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• This slide set is based on slides from
– Shunyu Yao

– Yankai Lin

– Yang Deng, An Zhang et al.

• Many thanks to all of you!
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Recap: Prompting

• For many tasks, supervised fine-tuning data may not be 
available or may be costly to obtain

• Due to emergent abilities coupled with instruction tuning, 
we can simply prompt or instruct models to do a task!

• Prompts are written in natural language

• Prompting is non-invasive:
– No additional parameters are introduced

– No tuning of existing parameters

– No need to inspect model’s embeddings
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Recap: Fine-tuning Methods

• Given enough data and computing resources

• Overall performance on T5-base: Full fine-tuning > LoRA > Adapters > 
Prefix Tuning > Prompt Tuning

5

Ding, N., et al., 2022. Delta tuning: A comprehensive study of parameter efficient methods for pre-trained language models. arXiv

preprint arXiv:2203.06904.
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Recap: Evaluating LLMs

• Benchmark-based evaluation
– Format problem into prompt and generate result

– Parse result and compute standard metrics like accuracy

– Good for close-ended evaluation

• Model-based evaluation
– Use LLM like GPT-4 as surrogate for human evaluation

– Shown to achieve high agreement with human evaluators

• Human-based evaluation
– Human evaluators judge answer of LLMs

• Pair-wise comparison of two answers from different models

• Single-answer grading: score a single answer from an LLM

– Good for open-ended evaluation
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What is an Agent?

• LLM-powered Agents are artificial entities that enhance LLMs with 
essential capabilities enabling them to sense their environment, make 
decisions, and take actions.
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What is an Agent?

• An “intelligent” system that interacts with some 
“environment”
– Physical environments: robot, autonomous car, …

– Digital environments: DQN for Atari, Siri, AlphaGo

– Humans as environment: Chatbots
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What is an Agent?

10

• Sam Altman said in one of his key notes: “GPTs and 
Assistants are precursors to agents. They will gradually be 
able to plan and to perform more complex actions on your 
behalf. These are our first steps toward AI Agents.”

• Bill Gates wrote in his Blog: “Agents are not only going to 
change how everyone interacts with computers. They’re 
also going to upend the software industry, bringing about 
the biggest revolution in computing since we went from 
typing commands to tapping on icons.”

Financial Times. “The advent of the AI agent”
GatesNotes. “The Future of Agents: AI is about to completely change how you use computers”

https://www.ft.com/content/e628f42d-acc9-496d-be15-1ab19311735b
https://www.gatesnotes.com/AI-agents
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LLM Agents over Time
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A brief history of LLM agents

12

Wang, L., et al., 2024. A survey on large language model based autonomous agents. Frontiers of Computer Science, 18(6), p.186345.
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Example Task: Question Answering

• Various solutions were developed for the different QA tasks
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Supporting LLMs with Tools

• How did humanity develop over time to where we are now?

• An important factor: Usage of Tools
– Spears, the plow, electricity, computers, …

➔Today we have many complex tools to help us solve problems, e.g. 
calculators, search engines, …
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Image Source

Mialon, G., et al. 2023, Augmented Language Models: a Survey. Transactions on Machine Learning Research.

https://radiomonkeys.org/2017/01/20/evolution-of-automation-a-technist-perspective/


University of Mannheim | IE686 LLMs and Agents | LLM Agents and Tool Use| Version 04.10.2024

Data and Web Science Group

Example: Code Generation for 
Computational Problems

• Leverages external tool (python interpreter) to decouple 
computation from reasoning

• LLM can make calls to the interpreter to run generated code

16

Chen, W.  et al., 2023 Program of Thoughts Prompting: Disentangling Computation from 

Reasoning for Numerical Reasoning Tasks. Transactions on Machine Learning Research.
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Retrieval-augmented Generation for 
Knowledge Problems

• Answer knowledge-intensive questions with
– Extra corpora

– A retriever (e.g. BM25, DensePassageRetrieval, etc.)

• What if there is no corpus?
– Example Question: Who are the two candidates for the 2024 US 

presidential election?

17
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Teaching LLMs to use Tools

• Add special tokens to invoke tool 
calls for
– Search engines, calculators, etc.

– Task-specific models (translation)

– APIs

• Unnatural format requires 
task/tool-specific fine-tuning

18

Parisi, A., et al., 2022. Talm: Tool augmented language models. arXiv preprint arXiv:2205.12255.

Schick, T., et al., 2024. Toolformer: Language models can teach themselves to use tools. Advances in Neural 

Information Processing Systems, 36.
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Tool Usage: General Process

19

Image Source

https://www.linkedin.com/pulse/function-calling-openai-how-connecting-llms-internal-tools-proykova-k13qf/


University of Mannheim | IE686 LLMs and Agents | LLM Agents and Tool Use| Version 04.10.2024

Data and Web Science Group

Tool Learning: Tutorial

• Tutorial Learning
– Have model tuned for tool use read tool manuals (tutorials), so that 

it understands the functions of the tool and how to invoke them

– Works well with powerful LLMs

20
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Tool Learning Prompt
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Tool Learning: RL

• Reinforcement Learning
– Autonomous exploration and correction of errors based on 

environmental feedback through reinforcement learning

– Action space defined by tools

– Agent learns to select appropriate tool

– Correct action maximize reward signal

22
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Tool Learning: Self-supervised 

• Self-supervised Tool Learning
– Pre-defined tool APIs

– Encourage models to call and execute tool APIs

– Design self-supervised loss to evaluate tool execution helpfulness

23

Schick, T et al., 2024. Toolformer: Language models can teach themselves to 

use tools. Advances in Neural Information Processing Systems, 36.
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Early Example: WebGPT

• Supervised Learning performed at OpenAI
– Trying to copy human behavior to use search engines

– Supervised fine-tuning + reinforcement learning

– Only 6000 annotated data instances

24

Nakano, R., et al., 2021. WebGPT: Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332.



University of Mannheim | IE686 LLMs and Agents | LLM Agents and Tool Use| Version 04.10.2024

Data and Web Science Group

Early Example: WebGPT

• Excellent performance in long-form QA, even surpassing 
human experts sometimes

25
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What if Both External Knowledge and 
Reasoning are needed?

• Some methods combine tool use/RAG and reasoning 
methods for specific tasks

26

Trivedi, H., et al., 2023, July. Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions. 

In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 10014-10037).

Press, O., et al., 2023, December. Measuring and Narrowing the Compositionality Gap in Language Models. In Findings of the Association 

for Computational Linguistics: EMNLP 2023 (pp. 5687-5711).
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Reasoning OR Acting
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The ReAct Paradigm

29

Yao, S., et al., 2023. ReAct: Synergizing Reasoning and Acting in Language Models. In The Eleventh 

International Conference on Learning Representations.
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ReAct is Simple and Intuitive to Use
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Zero-shot ReAct Prompt
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Zero-shot ReAct Prompt
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Zero-shot ReAct Prompt

• Synergy
– Acting supports reasoning

– Reasoning guides acting

33
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Converting Tasks to Text

• Many tasks can be turned into natural language for LLM agents

• “LLM grounding”: Supplementing the LLM with use-case specific 
information, e.g a data store that is part of a RAG system

34

Brohan, A., et al., 2023, March. Do as i can, not as i say: Grounding language in robotic 

affordances. In Conference on robot learning (pp. 287-318). PMLR.

Huang, W., et al., 2023, March. Inner Monologue: Embodied Reasoning through Planning with 

Language Models. In Conference on Robot Learning (pp. 1769-1782). PMLR.
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Acting without Reasoning

• Cannot explore systematically or incorporate feedback

35
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ReAct Enables Systematic Exploration
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ReAct is general and effective

37

Yao, S., et al., 2023, ReAct: Synergizing Reasoning and Acting in Language Models. In The Eleventh 

International Conference on Learning Representations.
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ReAct vs. Traditional Agents
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Unified Framework for LLM-powered 
Agents

• LLMs pave the way for the use of AI agents to simulate 
users and other entities, as well as their interactions

40
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Observation and Action
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The “Brain”
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The “Brain”

• Memory: stores sequences of agent’s past observations, 
thoughts and actions
– Long-term and short-term memory

– Long-term memory is abstract

– Used to retrieve relevant past memory

• Decision Making Process:
– Planning: Subgoal and decomposition – Break down large tasks into 

smaller, manageable subgoals, enabling efficient handling of complex tasks

– Reasoning: Self-criticism and self-reflection over past actions, learn from 
mistakes and refine for future steps

• Personalized memory and reasoning lead to diversity and 
independence of AI Agents.
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Collaboration

• Diverse Agents interact with each other to solve problems 
in fully autonomous systems

• Human-in-the-loop in cooperative systems
44
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Unified Framework for LLM Agents
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Example: Agent creation with OpenAI
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Example: Long-term Memory
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Long-term Memory for Reflexion
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Example: Voyager - Procedural 
Memory of Skills

49

Wang, G., et al., 2024. Voyager: An Open-Ended Embodied Agent with Large Language Models. Transactions 

on Machine Learning Research.
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Multi-Agent Orchestration

• Usually a “Manager” or 
“Commander” for 
orchestrating many agents

• Context may be shared or 
isolated

• Cooperative vs. competitive 
environments

• Centralized vs. decentralized 
communication

• Human intervention vs. full 
automation

50
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Example: Retrieval-Augmented QA

• Two agents

• User Proxy processes documents into vectorstore

• User Question and relevant context passed to assistant that 
generates answer

• Conversation continues until satisfactory answer

51

Wu, Q., et al., 2024, AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent 

Conversation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents.
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Example: Decision Making

• Two agents: One suggests next step, Executor does action 
and provides feedback

• Three agents: additional agent that provides commonsense 
facts about the domain when needed

52

Wu, Q., et al., 2024. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent 

Conversation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents.
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Example: Multi-Agent Coding

• Commander receives user questions and executes code

• Writer writes code

• Safeguard ensures no information leakage or malicious code

53

Wu, Q., et al., 2024. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent 

Conversation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents.
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Example: GPT-Researcher

• Multi-agent system for online 
research

• Uses “Plan-and-Solve” prompting to 
divide task into subtasks…

• Which are carried out by multiple 
agents in parallel using web crawling 
as a tool.

• Each resource is stored, filtered and a 
selection is summarized to aggregate 
a final report after the crawler agents 
have finished.

54

https://docs.gptr.dev/blog/building-gpt-researcher
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Summary: LLM Agents

• Current hot topic in research and application

• Combination of tool use and reasoning allows enhancement 
of LLM abilities while mitigating problematic behavior like 
hallucinations

➔Reasoning Agents

• Orchestrating agents with different capabilities 
(specializations) allows to solve complex problems

For more application examples, see the following surveys:

55

Guo, T., et al., 2024. Large language model based multi-agents: A survey of progress and 

challenges. arXiv preprint arXiv:2402.01680.

Liu, J., et al., 2024. Large Language Model-Based Agents for Software Engineering: A Survey. arXiv

preprint arXiv:2409.02977.
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Evaluating (Multi-)Agent Systems

• LLM-powered agents enable a rich set of capabilities but 
also amplify potential risks
– How to evaluate agent performance and awareness of safety risks?

• Potential Risks: leaking private data or causing financial loss

• Identifying these risks is labor-intensive as testing becomes difficult 
with increased agent complexity

• Benchmarks for Agents need to cover a broad space 
including
– Tools

– External resources

– Correct behavioral traces or labels

57
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Example: AgentBench

• Simulate interactive environments for LLMs to operate as 
autonomous agents

• 8 distinct environments of 3 types (Coding, Games, Web)

• Evaluation of agent core abilities like logical reasoning

58

Liu, X.,et al.., 2024. AgentBench: Evaluating LLMs as Agents. In The Twelfth International Conference on Learning Representations.
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Example: ToolEMU

• Goal: Identify risky behavior of agents

• Emulates tool execution and enables scalable testing of 
agents

59

Ruan, Y., et al., 2024. Identifying the Risks of LM Agents with an LM-Emulated Sandbox. In The 

Twelfth International Conference on Learning Representations.
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Example: WebShop

• Large-scale complex environment based on 1.16M Amazon products

• Challenges language and visual understanding and decision-making

60

Yao, S., et al., 2022. Webshop: Towards scalable real-world web interaction with grounded language 

agents. Advances in Neural Information Processing Systems, 35, pp.20744-20757.
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Example: WebArena

• Simulate web environment with high similarity to real-world 
popular websites

• Embeds tools and knowledge resources as independent 
websites

• Benchmark for concrete web-based actions

61

Zhou, S., et al., 2024. WebArena: A Realistic Web Environment for Building Autonomous 

Agents. In The Twelfth International Conference on Learning Representations.
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See you next week!

• Next time: Introduction to LangGraph
– Exercise: learn to apply things

– Learn how to use tools with LLMs

– Learn how to build complex interactions between Agents

62
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