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Hello

• About me:
– M.Sc. Wi-Inf Ralph Peeters

– Graduate Research Associate

– Research Interests

• Entity Matching using Deep Learning

• Data Integration

– Office: B6, 26 - C 1.04

– eMail: ralph.peeters@uni-mannheim.de

• I will teach the lectures, exercises and coach the student 
projects.
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Hello

• About me:
– Prof. Dr. Christian Bizer

– Professor for Information Systems V

– Research Interests:

• Web-based Systems

• Large-Scale Data Integration

• Data and Web Mining

– Room: B6, 26 - B1.15

– eMail: christian.bizer@uni-mannheim.de

• Contributed to the design of the course and will contribute 
to the final assessment.
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Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models
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The First Half of the Course

• Lectures
– Foundational knowledge for understanding LLMs

– Architectures, training, prompt engineering patterns, fine-tuning, 
agents, evaluation, …

– Goal: Learn and understand concepts and methods

• Exercises
– Practical applications of the lecture concepts

– Introduce tools: LangChain and AutoGen

– Goal: Learn to apply concepts in practice and prepare you for the 
group projects
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The Second Half of the Course

• Group Projects
– Work in teams of five students on the practical application of LLMs 

to a problem

– Goal: Understand a problem domain and apply the learned 
concepts and tools to solve the problem!

– Teams write a 12-page report about their project and present their 
results during a presentation at the end of the semester

– We will propose some project topics and you select preferences

• Course Grading
– The project is the basis for your grading, there is no exam!

– 3 ECTS (70% written project report, 30% presentation of results)
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Course Schedule
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Day Topic

12.09 Lecture: Introduction to Language Models

19.09 Lecture: Instruction Tuning and RLHF

26.09 Lecture: Prompt Engineering and Efficient Adaptation

02.10 Exercise: Introduction to LangChain

10.10 Lecture: LLM Agents and Tool Use

17.10 Exercise: Introduction to AutoGen

24.10 Project: Introduction to Student Projects

31.10 Project: Project Coaching

07.11 Project: Project Coaching

14.11 Project: Project Coaching

21.11 Project: Project Coaching

28.11 Project: Project Coaching

05.12 Project: Presentation of Project Results
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Course Organization

• Course Webpage
– https://www.uni-mannheim.de/dws/teaching/course-

details/courses-for-master-candidates/ie-686-large-language-
models-and-agents/

– The lecture slides are published on this webpage

• Time and Location
– Every Thursday, 15:30 to 17:00

Room: A5 C015

– Starting 12.09.2024

– Important: Exercise on 02.10 is a Wednesday instead!
Room: B6 A1.01, Time: 17:00-18:45
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Course Organization

• Course ILIAS
– https://ilias.uni-

mannheim.de/ilias.php?baseClass=ilrepositorygui&ref_id=1538061

– Need to be accepted for the course to access

• Contains:
– Forum

• For online communication/discussion during the course

• Not just with me, but also amongst each other!

• Don’t be shy to post questions and bringing your unique knowledge to 
discussions, so we can all learn from each other!

– Literature Links

• Relevant textbooks/papers

• Further reading not covered in the course
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Literature and Credits

• Some supporting literature for the course
– Daniel Jurafsky & James H. Martin: Speech and Language Processing. (3rd edition 

draft)

– Zhao et al.: A Survey of Large Language Models. 2024. arXiv:2303.18223

– Wang et al.: A Survey on Large Language Model based Autonomous Agents. 2024. 
arXiv:2302.07842

– Zhou et al.: A Comprehensive Survey on Pretrained Foundation Models: A History 
from BERT to ChatGPT. 2023. arXiv:2302.09419.

• The slide set of this lecture builds on slides from:
– Jiaxin Huang

– Mrinmaya Sachan

– Danqi Chen

– Daniel Jurafsky & James H. Martin

– Many thanks to all of you!
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Tools

• LangChain
– Library for easy interaction with various 

hosted and local LLMs

– Many tools for prompt and embedding 
orchestration

• AutoGen/LangGraph
– Libraries for orchestrating agentic 

workflows

– The course will introduce one of them in 
detail, but you are free to use whatever fits 
your project use-case better
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Project API and Hardware Usage

• bwUniCluster 2.0
– All students can register

– Provide compute servers with modern GPUs (up to 8 per machine)

– Uses a job queuing system for distributing resources

– Good and free option for locally hosting open-source LLMs

• APIs for hosted LLMs
– We cannot reimburse you for API costs, e.g. OpenAI, Anthropic, …

– You may consider using cheap but powerful models like GPT4o-mini

– Check for free tier offers from different providers

– I may have more tips for you once we reach the exercises…

• Google Colab
– Could be useful for prototyping with small open-source models
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• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models
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What is a Language Model?

• The classic definition of a language model (LM) is a probability 
distribution over each possible token sequence [w1,w2,…,w3], 
independent of it making any sense:

– Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03

– My cat fed Sally with meat: P(My, cat, fed, Sally, with, meat) = 0.005

– fed cat meat my my with: P(fed, cat, meat, my, my, with) = 0.0001

• A good language model ideally assigns a high probability to sequences 
that make sense given …

– the structure of the actual language (English in this case)

– any additional context in which a sentence is uttered, if available

14
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Our Focus: Autoregressive LMs

• A type of language model based on the chain rule of probability:

P(w1,w2,w3,…,wn) = P(w1)*p(w2|w1)*p(w3|w1,w2)*…*p(wn|w1,w2,…,wn-1)

• P(Sally, fed, my, cat, with, meat) = P(Sally)
* P(fed | Sally)
* P(my | Sally, fed)
* P(cat | Sally, fed, my)
* P(with | Sally, fed, my, cat)
* P(meat | Sally, fed, my, cat, with)

➔ Conditional probability

• We will also see some other types of language models later
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Language Generation

• Assume we have a good language model and a given text 
prompt w[1:n]

– Now we want to generate a good completion for this prompt with 
some length L

– How to find w[n+1:n+L] with the highest probability?

– Enumerate over all possible combinations? 

➔Next token prediction
– Generate tokens step by step starting from wn+1 using 

p(wn+1|w[1:n])

– For selecting the next token with p(wn+1|w[1:n]), there are different 
decoding approaches

16
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Decoding Approaches

• Greedy decoding: At each step, always select wt with the 
highest p(wt|w[1:t-1]).

• Beam Search: Keep track of k possible paths at each step 
instead of just a single one. Reasonable beam size k: 5-10

17
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Decoding Approaches

• Top-k sampling: At each step, randomly sample the next 
token from p(wt|w[1:t-1]), but restrict to only the k most 
probable tokens.

➔ Allows to control diversity:

– Increasing k leads to more creative outputs with an 
increasing risk of getting bad outputs

– Decreasing k gives “safer” but less creative outputs

– Problem: fixed k can cover wildly different amount of 
probability mass

• Top-p sampling: At each step, randomly sample the next 
token from p(wt|w[1:t-1]), but restrict to the set of tokens 
with a cumulative probability of p

➔ Throw away long-tail tokens

• Top-k and Top-p can be used together!

18
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Decoding Approaches

• Temperature sampling
– Reshape the distribution instead of truncating it

– Inspired by thermodynamics

• System at high temperature is flexible and can explore many possible 
states

• System at lower temperature is likely to explore a subset of lower 
energy (better) states

• Low-temperature sampling (τ ≤ 1)
– increases the probability of the most probable words

– decreases the probability of the rare words

19
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Temperature sampling

• Why does it work?
– When τ is close to 1 the distribution does not change much

– The lower τ is, the larger the scores being passed to the softmax

– Softmax pushes high values toward 1 and low values toward 0

– Large inputs pushes high-probability words higher and low 
probability words lower, making the distribution more greedy

– As τ approaches 0, the probability of the most likely word 
approaches 1

20
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Sounds great but…

Question: How do we actually train a good language model?

21
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Sounds great but…

Question: How do we actually train a good language model?

Answer: By maximizing the language model probability over 
an observed large corpus of text.

22
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N-gram Language Models

• For example: Bi-gram language models based on co-
occurrence of two words

• P(wN|wN-1) = C(wN-1,wN) / C(wN-1)
– P(to|want) = 608/927 = 65.59%

– P(spend|want) = 1/927 = 0.11%
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Curse of Dimensionality

• Limitations of N-gram models
– Limited context length: N-grams have a finite context window of 

length N, which means they cannot capture long-range 
dependencies or context beyond the previous N-1 words

– Sparsity: As N increases, the number of possible N-grams grows 
exponentially, leading to sparse data and increased computational 
demands

• Suppose the vocabulary size is V, the number of possible N-grams 
increases to VN

– Usually V is larger than ten thousand. Representing each word as a 
one-hot vector is inefficient and ignores word semantics

• “Dogs” and “cats” are more similar than “dogs” and “rectangular”
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• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models
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Language Representations

• Ludwig Wittgenstein: “The meaning of a word is its use in the language”

– How to represent words while accounting for their meaning?

1. Words are defined by their environment (the words around them)

– “If A and B have almost identical environments, we say that they are 
synonyms” – Zellig Harris (1954)

2. Words are defined by different dimensions

– Which can be represented as a point in a multi-dimensional space

– E.g. 3 affective dimensions of words (Osgood et al. 1957)
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Distributed Representations

• A milestone in NLP and ML:

– Unsupervised learning of text representations – no supervision needed

– Embed previously one-hot vectors into lower dimensional space

→Word embeddings have fixed dimensions

→ Addresses sparsity of bag-of-words model (curse of dimensionality)

• Embeddings capture relevant properties of word semantics

– Word similarity: Words with similar meaning are embedded closer

– Word analogy: Linear relationships between words (e.g. king - queen = man 
- woman)

27
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Distributed Representations

Intuition: Why embeddings? 

• With words, a feature is a word identity (e.g. early bag-of-
words models, see Data Mining lecture videos)
– For example Feature 5: “terrible” with no information about context

– Requires exact same word to be in training and test sets

• With embeddings:
– Feature is a vector in a semantic space

– Feature 5: [35,22,17,…]

– In the test set there might be a similar vector [34,21,14,…]

– It is possible to generalize to similar but unseen words!

28
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Word2Vec

• Assumption: If two words have similar contexts, 
then they have similar semantic meanings!

• Training objective: Learn to predict word(s) in 
nearby context
– Skip-gram: predict context from center word

– CBOW: predict center word from context

29

Co-occurring words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed Representations of 

words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26.
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Extension to Subwords: fastText

• fastText improves on Word2Vec by incorporating subword information 
into word embeddings

• Words are represented by aggregating their n-gram embeddings

➔ Allows to also embed words unseen during training

30
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Limitations of Word2Vec

• The embeddings are context-free
– Each (sub-)word is mapped to only one vector

– Polysemous words with wildly different meaning have same vector

• The embeddings do not consider the order of words

• Every word is weighted the same, regardless of importance
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• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models
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Common Language Tasks

• Sentence-level tasks:
– Single sentence classification tasks: text classification, sentiment 

analysis, …

– Sentence-pair classification tasks: sentence entailment, …

– Sentence generation tasks: machine translation, question 
answering, …

• Token-level tasks:
– Part-of-speech tagging

– named entity recognition

– …
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Single-Sentence Tasks

• Text classification tasks
– Input: 

The bike is too small and I want to return it.

– Output: 
<refund, return, check_status>

• Sentiment Analysis
– Input: 

The restaurant is crowded and I waited for 
my food for thirty minutes!

– Output: 
<positive, negative>
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Sentence-Pair Tasks

• Sentence entailment
– Input:

Sentence 1: Our Large Language Model 
course meets on Thursdays at the 
University of Mannheim
Sentence 2: There is a large language 
model course at the University of 
Mannheim

– Output:
<entailment, contradiction, neutral>
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Sentence Generation Tasks

• Machine Translation
– Input: 

English: This is good. German:

– Output:
Das ist gut.

36
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Token-level Tasks

• Named Entity Recognition
– Input: 

St. Louis is located in the state of 
Missouri.

– Output:
<Begin-Location><Inside-location> O O O
O O O <Begin-Location> O
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Encoder and Decoder Models

• Language tasks can be broadly categorized into language 
understanding and language generation

• Encoder models are generally used to understand input 
sentences

• Decoder models are generally used to generate sentences

38
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39



University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The Transformer Architecture

• Input Embedding

• Positional Encoding

• 12 Transformer layers
– 6 encoder layers

– 6 decoder layers

• Linear + Softmax layer for next word 
prediction

40
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Self-Attention

• Self-Attention: Each token attends to every other token in the 
sequence with differing weights

• Embeddings are contextualized based on surrounding words

• Demo for the BERT Transformer: 
https://github.com/jessevig/bertviz
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Self-Attention

• Calculate the attention weight from a query word wq (e.g. “rabbit”) to 
another word wk o

• Each word is represented as a query, key and value vector.

• The vectors are obtained from the input embeddings multiplied by a 
weight matrix

42
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Self-Attention: Matrix Calculation

43
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Multi-Head Attention

• Input: Multiple independent sets of query, key, value matrices

• Output: Concatenated outputs of all attention heads

• Advantage: Each attention head can focus on different patterns 
of the data
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Encoder Model

• Multi-head attention layer captures 
information from different patterns at 
different positions

• Feed-forward layer is applied to each 
token position without interaction with 
other positions

• Bi-directional attention: Every token 
attends to all other tokens

45
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Decoder Model

• Multi-head self-attention: only allowed 
to attend to earlier positions (left side)
– Q is from the generated tokens

– K, V matrices are from the previously 
generated tokens

• Multi-head cross-attention: attend to 
the input sequence
– Q is from the generated tokens

– K, V matrices are from the input tokens

46
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Pre-trained Language Models

• Pre-training: Train deep language models (usually Transformer-based) 
via self-supervised objectives on large-scale general-domain corpora

• Fine-tuning: Adapt the pre-trained language models (PLMs) to 
downstream tasks using task-specific data

• Transfer Learning - The Power of PLMs: Encode generic linguistic 
features and knowledge learned through large-scale pre-training, which 
can be effectively transferred to the target applications
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General Pre-training Idea

• Self-supervised learning

• Make a part of the input unknown to the model

• Let the model predict that unknown part based on the 
known part

49
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Different PLM Architectures

• Decoder-only (Unidirectional) PLM (e.g. GPT): Predict the next token 
based on previous tokens, usually used for language generation tasks

• Encoder-only (Bidirectional) PLM (e.g. BERT, XLNet, ELECTRA): Predict 
masked/corrupted tokens based on all other (uncorrupted) tokens, 
usually used for language understanding/classification tasks

• Encoder-Decoder (Sequence-to-Sequence) PLM (e.g., T5, BART): 
Generate output sequences given masked/corrupted input sequences, 
can be used for both language understanding and generation tasks

50
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Generative Pre-training (GPT)

• Architecture: multi-layer transformer decoder

• Leverages unidirectional context (usually left-to-right) 
for next token prediction (i.e., language modeling)

• The Transformer uses unidirectional attention masks 
(every token can only attend to previous tokens)

• Decoder architecture is the prominent choice in large 
language models
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Decoder Pre-training

52

Original Sentence:
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Usage of Decoder Models

53
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The BERT Transformer

• Architecture: multi-layer transformer encoder

• Leverages bi-directional context 

• Pre-training with
– masked language modeling

– next sentence prediction

• Pre-training corpus: 
– Wikipedia (2.5B)

– BookCorpus (0.8B)

• Groundbreaking performance on a wide range 
of token-level and sentence-level tasks

54
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BERT Model Architecture

• Input: Sentence Pairs with special tokens [CLS] and [SEP]
– Pair-wise tasks: question answering, translation, sentence 

entailment

– [CLS]: beginning of a sentence

– [SEP]: separation of two sentences

• WordPiece tokenization
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BERT Model Architecture

• Released in two versions
– BERT-base: 12 layers, 768 hidden size, 12 attention heads (110M parameters)

– BERT-large: 24 layers, 1024 hidden size, 16 attention heads (340M parameters)

• Bi-directional: Each token can attend to its left and right context
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BERT Pre-training Objective: MLM

• Masked Language Modeling (MLM)
– Randomly mask a few words in the original sentences

– Predict the masked words using their left and right contexts

– Masking ratio: 15%

– Demo: https://huggingface.co/google-bert/bert-base-cased

57
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Comparison with GPT

• Training objective:
– Masked language modeling with bi-directional context (BERT)

– Left-to-right next token prediction with left-only context (GPT)

58
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BERT Pre-Training Objective: NSP

• Next Sentence Prediction (NSP)
– Predict wether Sentence B is the next 

Sentence of Sentence A

– Positive samples: two consecutive 
sentences in the corpus

– Negative samples: sample a different 
sentence for A

– Binary class labels: <is_next, not_next>

59
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Variants of BERT

• RoBERTa: A Robustly Optimized BERT Pretraining Approach
– Longer model training

– On more data with bigger batches

– Increased Vocabulary from ~30K to ~50K tokens

– Next sentence prediction removed as it was experimentally found to not be 
useful

– Dynamic changes to the [MASK] words in each epoch of training

• DistilBERT: a distilled version of BERT: smaller, faster, cheaper and 
lighter
– Distilled from BERT-base

– 40% less parameters, 60% faster, preserving 95% of performance based on 
the GLUE benchmark
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Liu et al., 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.

Sanh, V., 2019. DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint arXiv:1910.01108.
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Variants of BERT

• ELECTRA: Pre-training Text Encoders as Discriminators Rather than 
Generators
– Replaced MLM objective by fist corrupting text sequences with an auxiliary small 

MLM model

– ELECTRA model trained with binary objective

– Class labels: <is_corrupted,not_corrupted>

– No [MASK] tokens in input texts

➔ Works better because no discrepancy between training and 
downstream task data
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Clark et al., 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. 

In International Conference on Learning Representations.
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The T5 Transformer

• Architecture: multi-layer transformer encoder-decoder

• How to predict a span of masked tokens within a sentence?

• T5: Text-to-Text Transfer Transformer (60M-11B parameters)
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Raffel et al., 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine 

Learning Research, 21(140), pp.1-67.
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T5 Training Objectives

• Attention:
– Full self-attention for input sequence in encoder

– Left-to-right for decoder with cross-attention to full input in encoder

• Pre-training objective: 
– Mask out spans of texts …

– Then generate the original spans

• Fine-tuning objective:
– Convert any task into a sequence-to-sequence generation problem

– No discrepancy between pre-training and fine-tuning
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The BART Transformer

• BART: Denoising Autoencoder for Pre-training Sequence-to-
Sequence Models

• Pre-training: Apply a series of noising schemes (e.g. masks, 
deletions, permutations…) to input sequences and train the 
model to recover the original sequences
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Lewis et al., 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and 

Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 7871-7880).
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Fine-tuning PLMs

• The pre-training stage lets language models learn generic 
representations and knowledge from the corpus, but they 
are not fine-tuned on any form of user tasks.

• To adapt language models to a specific downstream task, 
we usually use task-specific datasets for fine-tuning
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Scaling up Language Models

• Model size in terms of trainable parameters has increased 
significantly over the years, constantly increasing performance, 
especially for text generation models.

• The name large language model is usually applied to language 
models with more than 1B parameters (mostly decoder-only)
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Performance of Zero-/Few-shot GPT 3
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See you next week!

• Next time: Training LLMs
– Instruction tuning

– Reinforcement learning from human feedback
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