow C \text{ owl:unionOf } (D E).
-T \longleftrightarrow owl:Thing
              \leftrightarrow owl:Nothing
```


Domains, ranges, and restrictions

```
-\exists R.T \sqsubseteq C \leftrightarrow R \text{ rdfs:domain } C.
- C \sqsubseteq \forall R.D \leftrightarrow C rdfs:subClassOf [
                      a owl:Restriction;
                      owl:onProperty R;
                      owl:allValuesFrom D ] .
- C \sqsubseteq ∃R.D \leftrightarrow C rdfs:subClassOf [
                      a owl:Restriction:
                      owl:onProperty R;
                      owl:someValuesFrom D 1 .
- C \sqsubseteq ≥nR \leftrightarrow C rdfs:subClassOf
                      a owl:Restriction;
                      owl:onProperty R;
                      owl:minCardinality n ] .
```


- So far, we have seen mostly statements about single classes
 - e.g., C ⊑ D
- In Description Logics, we can also make global statements
 - e.g., D ⊔ E
 - This means: every single instance is a member of D or E (or both)
- Those global statements are heavily used in the reasoning process

- Transforming ontologies to Negation Normal Form:
 - $\sqsubseteq \text{und} \equiv \text{are not used}$
 - Negation only for atomic classes and axioms
- A simplified notation of ontologies
- Used by tableau reasoners

- Eliminating ⊑:
 - Replace C \sqsubseteq D by \neg C \sqcup D
 - Note: this is a shorthand notation for $\forall x : \neg C(x) \lor D(x)$
- Why does this hold?
 - C \sqsubseteq D is equivalent to C(x) → D(x)

C(x)	D(x)	$C(x) \rightarrow D(x)$	¬C(x) v D(x)
true	true	true	true
true	false	false	false
false	true	true	true
false	false	true	true

- Eliminating ≡
 - Replace $C \equiv D$ by $C \sqsubseteq D$ and $D \sqsubseteq C$
 - Proceed as before
- i.e.: C ≡ D becomes

 $C \sqsubseteq D$

 $D \sqsubseteq C$

and thus

 $\neg C \sqcup D$

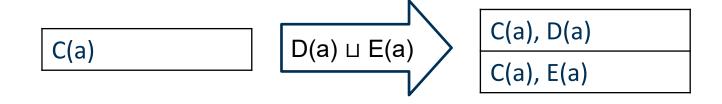
 $\neg D \sqcup C$

Further transformation rules

```
– NNF(C)
                      = C (for atomic C)
- NNF(\neg C) = \neg C (for atomic C)
– NNF(¬ ¬ C)
                      = C
— NNF(C ⊔ D)
                      = NNF(C) \sqcup NNF(D)
- NNF(C \sqcap D)
                      = NNF(C) \sqcap NNF(D)
                      = NNF(\neg C) \sqcup NNF(\neg D)
– NNF(¬(C □ D))
– NNF(¬(C ⊔ D))
                      = NNF( \neg C) \sqcap NNF( \neg D)
- NNF(\forallR.C)
                      = \forall R.NNF(C)
— NNF(∃R.C)
                      = \exists R.NNF(C)
– NNF(¬ ∀R.C)
                      = \exists R.NNF(\neg C)
                      = \forall R.NNF(\neg C)
– NNF(¬∃R.C)
```

The Basic Tableau Algorithm

- Tableau: Collection of derived axioms
 - Is subsequently extended
 - As for forward chaining
- In case of conjunction
 - Split the tableau



When is an Ontology Free of Contradictions?

- Tableau is continuously extended and split
- Free of contradictions if...
 - No further axioms can be created
 - At least one partial tableau is free of contradictions
 - A partial tableau has a contradiction if it contains both an axiom and its negation
 - e.g. Person(Peter) und ¬Person(Peter)
 - The partial tableau is then called closed

The Basic Tableau Algorithm

- Given: an ontology O in NNF
- While not all partial tableaus are closed

```
* Choose a non-closed partial tableau T and an A ∈ O ∪ T
 If A is not contained in T
     If A is an atomic statement
              add A to T
              back to *
     If A is a non-atomic statement
              Choose an individual i \in O \cup T
              Add A(i) to T
              back to *
 else
     Extend the tableau with consequences from A
     back to *
```

The Basic Tableau Algorithm

Extending a tableau with consequences

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	For all b with R(a,b) ∈ T: add C(b)

Given the following ontology:

```
:Animal owl:disjointWith :Human .

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile).

:Seth a :Human .

:Seth a :Insect .
```

Is this knowledge graph consistent?

Given the following ontology:

```
:Animal owl:disjointWith :Human .

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile).

:Seth a :Human .

:Seth a :Insect .
```

The same ontology in DL-NNF:

```
¬Animal ⊔ ¬Human

Animal ⊔ (¬Mammal П ¬ Bird П ¬ Fish П ¬ Insect П ¬ Reptile)

¬ Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)

Human(Seth)

Insect(Seth)
```

Let's try how reasoning works now!

1d, 1e

Human(Seth), Insect(Seth)

Axiom	Action
C(a)	Add C(a)
R(a,b)	Add R(a,b)
С	Choose an individual a, add C(a)
(C □ D)(a)	Add C(a) and D(a)
(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
(∃R.C)(a)	Add R(a,b) and C(b) for a new Individual b
(∀R.C)(a)	For all b with $R(a,b) \in T$: add $C(b)$
	C(a) R(a,b) C (C □ D)(a) (C □ D)(a) (∃R.C)(a)

- a) ¬Animal ⊔ ¬Human
- b) Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect \square \neg Reptile)
- c) ¬ Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
- d) Human(Seth)
- e) Insect(Seth)

1d, 1e

Human(Seth), Insect(Seth)

3a

Human(Seth), Insect(Seth),

(¬Animal L	J ¬Human)	(Seth)
------------	-----------	--------

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	For all b with $R(a,b) \in T$: add $C(b)$

- a) ¬Animal ⊔ ¬Human
- b) Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect \square \neg Reptile)
- c) ¬ Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
- d) Human(Seth)
- e) Insect(Seth)

Human(Seth), Insect(Seth)

3a

Human(Seth), Insect(Seth),

Human(Seth), Insect(Seth), $(\neg Animal \sqcup \neg Human)(Seth)$

5

Human(Seth), Insect(Seth),

—Animal(Seth)

Human(Seth) Insect(Seth),
—Human(Seth)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	For all b with R(a,b) ∈ T: add C(b)

- a) ¬Animal ⊔ ¬Human
- b) Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect \square \neg Reptile)
- c) Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
- d) Human(Seth)
- e) Insect(Seth)

5

Human(Seth), Insect(Seth),
¬Animal(Seth)

Human(Seth) Insect(Seth), —Human(Seth)

3b

Human(Seth), Insect(Seth),

¬Animal(Seth)

Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect)(Seth)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	For all b with $R(a,b) \in T$: add $C(b)$

- a) ¬Animal ⊔ ¬Human
- b) Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect \square \neg Reptile)
- c) ¬ Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
- d) Human(Seth)
- e) Insect(Seth)

5

Human(Seth), Insect(Seth),

¬Animal(Seth)

Human(Seth) Insect(Seth),

¬Human(Seth)

3b

Human(Seth), Insect(Seth),

¬Animal(Seth)

Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect)(Seth)

5

Human(Seth), Insect(Seth),

¬Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),

- ¬Animal(Seth)
- \neg Mammal $\sqcap \neg$ Bird $\sqcap \neg$ Fish $\sqcap \neg$ Insect)(Seth)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	For all b with R(a,b) ∈ T: add C(b)

- a) ¬Animal ⊔ ¬Human
- b) Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect \square \neg Reptile)
- c) ¬ Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
- d) Human(Seth)
- e) Insect(Seth)

5

Human(Seth), Insect(Seth),

¬Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),

¬Animal(Seth)

 $(\neg Mammal \sqcap \neg Bird \sqcap \neg Fish \sqcap \neg Insect)(Seth)$

4

Human(Seth), Insect(Seth),

- ¬Animal(Seth)
- ¬Mammal(Seth)
- ¬Bird(Seth)
- ¬Fish(Seth)
- Insect(Seth)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
4 5	(C □ D)(a) (C □ D)(a)	Add C(a) and D(a) Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
		

- a) ¬Animal ⊔ ¬Human
- b) Animal \square (\neg Mammal \square \neg Bird \square \neg Fish \square \neg Insect \square \neg Reptile)
- c) ¬ Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
- d) Human(Seth)
- e) Insect(Seth)

5

```
Human(Seth), Insect(Seth),Human(Seth), Insect(Seth),\negAnimal(Seth)\negAnimal(Seth)Animal(Seth)(\negMammal \sqcap \negBird \sqcap \negFish \sqcap \negInsect)(Seth)
```

```
Human(Seth), Insect(Seth),

¬Animal(Seth)

¬Mammal(Seth)

¬Bird(Seth)

¬Fish(Seth)

¬Insect(Seth)
```

- All partial tableaus have a contradiction
 - > Knowledge Graph is inconsistent

Again, a simple ontology:

```
:Woman rdfs:subClassOf [
    a owl:Restriction;
    owl:onProperty :hasMother;
    owl:someValuesFrom :Woman
].
:Jane a :Woman.
```


Again, a simple ontology:

```
:Woman rdfs:subClassOf [
    a owl:Restriction;
    owl:onProperty :hasMother;
    owl:someValuesFrom :Woman
].
:Jane a :Woman.
```

• in DL NNF:

¬ Woman ⊔ ∃hasMother.WomanWoman(Jane)

1b, 3a

Woman(Jane), ¬ Woman ⊔ ∃hasMother.Woman(Jane)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a new Individual b
7	(∀R.C)(a)	For all b with $R(a,b) \in T$: add $C(b)$

- a) \neg Woman \sqcup \exists hasMother.Woman
- b) Woman(Jane)

1b, 3a

Woman(Jane), ¬ Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane), ¬ Woman (Jane)

Woman(Jane), ∃hasMother.Woman(Jane)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	For all b with $R(a,b) \in T$: add $C(b)$
-	•	

- a) ¬ Woman ⊔ ∃hasMother.Woman
- b) Woman(Jane)

1b, 3a

Woman(Jane), ¬ Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane), ¬ Woman (Jane)

Woman(Jane), ∃hasMother.Woman(Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane) hasMother(Jane, b0), Woman(b0)

Axiom	Action
C(a)	Add C(a)
R(a,b)	Add R(a,b)
С	Choose an individual a, add C(a)
(C □ D)(a)	Add C(a) and D(a)
(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
(∀R.C)(a)	For all b with R(a,b) ∈ T: add C(b)
	C(a) R(a,b) C (C □ D)(a) (C □ D)(a) (∃R.C)(a)

- a) ¬ Woman ⊔ ∃hasMother.Woman
- b) Woman(Jane)

1b, 3a

Woman(Jane), ¬ Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane), ¬ Woman (Jane)

Woman(Jane), ∃hasMother.Woman(Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane) hasMother(Jane, b0), Woman(b0)

6

Woman(Jane), ∃hasMother.Woman(Jane) hasMother(Jane, b0), Woman(b0) hasMother(Jane, b1), Woman(b1)

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a new Individual b
7	(∀R.C)(a)	For all b with R(a,b) ∈ T: add C(b)

- a) ¬ Woman ⊔ ∃hasMother.Woman
- b) Woman(Jane)

Woman(Jane), ¬ Woman ⊔ ∃hasMother.Woman(Jane)

5

1b, 3a

Woman(Jane), ¬ Woman (Jane)

Woman(Jane), ∃hasMother.Woman(Jane)

6

Woman(Jane), ∃hasMother.Woman(Jane) hasMother(Jane, b0), Woman(b0)

6

Woman(Jane), ∃hasMother.Woman(Jane) hasMother(Jane, b0), Woman(b0) hasMother(Jane, b1), Woman(b1)

6

••

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a new Individual b
7	(∀P C)(2)	For all b with P/a b) \in T: add C/b)

- a) ¬ Woman ⊔ ∃hasMother.Woman
- b) Woman(Jane)

Introducing Rule Blocking

- Observation
 - The tableau algorithm does not necessarily terminate
 - We can add arbitrarily many new axioms

Nr	Axiom	Action
6	(∃R.C)(a)	Add R(a,b) und C(b) for a <i>new</i> Individual b

- Idea: avoid rule 6 if no new information is created
 - i.e., if we already created one instance b_a for instance a,
 then block using rule 6 for a.

Tableau Algorithm with Rule Blocking

- Given: an ontology O in NNF
- While not all partial tableaus are closed and further axioms can be created

```
* Choose a non-closed partial tableau T and a non-blocked A ∈ O ∪ T
If A is not contained in T
     If A is an atomic statement
               add A to T
               back to *
     If A is a non-atomic statement
               Choose an individual i \in O \cup T
               Add A(i) to T
               back to *
else
     Extend the tableau with consequences from A
     If rule 6 was used, block A for T
     back to *
```

Example with Rule Blocking

1b, 3a

Woman(Jane), ¬ Woman ⊔ ∃hasMother.Woman(Jane)

5

Woman(Jane), ¬ Woman (Jane)

Woman(Jane), ∃hasMother.Woman(Jane)

6

now it will terminate ultimately

Woman(Jane), ∃hasMother.Woman(Jane) hasMother(Jane, b0), Woman(b0)

Block Rule 6 for Jane

Nr	Axiom	0.	Action
6	(∃R.C)(a)		Add R(a,b) und C(b) for a <i>new</i> Individual b, block rule 6 for a

Tableau Algorithm: Wrap Up

- An algorithm for description logic based ontologies
 - Works for OWL Lite and DL
- We have seen examples for some OWL expressions
 - Other OWL DL expressions can be "translated" to DL as well
 - And they come with their own expansion rules
 - Reasoning may become more difficult
 - e.g., dynamic blocking and unblocking

Optimizing Tableau Reasoners

- Given: an ontology O in NNF
- While not all partial tableaus are closed

```
and further axioms can be created
```

```
* Choose non-closed partial tableau T and a non-blocked A ∈ O U T
If A is not contained in T
     If A is an atomic statement
               add A to T
               back to *
     If A is a non-atomic statement
               Choose an individual i \in O \cup T
               Add A(i) to T
               back to *
else
     Extend the tableau with consequences from A
     If rule 6 was used, block A for T
     back to *
```

OWL Lite vs DL Revisited

- Recap: OWL Lite has some restrictions
 - Those are meant to allow for faster reasoning
- Restrictions only with cardinalities 0 and 1
 - Higher cardinalities make blocking more complex
- unionOf, disjointWith, complementOf, closed classes, ...
 - They all introduce more disjunctions
 - i.e., more splitting operations

Complexity of Ontologies

- Reasoning is usually expensive
- Reasoning performance depends on ontology complexity
 - Rule of thumb: the more complexity, the more costly
- Most useful ontologies are in OWL DL
 - But there are differences
 - In detail: complexity classes

Simple Ontologies: ALC

ALC: Attribute Language with Complement

Allowed:

- subClassOf, equivalentClass
- unionOf, complementOf, disjointWith
- Restrictions: allValuesFrom, someValuesFrom
- domain, range
- Definition of individuals

SHIQ, SHOIN & co

- Complexity classes are noted as letter sequences
- Using
 - S = ALC plus transitive properties (basis for most ontologies)
 - H = Property hierarchies (subPropertyOf)
 - O = closed classes (oneOf)
 - I = inverse properties (inversePropertyOf)
 - N = numeric restrictions (min/maxCardinality)
 - F = functional properties
 - Q = qualified numerical restrictions (OWL2)
 - (D) = Usage of datatype properties

Some Tableau Reasoners

- Fact
 - University of Manchester, free
 - SHIQ
- Fact++/JFact
 - Extension of Fact, free
 - SHOIQ(and a little D), OWL-DL + OWL2
- Pellet
 - Clark & Parsia, free for academic use
 - SHOIN(D), OWL-DL + OWL2
- RacerPro
 - Racer Systems, commercial
 - SHIQ(D)

Sudoku Revisited

- Recap: we used a closed class
 - Plus some disjointness
- Resulting complexity: SO
- Which reasoners do support that?

- Fact: SHIQ :-(

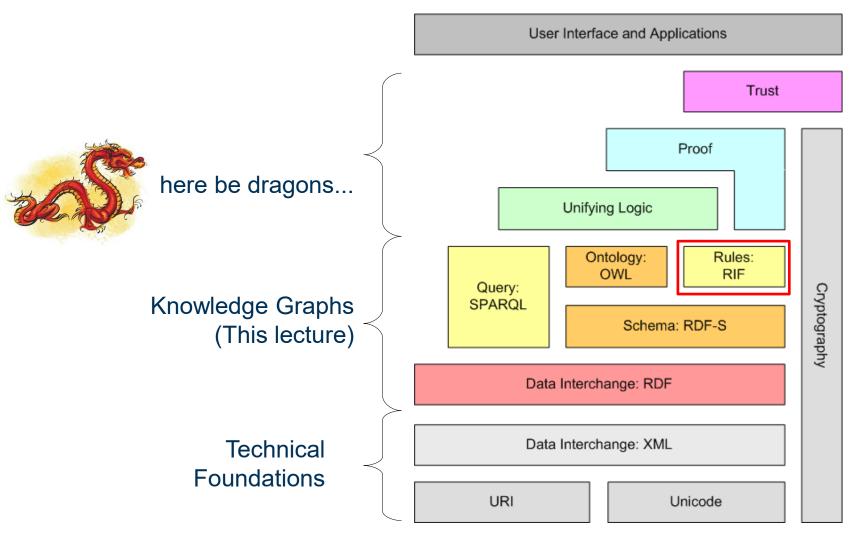
– RacerPro: SHIQ(D) :-(

– Pellet: SHOIN(D) :-)

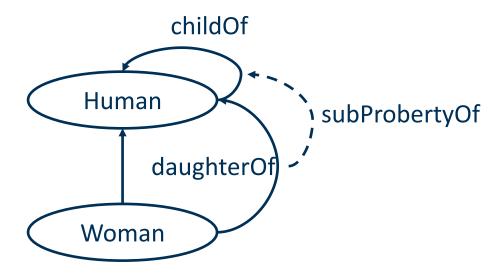
– HermiT: SHOIQ :-)

5	3			7				
6			1	9	5			
	9	8					6	
8				6				З
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Rules: Beyond OWL



- Some things are hard or impossible to express in OWL
- Example:
 - If A is a woman and the child of B
 then A is the daughter of B



Let's try this in OWL:

- What can a reasoner conclude with this ontology?
- Example:

```
:Julia :daughterOf :Peter .

→ :Julia a :Woman .
```

What we would like to have instead:

```
:Julia :childOf :Peter .
:Julia a :Woman .

→ :Julia :daughterOf :Peter .
```


- What we would like to have: daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X).
- Rules are flexible
- There are rules in the Semantic Web, e.g.
 - Semantic Web Rule Language (SWRL)
 - Rule Interchange Format (RIF)
 - See lecture in a few weeks
- Some reasoners do (partly) support rules

Wrap Up

- OWL comes in many flavours
 - OWL Lite, OWL DL, OWL Full
 - Detailed complexity classes of OWL DL
 - Additions and profiles from OWL2
 - However, there are still some things that cannot be expressed...
- Reasoning is typically done using the Tableau algorithm

Questions?

