
University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

IE686 Large Language Models and Agents

1

Introduction and Organization

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Hello

• About me:
– M.Sc. Wi-Inf Ralph Peeters

– Graduate Research Associate

– Research Interests

• Entity Matching using Deep Learning

• Data Integration

– Office: B6, 26 - C 1.04

– eMail: ralph.peeters@uni-mannheim.de

• I will teach the lectures, exercises and coach the student
projects.

2

mailto:ralph.peeters@uni-mannheim.de

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Hello

• About me:
– Prof. Dr. Christian Bizer

– Professor for Information Systems V

– Research Interests:

• Web-based Systems

• Large-Scale Data Integration

• Data and Web Mining

– Room: B6, 26 - B1.15

– eMail: christian.bizer@uni-mannheim.de

• Contributed to the design of the course and will contribute
to the final assessment.

3

mailto:christian.bizer@uni-mannheim.de

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models

4

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The First Half of the Course

• Lectures
– Foundational knowledge for understanding LLMs

– Architectures, training, prompt engineering patterns, fine-tuning,
agents, evaluation, …

– Goal: Learn and understand concepts and methods

• Exercises
– Practical applications of the lecture concepts

– Introduce tools: LangChain and AutoGen

– Goal: Learn to apply concepts in practice and prepare you for the
group projects

5

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The Second Half of the Course

• Group Projects
– Work in teams of five students on the practical application of LLMs

to a problem

– Goal: Understand a problem domain and apply the learned
concepts and tools to solve the problem!

– Teams write a 12-page report about their project and present their
results during a presentation at the end of the semester

– We will propose some project topics and you select preferences

• Course Grading
– The project is the basis for your grading, there is no exam!

– 3 ECTS (70% written project report, 30% presentation of results)

6

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Course Schedule

7

Day Topic

12.09 Lecture: Introduction to Language Models

19.09 Lecture: Instruction Tuning and RLHF

26.09 Lecture: Prompt Engineering and Efficient Adaptation

02.10 Exercise: Introduction to LangChain

10.10 Lecture: LLM Agents and Tool Use

17.10 Exercise: Introduction to AutoGen

24.10 Project: Introduction to Student Projects

31.10 Project: Project Coaching

07.11 Project: Project Coaching

14.11 Project: Project Coaching

21.11 Project: Project Coaching

28.11 Project: Project Coaching

05.12 Project: Presentation of Project Results

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Course Organization

• Course Webpage
– https://www.uni-mannheim.de/dws/teaching/course-

details/courses-for-master-candidates/ie-686-large-language-
models-and-agents/

– The lecture slides are published on this webpage

• Time and Location
– Every Thursday, 15:30 to 17:00

Room: A5 C015

– Starting 12.09.2024

– Important: Exercise on 02.10 is a Wednesday instead!
Room: B6 A1.01, Time: 17:00-18:45

8

https://www.uni-mannheim.de/dws/teaching/course-details/courses-for-master-candidates/ie-686-large-language-models-and-agents/
https://www.uni-mannheim.de/dws/teaching/course-details/courses-for-master-candidates/ie-686-large-language-models-and-agents/
https://www.uni-mannheim.de/dws/teaching/course-details/courses-for-master-candidates/ie-686-large-language-models-and-agents/

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Course Organization

• Course ILIAS
– https://ilias.uni-

mannheim.de/ilias.php?baseClass=ilrepositorygui&ref_id=1538061

– Need to be accepted for the course to access

• Contains:
– Forum

• For online communication/discussion during the course

• Not just with me, but also amongst each other!

• Don’t be shy to post questions and bringing your unique knowledge to
discussions, so we can all learn from each other!

– Literature Links

• Relevant textbooks/papers

• Further reading not covered in the course

9

https://ilias.uni-mannheim.de/ilias.php?baseClass=ilrepositorygui&ref_id=1538061
https://ilias.uni-mannheim.de/ilias.php?baseClass=ilrepositorygui&ref_id=1538061

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Literature and Credits

• Some supporting literature for the course
– Daniel Jurafsky & James H. Martin: Speech and Language Processing. (3rd edition

draft)

– Zhao et al.: A Survey of Large Language Models. 2024. arXiv:2303.18223

– Wang et al.: A Survey on Large Language Model based Autonomous Agents. 2024.
arXiv:2302.07842

– Zhou et al.: A Comprehensive Survey on Pretrained Foundation Models: A History
from BERT to ChatGPT. 2023. arXiv:2302.09419.

• The slide set of this lecture builds on slides from:
– Jiaxin Huang

– Mrinmaya Sachan

– Danqi Chen

– Daniel Jurafsky & James H. Martin

– Many thanks to all of you!

10

https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2302.09419
https://arxiv.org/abs/2302.09419

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Tools

• LangChain
– Library for easy interaction with various

hosted and local LLMs

– Many tools for prompt and embedding
orchestration

• AutoGen/LangGraph
– Libraries for orchestrating agentic

workflows

– The course will introduce one of them in
detail, but you are free to use whatever fits
your project use-case better

11

https://www.langchain.com/
https://microsoft.github.io/autogen/
https://www.langchain.com/langgraph

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Project API and Hardware Usage

• bwUniCluster 2.0
– All students can register

– Provide compute servers with modern GPUs (up to 8 per machine)

– Uses a job queuing system for distributing resources

– Good and free option for locally hosting open-source LLMs

• APIs for hosted LLMs
– We cannot reimburse you for API costs, e.g. OpenAI, Anthropic, …

– You may consider using cheap but powerful models like GPT4o-mini

– Check for free tier offers from different providers

– I may have more tips for you once we reach the exercises…

• Google Colab
– Could be useful for prototyping with small open-source models

12

https://wiki.bwhpc.de/e/BwUniCluster2.0

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models

13

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

What is a Language Model?

• The classic definition of a language model (LM) is a probability
distribution over each possible token sequence [w1,w2,…,w3],
independent of it making any sense:

– Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03

– My cat fed Sally with meat: P(My, cat, fed, Sally, with, meat) = 0.005

– fed cat meat my my with: P(fed, cat, meat, my, my, with) = 0.0001

• A good language model ideally assigns a high probability to sequences
that make sense given …

– the structure of the actual language (English in this case)

– any additional context in which a sentence is uttered, if available

14

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Our Focus: Autoregressive LMs

• A type of language model based on the chain rule of probability:

P(w1,w2,w3,…,wn) = P(w1)*p(w2|w1)*p(w3|w1,w2)*…*p(wn|w1,w2,…,wn-1)

• P(Sally, fed, my, cat, with, meat) = P(Sally)
* P(fed | Sally)
* P(my | Sally, fed)
* P(cat | Sally, fed, my)
* P(with | Sally, fed, my, cat)
* P(meat | Sally, fed, my, cat, with)

➔ Conditional probability

• We will also see some other types of language models later

15

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Language Generation

• Assume we have a good language model and a given text
prompt w[1:n]

– Now we want to generate a good completion for this prompt with
some length L

– How to find w[n+1:n+L] with the highest probability?

– Enumerate over all possible combinations?

➔Next token prediction
– Generate tokens step by step starting from wn+1 using

p(wn+1|w[1:n])

– For selecting the next token with p(wn+1|w[1:n]), there are different
decoding approaches

16

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Decoding Approaches

• Greedy decoding: At each step, always select wt with the
highest p(wt|w[1:t-1]).

• Beam Search: Keep track of k possible paths at each step
instead of just a single one. Reasonable beam size k: 5-10

17

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Decoding Approaches

• Top-k sampling: At each step, randomly sample the next
token from p(wt|w[1:t-1]), but restrict to only the k most
probable tokens.

➔ Allows to control diversity:

– Increasing k leads to more creative outputs with an
increasing risk of getting bad outputs

– Decreasing k gives “safer” but less creative outputs

– Problem: fixed k can cover wildly different amount of
probability mass

• Top-p sampling: At each step, randomly sample the next
token from p(wt|w[1:t-1]), but restrict to the set of tokens
with a cumulative probability of p

➔ Throw away long-tail tokens

• Top-k and Top-p can be used together!

18

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Decoding Approaches

• Temperature sampling
– Reshape the distribution instead of truncating it

– Inspired by thermodynamics

• System at high temperature is flexible and can explore many possible
states

• System at lower temperature is likely to explore a subset of lower
energy (better) states

• Low-temperature sampling (τ ≤ 1)
– increases the probability of the most probable words

– decreases the probability of the rare words

19

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Temperature sampling

• Why does it work?
– When τ is close to 1 the distribution does not change much

– The lower τ is, the larger the scores being passed to the softmax

– Softmax pushes high values toward 1 and low values toward 0

– Large inputs pushes high-probability words higher and low
probability words lower, making the distribution more greedy

– As τ approaches 0, the probability of the most likely word
approaches 1

20

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Sounds great but…

Question: How do we actually train a good language model?

21

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Sounds great but…

Question: How do we actually train a good language model?

Answer: By maximizing the language model probability over
an observed large corpus of text.

22

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

N-gram Language Models

• For example: Bi-gram language models based on co-
occurrence of two words

• P(wN|wN-1) = C(wN-1,wN) / C(wN-1)
– P(to|want) = 608/927 = 65.59%

– P(spend|want) = 1/927 = 0.11%

23

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Curse of Dimensionality

• Limitations of N-gram models
– Limited context length: N-grams have a finite context window of

length N, which means they cannot capture long-range
dependencies or context beyond the previous N-1 words

– Sparsity: As N increases, the number of possible N-grams grows
exponentially, leading to sparse data and increased computational
demands

• Suppose the vocabulary size is V, the number of possible N-grams
increases to VN

– Usually V is larger than ten thousand. Representing each word as a
one-hot vector is inefficient and ignores word semantics

• “Dogs” and “cats” are more similar than “dogs” and “rectangular”

24

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models

25

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Language Representations

• Ludwig Wittgenstein: “The meaning of a word is its use in the language”

– How to represent words while accounting for their meaning?

1. Words are defined by their environment (the words around them)

– “If A and B have almost identical environments, we say that they are
synonyms” – Zellig Harris (1954)

2. Words are defined by different dimensions

– Which can be represented as a point in a multi-dimensional space

– E.g. 3 affective dimensions of words (Osgood et al. 1957)

26

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Distributed Representations

• A milestone in NLP and ML:

– Unsupervised learning of text representations – no supervision needed

– Embed previously one-hot vectors into lower dimensional space

→Word embeddings have fixed dimensions

→ Addresses sparsity of bag-of-words model (curse of dimensionality)

• Embeddings capture relevant properties of word semantics

– Word similarity: Words with similar meaning are embedded closer

– Word analogy: Linear relationships between words (e.g. king - queen = man
- woman)

27

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Distributed Representations

Intuition: Why embeddings?

• With words, a feature is a word identity (e.g. early bag-of-
words models, see Data Mining lecture videos)
– For example Feature 5: “terrible” with no information about context

– Requires exact same word to be in training and test sets

• With embeddings:
– Feature is a vector in a semantic space

– Feature 5: [35,22,17,…]

– In the test set there might be a similar vector [34,21,14,…]

– It is possible to generalize to similar but unseen words!

28

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Word2Vec

• Assumption: If two words have similar contexts,
then they have similar semantic meanings!

• Training objective: Learn to predict word(s) in
nearby context
– Skip-gram: predict context from center word

– CBOW: predict center word from context

29

Co-occurring words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed Representations of

words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26.

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Extension to Subwords: fastText

• fastText improves on Word2Vec by incorporating subword information
into word embeddings

• Words are represented by aggregating their n-gram embeddings

➔ Allows to also embed words unseen during training

30

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T., 2017. Enriching word vectors with subword information. Transactions of the

Association for Computational Linguistics, 5, pp.135-146.

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Limitations of Word2Vec

• The embeddings are context-free
– Each (sub-)word is mapped to only one vector

– Polysemous words with wildly different meaning have same vector

• The embeddings do not consider the order of words

• Every word is weighted the same, regardless of importance

31

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models

32

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Common Language Tasks

• Sentence-level tasks:
– Single sentence classification tasks: text classification, sentiment

analysis, …

– Sentence-pair classification tasks: sentence entailment, …

– Sentence generation tasks: machine translation, question
answering, …

• Token-level tasks:
– Part-of-speech tagging

– named entity recognition

– …

33

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Single-Sentence Tasks

• Text classification tasks
– Input:

The bike is too small and I want to return it.

– Output:
<refund, return, check_status>

• Sentiment Analysis
– Input:

The restaurant is crowded and I waited for
my food for thirty minutes!

– Output:
<positive, negative>

34

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Sentence-Pair Tasks

• Sentence entailment
– Input:

Sentence 1: Our Large Language Model
course meets on Thursdays at the
University of Mannheim
Sentence 2: There is a large language
model course at the University of
Mannheim

– Output:
<entailment, contradiction, neutral>

35

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Sentence Generation Tasks

• Machine Translation
– Input:

English: This is good. German:

– Output:
Das ist gut.

36

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Token-level Tasks

• Named Entity Recognition
– Input:

St. Louis is located in the state of
Missouri.

– Output:
<Begin-Location><Inside-location> O O O
O O O <Begin-Location> O

37

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Encoder and Decoder Models

• Language tasks can be broadly categorized into language
understanding and language generation

• Encoder models are generally used to understand input
sentences

• Decoder models are generally used to generate sentences

38

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models

39

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The Transformer Architecture

• Input Embedding

• Positional Encoding

• 12 Transformer layers
– 6 encoder layers

– 6 decoder layers

• Linear + Softmax layer for next word
prediction

40

Vaswani, A., et al., 2017. Attention is All You Need. Advances in Neural Information Processing Systems.

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Self-Attention

• Self-Attention: Each token attends to every other token in the
sequence with differing weights

• Embeddings are contextualized based on surrounding words

• Demo for the BERT Transformer:
https://github.com/jessevig/bertviz

41

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Self-Attention

• Calculate the attention weight from a query word wq (e.g. “rabbit”) to
another word wk o

• Each word is represented as a query, key and value vector.

• The vectors are obtained from the input embeddings multiplied by a
weight matrix

42

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Self-Attention: Matrix Calculation

43

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Multi-Head Attention

• Input: Multiple independent sets of query, key, value matrices

• Output: Concatenated outputs of all attention heads

• Advantage: Each attention head can focus on different patterns
of the data

44

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Encoder Model

• Multi-head attention layer captures
information from different patterns at
different positions

• Feed-forward layer is applied to each
token position without interaction with
other positions

• Bi-directional attention: Every token
attends to all other tokens

45

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Decoder Model

• Multi-head self-attention: only allowed
to attend to earlier positions (left side)
– Q is from the generated tokens

– K, V matrices are from the previously
generated tokens

• Multi-head cross-attention: attend to
the input sequence
– Q is from the generated tokens

– K, V matrices are from the input tokens

46

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Outline

• Course Organization

• What is a Language Model?

• Language Representations

• Common Language Tasks

• The Transformer Architecture

• Pre-trained Language Models

47

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Pre-trained Language Models

• Pre-training: Train deep language models (usually Transformer-based)
via self-supervised objectives on large-scale general-domain corpora

• Fine-tuning: Adapt the pre-trained language models (PLMs) to
downstream tasks using task-specific data

• Transfer Learning - The Power of PLMs: Encode generic linguistic
features and knowledge learned through large-scale pre-training, which
can be effectively transferred to the target applications

48

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

General Pre-training Idea

• Self-supervised learning

• Make a part of the input unknown to the model

• Let the model predict that unknown part based on the
known part

49

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Different PLM Architectures

• Decoder-only (Unidirectional) PLM (e.g. GPT): Predict the next token
based on previous tokens, usually used for language generation tasks

• Encoder-only (Bidirectional) PLM (e.g. BERT, XLNet, ELECTRA): Predict
masked/corrupted tokens based on all other (uncorrupted) tokens,
usually used for language understanding/classification tasks

• Encoder-Decoder (Sequence-to-Sequence) PLM (e.g., T5, BART):
Generate output sequences given masked/corrupted input sequences,
can be used for both language understanding and generation tasks

50

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Generative Pre-training (GPT)

• Architecture: multi-layer transformer decoder

• Leverages unidirectional context (usually left-to-right)
for next token prediction (i.e., language modeling)

• The Transformer uses unidirectional attention masks
(every token can only attend to previous tokens)

• Decoder architecture is the prominent choice in large
language models

51

Radford et al., 2018. Improving Language Understanding by Generative Pre-Training
Radford et al., 2019. Language Models are Unsupervised Multitask Learners
Brown et al., 2020. Language Models are Few-shot Learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (pp. 1877-1901).

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Decoder Pre-training

52

Original Sentence:

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Usage of Decoder Models

53

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The BERT Transformer

• Architecture: multi-layer transformer encoder

• Leverages bi-directional context

• Pre-training with
– masked language modeling

– next sentence prediction

• Pre-training corpus:
– Wikipedia (2.5B)

– BookCorpus (0.8B)

• Groundbreaking performance on a wide range
of token-level and sentence-level tasks

54

Devlin et al., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers) (pp. 4171-4186).

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

BERT Model Architecture

• Input: Sentence Pairs with special tokens [CLS] and [SEP]
– Pair-wise tasks: question answering, translation, sentence

entailment

– [CLS]: beginning of a sentence

– [SEP]: separation of two sentences

• WordPiece tokenization

55

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

BERT Model Architecture

• Released in two versions
– BERT-base: 12 layers, 768 hidden size, 12 attention heads (110M parameters)

– BERT-large: 24 layers, 1024 hidden size, 16 attention heads (340M parameters)

• Bi-directional: Each token can attend to its left and right context

56

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

BERT Pre-training Objective: MLM

• Masked Language Modeling (MLM)
– Randomly mask a few words in the original sentences

– Predict the masked words using their left and right contexts

– Masking ratio: 15%

– Demo: https://huggingface.co/google-bert/bert-base-cased

57

https://huggingface.co/google-bert/bert-base-cased

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Comparison with GPT

• Training objective:
– Masked language modeling with bi-directional context (BERT)

– Left-to-right next token prediction with left-only context (GPT)

58

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

BERT Pre-Training Objective: NSP

• Next Sentence Prediction (NSP)
– Predict wether Sentence B is the next

Sentence of Sentence A

– Positive samples: two consecutive
sentences in the corpus

– Negative samples: sample a different
sentence for A

– Binary class labels: <is_next, not_next>

59

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Variants of BERT

• RoBERTa: A Robustly Optimized BERT Pretraining Approach
– Longer model training

– On more data with bigger batches

– Increased Vocabulary from ~30K to ~50K tokens

– Next sentence prediction removed as it was experimentally found to not be
useful

– Dynamic changes to the [MASK] words in each epoch of training

• DistilBERT: a distilled version of BERT: smaller, faster, cheaper and
lighter
– Distilled from BERT-base

– 40% less parameters, 60% faster, preserving 95% of performance based on
the GLUE benchmark

60

Liu et al., 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.

Sanh, V., 2019. DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint arXiv:1910.01108.

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Variants of BERT

• ELECTRA: Pre-training Text Encoders as Discriminators Rather than
Generators
– Replaced MLM objective by fist corrupting text sequences with an auxiliary small

MLM model

– ELECTRA model trained with binary objective

– Class labels: <is_corrupted,not_corrupted>

– No [MASK] tokens in input texts

➔ Works better because no discrepancy between training and
downstream task data

61

Clark et al., 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

In International Conference on Learning Representations.

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The T5 Transformer

• Architecture: multi-layer transformer encoder-decoder

• How to predict a span of masked tokens within a sentence?

• T5: Text-to-Text Transfer Transformer (60M-11B parameters)

62

Raffel et al., 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine

Learning Research, 21(140), pp.1-67.

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

T5 Training Objectives

• Attention:
– Full self-attention for input sequence in encoder

– Left-to-right for decoder with cross-attention to full input in encoder

• Pre-training objective:
– Mask out spans of texts …

– Then generate the original spans

• Fine-tuning objective:
– Convert any task into a sequence-to-sequence generation problem

– No discrepancy between pre-training and fine-tuning

63

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

The BART Transformer

• BART: Denoising Autoencoder for Pre-training Sequence-to-
Sequence Models

• Pre-training: Apply a series of noising schemes (e.g. masks,
deletions, permutations…) to input sequences and train the
model to recover the original sequences

64

Lewis et al., 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and

Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 7871-7880).

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Fine-tuning PLMs

• The pre-training stage lets language models learn generic
representations and knowledge from the corpus, but they
are not fine-tuned on any form of user tasks.

• To adapt language models to a specific downstream task,
we usually use task-specific datasets for fine-tuning

65

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Scaling up Language Models

• Model size in terms of trainable parameters has increased
significantly over the years, constantly increasing performance,
especially for text generation models.

• The name large language model is usually applied to language
models with more than 1B parameters (mostly decoder-only)

66

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

Performance of Zero-/Few-shot GPT 3

67

University of Mannheim | IE686 LLMs and Agents | Introduction | Version 25.09.2024

Data and Web Science Group

See you next week!

• Next time: Training LLMs
– Instruction tuning

– Reinforcement learning from human feedback

68

	Introduction
	Slide 1: Introduction and Organization
	Slide 2: Hello
	Slide 3: Hello

	Course Organization
	Slide 4: Outline
	Slide 5: The First Half of the Course
	Slide 6: The Second Half of the Course
	Slide 7: Course Schedule
	Slide 8: Course Organization
	Slide 9: Course Organization
	Slide 10: Literature and Credits
	Slide 11: Tools
	Slide 12: Project API and Hardware Usage

	What is a Language Model?
	Slide 13: Outline
	Slide 14: What is a Language Model?
	Slide 15: Our Focus: Autoregressive LMs
	Slide 16: Language Generation
	Slide 17: Decoding Approaches
	Slide 18: Decoding Approaches
	Slide 19: Decoding Approaches
	Slide 20: Temperature sampling
	Slide 21: Sounds great but…
	Slide 22: Sounds great but…
	Slide 23: N-gram Language Models
	Slide 24: Curse of Dimensionality

	Language Representations
	Slide 25: Outline
	Slide 26: Language Representations
	Slide 27: Distributed Representations
	Slide 28: Distributed Representations
	Slide 29: Word2Vec
	Slide 30: Extension to Subwords: fastText
	Slide 31: Limitations of Word2Vec

	Language Tasks
	Slide 32: Outline
	Slide 33: Common Language Tasks
	Slide 34: Single-Sentence Tasks
	Slide 35: Sentence-Pair Tasks
	Slide 36: Sentence Generation Tasks
	Slide 37: Token-level Tasks
	Slide 38: Encoder and Decoder Models

	The Transformer Architecture
	Slide 39: Outline
	Slide 40: The Transformer Architecture
	Slide 41: Self-Attention
	Slide 42: Self-Attention
	Slide 43: Self-Attention: Matrix Calculation
	Slide 44: Multi-Head Attention
	Slide 45: Encoder Model
	Slide 46: Decoder Model

	Pre-trained Language Models
	Slide 47: Outline
	Slide 48: Pre-trained Language Models
	Slide 49: General Pre-training Idea
	Slide 50: Different PLM Architectures
	Slide 51: Generative Pre-training (GPT)
	Slide 52: Decoder Pre-training
	Slide 53: Usage of Decoder Models
	Slide 54: The BERT Transformer
	Slide 55: BERT Model Architecture
	Slide 56: BERT Model Architecture
	Slide 57: BERT Pre-training Objective: MLM
	Slide 58: Comparison with GPT
	Slide 59: BERT Pre-Training Objective: NSP
	Slide 60: Variants of BERT
	Slide 61: Variants of BERT
	Slide 62: The T5 Transformer
	Slide 63: T5 Training Objectives
	Slide 64: The BART Transformer
	Slide 65: Fine-tuning PLMs
	Slide 66: Scaling up Language Models
	Slide 67: Performance of Zero-/Few-shot GPT 3
	Slide 68: See you next week!

