Machine Learning

01 — Introduction
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Outline (Introduction)

1. What is Machine Learning?
2. Types of Machine Learning

3. Basic Concepts

2/4

Lessons learned

e Machine learning aims to learn from experience
» Applications everywhere, top IT skill

e Supervised methods take examples and correct answers as input
> Classification, regression, structured prediction

e Unsupervised methods use unlabeled examples
» Clustering, representation learning, network analysis, ...

e Handling uncertainty is important
e Models can underfit or overfit — need for model selection

e No free lunch theorem implies that we need to study many
models

3/4

Suggested reading
e Murphy, Ch. 1
Other:

e Mitchell, Ch. 1
e Goodfellow et al., Ch. 5.1-5.3

4/4

Machine Learning

01 — Introduction
Part 1: What is Machine Learning?

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

What is machine learning?

Key question: How can we build computer systems that
automatically improve with experience, and what are the
fundamental laws that govern all learning processes?

e Easy to write good programs for certain tasks
(e.g., shortest path)

e Hard to write good programs for other tasks
(e.g., spam detection)
e Machine learning generally comprises
> A task T (e.g., playing Checkers)
> A performance metric P (e.g., percent of games won)
> Training experience E (e.g., playing games)
» Goal: machine learns to reliably improve performance P at task T,
following experience F

Mitchell, 2006 2/11

http://www-cgi.cs.cmu.edu/~tom/pubs/MachineLearningTR.pdf

In 2016, DeepMind'’s AlphaGo beat Go master Lee Se-dol

O7750,) Lax ieemn SRR
== S | we® B |. 00:00:27

BBC News, 2016 3/11

https://www.bbc.com/news/technology-35785875

Let's learn!

e Rainer distinguishes good and bad triples

e Here is a good triple

2 4 3

e Ask me about triples being good or bad; then tell the rule | use
to distinguish (you are allowed to guess only once!)

e Could you write a program that could guess such rules?

NYT puzzle 4/11

http://www.nytimes.com/interactive/2015/07/03/upshot/a-quick-puzzle-to-test-your-problem-solving.html?_r=0

Training experience (1)
e Available experience can have a significant impact

e Consider task of playing Checkers

e Does experience provide direct or indirect feedback regarding
performance? E.g.,
» Direct: provide feedback on each move the system makes
» Indirect: move sequences and final outcomes
» Indirect typically harder due to credit assignment problem: How
much does each move deserve credit/blame for the final outcome?

e To which degree can the learner control the experience? E.g.,

» Informative examples are provided by a teacher
(e.g., a Checkers expert)

» Machine can propose board states and ask teacher for suitable
move

> No teacher present

5/11

Training experience (2)

e How representative is training experience for final system
performance?
» Learning is most reliable when training examples have similar
distribution as future test examples
> In practice, this must often be violated
> E.g., machine plays only against itself — potentially not
representative for a world-class tournament

e Example

P Task: playing Checkers

P> Performance measure: percentage of games won in world
tournament

» Training experience: games played against itself

6/11

Target function

e Which function(s) do we want to learn?

» ML task needs to be broken down into concrete target functions
» E.g., a function V : Board — R to “score” a given board

» Score should be high when board is good and low otherwise

» Can use function to determine next move

e Ideally, function allows for optimal moves
» Assuming that the opponent plays optimally, score each board for
which learner wins with 1, draw with 0, looses with —1
> Not efficiently computable, so of little use in practice

e In machine learning, we search for an operational description of
the ideal target function
> |.e., an efficiently computable function that picks the next move
» Function V : Board — R, called model
» Learning task now reduced to finding a suitable approximation of
an ideal target function

7/11

https://science.sciencemag.org/content/317/5844/1518

Representation of the target function

e How do we represent the model?
» Highly expressive? E.g., a table with each possible board and its

score
> Very simple? E.g., linear combination of “features” (such as

number of black/white pieces/kings)
> Anything in between?

e Inherent trade-off: a more expressive representation. ..

> May allow better approximations of the target function
> Typically requires more training data (often also: more
computational resources) to learn a good approximation

e Candidate functions also called hypothesis

e Class of considered functions called model class or hypothesis

space

8/11

Learning algorithm (1): Target values

e Sometimes values of target functions unknown: e.g., it's easy to
score boards that define the end of a game, but not obvious how
to score intermediate boards

» Player may win even though an intermediate move was bad
> Player may loose even though an intermediate move was good

e One simple approach uses target values

Virain (board) + V (successor(board))

> successor(board) = state of board after own and opponent’s move

> V is current approximation
— Current approximation used to determine estimation target

> Intuition: if V tends to be accurate towards the end of the game,
learn to make it more accurate earlier

P> Can be proven to converge to perfect scores under certain
conditions

9/11

Learning algorithm (2): Adjust model

Given a new game, we want to improve our model V' such that
it fits the training examples { (board, Viyain(board) } as good as
possible

Need to define best fit; e.g. small error

E = Z (Verain (board) — V (board))?
(board,Virain (board))

squared error loss function

And improve the model; e.g., gradient descent
» Suppose V is a linear combination of numerical board features
» Each feature j has an associated real weight w;

> Function V can be represented by a weight vector w
» In each step, gradient descent slightly adjust the weights into a
direction that reduces F, e.g.,

w4 w— eV, FE

Note: actual objective is not to minimize error on training data,
but on future data (generalization)

10/11

Summary

e Well-defined learning problem needs well-specified task,
performance metric, and source of training experience

e Many design choices exist

> Type of training experience

> Target function(s) to be learned

> Representation of the target function
» Learning algorithm

e Learning involves searching through a space of possible
hypotheses

e Set of assumptions made by learner is known as inductive bias

11/11

Machine Learning

01 — Introduction
Part 2: Types of Machine Learning

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Main types of machine learning

X Y
x| 2 4 8 || Good | 11
xo |4 8 16 || Good | yo
x3 |1 2 1 Bad | y3

e Supervised learning (predictive)
» Given inputs and right answers
» Learn mapping from inputs x to outputs y given a labeled set
N . :
D = { (x4, y:) };_, of input-output pairs
> Use mapping on new (unlabeled) inputs x
e Unsupervised learning (descriptive)
> Given only an unlabeled set D = { x; }1111 of inputs
» Find interesting patterns in the data, learn useful properties or
representations, learn data distribution, . ..
¢ Reinforcement learning
» Learn how to act or behave when occasional reward or punishment

signals are given
2/20

Supervised learning

Learn mapping from inputs & to outputs y given a training set
D = { (x4, y:) | of training examples.

Common setting

e Each training input x; is a D-dimensional vector of numbers
(features, attributes, covariates)
» Often stored in a N x D design matrix X
» Corresponding labels (targets) in N-dimensional vector y

e Each output (response variable) is

» Classification: y; is categorical
E.g., document classification, e-mail spam filtering, handwriting
recognition, face detection and recognition
P> Regression: y; is real-valued
E.g., predict stock market price, predict age of person
» Structured prediction: y; is more complex
E.g., sequences, trees, graphs

3/20

https://www.how-old.net/

Classification

e Two classes — binary classification (aka concept learning)
e More than two classes — multiclass classification

e Example may belong to multiple classes — multi-label classification

A

X
X
x)(

v

4/20

Example: Learn to recognize hand-writing

20M-40M-60M-80M-100M-120M-150N

o
w
@

| Label
ﬁgsszfs 124439}2.55 ‘(965?4‘! First
] 354617645932354965944‘//predicti0n
quz (,6 466 4 7 1]353 9 3\
4 8 8 2 213406?4{?1129 53?9&‘9 gseii?gt(ijon
7 5 7 1 1 4 7 8 1 5 0
VAN " = 6L
?27?5146161?4??58416569
35 errors —

0.35% errors on validation
30 out of the 35 errors have correct second prediction

Ciresan et al., 2011 + slides

5/20

http://people.idsia.ch/~juergen/ijcai2011.pdf
http://people.idsia.ch/~ciresan/data/SCRpresentation.pdf

Example: Learn to recognize objects

PIPE 0.94
Ceci nest pas une fufie.

—n

“l can see the cup on the table,” interrupted Diogenes, “but | can't

see the ‘cupness’”’.

“That’s because you have the eyes to see the cup,” said Plato,
“but”, tapping his head with his forefinger, “you don't have the
intellect with which to comprehend ‘cupness’.”

Teachings of Diogenes

Berkeley, - CV group

6/20

http://www.rebresearch.com/blog/diogenes-the-cynic/
https://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/

Semi-supervised learning

In semi-supervised learning (SSL), we are given a labeled
training set Dy, = { (z, ;) }1—, and an unlabeled training set

Dy ={=xy }5:1'

i)
o
1 0og ® ()
i oo® o0
o ;e & == e —
- ® , o AL _Iae
I ee %\ ./
1 ol 4
] et o0 - 09
o _00
1
1 o 0°®
Supervised Semi-supervised

Variants:
e Transductive learning: infer labels of D, only

e Inductive learning: learn mapping from x to y

Image from Wikipedia 7/20

https://en.wikipedia.org/wiki/Weak_supervision

Few-shot learning

k-shot learning means to learn from only k labeled examples per
category (= support set).

Support Set

Similarity Scores
Predicrog Class

@
Pelican
Puffin

Special case: one-shot learning (k = 1)

Kundu, 2022 8/20

https://blog.paperspace.com/few-shot-learning/

Zero-shot learning

Zero-shot learning means to learn without any labeled examples.
e How is this even possible?

e Generally, based on auxiliary information (e.g., descriptions)
Seen Class Semantic Attributes

Horse
Long face
ﬁ Model €m0 agpeic
Strong
._.‘ J.a’ l

Knowledge

Zebra
Horse-like
Strip

Black
Inference e

Unseen Class

e ChatGPT: “A new animal has been found in Mannheim. It's very
social. Suggest a name.” — [...] Sociabilis mannheimensis [...]
e Cf. survey of Wang et al., 2019

Sarojag, 2023 9/20

https://chat.openai.com/
https://dl.acm.org/doi/pdf/10.1145/3293318
https://www.analyticsvidhya.com/blog/2022/12/know-about-zero-shot-one-shot-and-few-shot-learning/

Regression

10p

-10

10

15 20

10/20

Example: Learn to detect objects, too

Example: Learn to read and translate

These are examples of structured prediction in NLP.

Mamed Entity Recognition:

[Drganizatian] [Bral MONEY]
1 Cnase Manhattan and its merger partner J.P_Morgan and Citibank, which was involved in moving about $1UU rn\llmn
for Raul Salinas de Gortari, brother of a former Mexican president, to banks in Switzerland, are also expected to
sign on

Basic dependencies:

iP

pnss conj—4 conj nsubjpass
-*i/ (cef e (il e el < ce) Vi) () o Wﬁi

PiER -y~ promp—

1 Chase Manhattan and its merger partner J.P. Morgan and C\t\bank‘ which was involved in
DeeplL
Translate from ENGLISH (detected) Translate into GERMAN v
What are hot topics in machine Was sind aktuelle Themen des
learning? maschinellen Lernens?

DeepL, Stanford CoreNLP

12/20

https://www.deepl.com/translator
https://stanfordnlp.github.io/CoreNLP/

Example: Learn to answer questions

(X

. —au

. $3 600 i p N
| = I
WATSON

£ 'S

A1y Robert De Niro 1 ; 84%
BN Chazz Palminteri 20%
Joe Pesci 14%

IBM Watson

http://www.ibm.com/smarterplanet/us/en/ibmwatson/

Unsupervised learning

Find “interesting patterns” in the data D = { «; }fil

e Density estimation: learn (properties of) data distribution

e Clustering: divide data into groups
» E.g., customer segmentation, community detection, sequence
analysis
e Unsupervised representation learning
» Learn “useful” representations or features of the data
> E.g., map (potentially complex) data points into a low-dimensional
latent space that retains (or reveals) the data's main “structure”
> Goal: easier to work with than original data (e.g., facilite learning,
reduce cost, improve interpretability, ...)
» Examples: latent variable models, autoencoders, self-supervised
pretraining, graph embeddings

e Market basket analysis, sequential pattern mining, social
network analysis, ...

14/20

Clustering

v

Example:

o Tromsoiton

Teguiaton
Loy
Ry
Wascutar endothelial
growth factors VEGF

Intracefiular signalling h
el S

i &

ast can
AKISTAT ~ Casein ki
anti-estrogen resistanca oo Casenkinasa

«t?
o le
oY
.- t
o e
.
P A
Callycscyokinesis &
Ny
Pecorisamal
proteing

Fortunato, 2010

Vod /
® glaminn g

Community detection

Endo/exonuciease:
.

EGF-like domains

.
==® Tubulin

16/20

https://doi.org/10.1016/j.physrep.2009.11.002

Dimensionality reduction

17/20

Example: Collaborative filtering

Serious

The Color Purple Amadeus

b
4

’

i j.
3

Lethal Weapon

B

Sense and
Geared Sensibility I Ocears 11 e ¥ Geared
toward < c e » toward
females & males
l'Dli'kh

@ . Dave
The Lion King Dumb and

a1 Dumber
The Princess Independence| | (@===¢.
Diaries Da)

A
Escapist

18/20

Koren et al., 2009.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5197422

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

Hinton and Salakhutdinov, 2006

Autoencoder—100

LSA-50D
o
e
sy
LSA-100 e
pLE S

18 7T 15 81 63 127 255 611 1028
Number of retrieved documents

Example: Representing documents

Eurapean Community
monetary/economic

Interbank markets

Disasters and
accidents

Leading economic"
indicators oty

Government
borrowings

Accounts/
eamings

19/20

https://www.cs.toronto.edu/~hinton/science.pdf

Example:
Learn to
paint

Gatys et al., 2015; DeepArt 20/20

https://arxiv.org/abs/1508.06576
https://deepart.io/

Machine Learning

01 — Introduction
Part 3: Basic Concepts

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Parametric vs. non-parametric models

e Machine learning often uses models that are parameterized

e E.g., in supervised learning
» During training, we use examples and labels to learn parameter
values
» During prediction, we use those values to infer the label

e In a parametric model, the number of parameters is fixed

> Ranging from a few parameters (e.g., linear/logistic regression on
low-dimensional data) to billions of parameters (e.g., large
language models)

» Esp. when few: Can be faster to use, but may make stronger
assumptions about nature of data

e In a non-parametric model, the number of parameters grows
with the amount of training data

> E.g., k-nearest neighbor classifier
> More flexible, but can be computationally intractable

2/12

K-nearest neighbor classifier (KNN)

e Simple, non-parametric classifier

e Uses statistics about neighbors Ni(x, 2), i.e., the K training

points closest to classify test input x:

1
ply=clz.2,K) =2 > Iy=c),
iENK($,@)

where I(e) is the indicator function

I(e) = {1 if e is true

0 otherwise

e Discussion
Makes probabilistic predictions
Example of memory-based learning

>
>
> Key assumption: close points have similar labels
>

Requires a suitable distance function and sufficient data

3/12

Example: KNN

ply=1/dataK=10)

oF

ply=2ldataK=10)

100, 0.8

Figure 1.15 (a) Some synthetic 3-class training data in 2d. (b) Probability of class 1 for KNN with K = 10.
(c) Probability of class 2. (d) MAP estimate of class label. Figure generated by knnClassifyDemo.

4/12

Curse of dimensionality

Methods such as AKNN may not work well with high-dimensional

inputs — curse of dimensionality

Edge length of cube.
o
on

(a)

0.2

0.4 0.8 0.8 1
Fraction of data in neighborhood

(b)

Figure 116 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger
unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a
function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by

curseDimensionality.

5/12

Linear regression

e Main way to combat curse of dimensionality is to make
assumptions, e.g., by using a parametric model

e Linear regression is a parametric regression model assuming
that

D
y(@) =Y wiz;+e
j=1

where the { w; }le are real-valued parameters and ¢ is the
residual error (on which further assumptions are being placed)

e We can also replace « by a set of features { ¢;(x) } and assume

DI
y(a) =) wid;(x) +e
j=1

» Known as basis function expansion

> Example: polynomial regression ¢;(z) =27~ for j=1,...,D’

6/12

Overfitting

If we use highly flexible models, we need to be careful that we do

not overfit the training data.

dogres 14 dogroe 20

Figure 1.18 Polynomial of degrees 14 and 20 fit by least squares to 21 data points. Figure generated by
linregPolyVsDegree.

predicted label, K=5

predicted label, K=1

7/12

Model selection (1)

e Which model class? — representational capacity
> E.g., degree of polynomials for polynomial regression
> E.g., value of K for KNN classifiers

Which learning algorithm? — effective capacity
Model selection: How to find the most suitable model?
Natural approach: minimize misclassification rate

1 N
err(f,D) = N Zﬂ(f(wz) # Yi)
i=1

Often does not work: e.g., NN obtains best results with £ =1

po @

misclassification rate

20 40 GKO 80 100 120 8 / 12

Model selection (2)

e We care about generalization error = expected
misclassification rate over future data

e Can be approximated by computing misclassification rate on a
sufficiently large, independent test set

0.35

' ' ' ' ' Dtrain
*test
0.3r B

misclassification rate
o e
= o)
o N &

e
s

o
o
&

9 26 4‘0 Gb éO 160 120
Overfitting Underfitting
e Problems
P Usually we do not have access to a test set
» Golden rule of machine learning: test set should not influence
the learning process in any way — cannot be used for model

selection
9/12

Model selection (3)

e We have multiple goals
» Learn parameters
» Perform model selection
» Estimate generalization error

e Idea: partition the available data into

> A part used for training the model (training set, e.g., 70%)
> A part used for model selection (validation set, e.g., 20%)
> A part used for estimating generalization error (test set, e.g., 10%)

‘ Original set ‘
‘ Training set ‘ Test set ‘
‘ Training set I Validation set ‘ Test set ‘
Training, tuning, and
evaluation P
[A
Machine learning\, 4} }
\ J
algorithm g\._//)

Predictive Model [
) Final performance estimate

e Problematic if little data available

10/12

Model selection (4)

e Improvement: /K -fold cross validation

P Split the training set into K folds
> Keep test set separate (test set not shown below)

e Use for model selection

» For k =1...K, train on all folds but kth, validate on kth
> Average error over all folds to estimate model performance; then
refit best model to entire data

e For K = N, called leave-one-out cross validation
e More in “IE500 Data Mining I"

11/12

No free lunch theorem

All models are wrong, but some models are useful.
— George Box

e There is no single best model that works optimally for all kinds
of datasets

> A set of assumptions suitable for one domain can be poor for
another

e Consequences

> Many different models
> Many different learning algorithms

e Machine learning studies combination of data, models, and
algorithms

Wolpert, 1996 12/12

http://web.archive.org/web/20140111060917/http://engr.case.edu/ray_soumya/eecs440_fall13/lack_of_a_priori_distinctions_wolpert.pdf

Machine Learning

02 — Inference and Decision
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Outline (Inference and Decision)

1. Probability Refresher

2. Generative & Discriminative Models
3.
4

. Decision

Parameter Estimation

2/4

Lessons learned

e Probability refresher (in ILIAS)
> Events, random variables, discrete/continuous, sum rule, product
rule, conditional probability, Bayes' theorem, independence,
expected values . ..
» Common distributions
> Use of shortcut notation in ML

Three approaches: generative models, discriminative models,
discriminative functions

Bayesian methods model degree of belief about parameter choices
» From prior belief to posterior belief through data and model

» Posterior likelihood x prior

» Predictions obtained by marginalizing out parameters

Parameter estimation

» Empirical and regularized risk minimization
» Maximum likelihood estimation (MLE)

» Maximum a posteriori (MAP) estimation
> Bayesian inference via posterior predictive

Bayes estimator for decisions 3/4

Suggested reading

e Murphy, Ch. 2.1-2.3
e Murphy, Ch. 4.1-4.3
e Murhpy, Ch. 5.1.1, 5.1.2,5.1.5
e Goodfellow et al., Ch. 5.4-5.6

More in
e Remaining parts of Murphy, Ch. 2/4/5

4/4

Machine Learning

02 — Inference and Decision
Part 1: Probability Refresher

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Probability Refresher

e Here we only refresh some important concepts; more details in
» Murphy, Ch. 2, Probability
» Goodfellow et al., Ch. 3: Probability and Information Theory
» Supplementary material “A - Probability Refresher” (on ILIAS)
> Supplementary Jupyter notebook “distributions” (on ILIAS)

e We will also introduce additional background throughout the
course

2/8

Notation

We will work with many random variables.
e We write X ~ N (0,1) to say that r.v. X has the specified distr.

We write p(X = z) to refer to the pmf (when X discrete) or
pdf (continuous)

We often drop the r.v. from our notation (when clear from text)
> Write p(z) instead of p(X =) (marginal distribution)

> Write p(z,y) instead of p(X = z,Y = y) (joint distribution)

> Write p(z]y) instead of p(X = z|Y = y) (conditional distribution)

p(x) can refer to a probability/density (x fixed) or a distribution
(x variable)

We write X L Y if X and Y are independent

We write X 1 Y|Z if X and Y are conditionally independent
given Z

3/8

Product rule

e Recall conditional probability

if p(y) >0
e Product rule is

p(z,y) = p(zly)p(y)

e Relates joint distribution p(x,y), conditional distribution p(x|y)
and marginal distribution p(y)

e Generalizes to chain rule

p(r1:0) = p(x1)p(w2|21)p(23]| 21, 22) - - - P(TR|T10—1)

4/8

Sum rule
e Sum rule (law of total probability)

p(r) = ZP(%?J) (y discrete r.v.)

p(z) = /p(:v, y) dy (y continuous r.v.)

> Determine the marginal distribution p(z) from the joint

distribution p(z,y)
» When we apply the sum rule in this way, we say that we

marginalize out y
Example (two dependent coins)
p(X,Y)| H T
X=H |01l 0.2
X=T]03 04

p(X=H)=p(X=H,Y=H)+p(X=H,Y=T)=0.3

5/8

Bayes' rule

e From the product rule, we can obtain Bayes’ rule (Bayes’
theorem)

p(y)p(ry)

€Tr) =
p(ylz) (@)
e Combined with the sum rule, we further obtain

~ p(y)p(zly)
p(y’(L’) - nyp(fﬂa y/)

e Many applications, foundation of Bayesian inference

6/8

Example: Medical diagnosis

A mammogram is a test for breast cancer

Suppose you are a woman in your 40s

If you have cancer, test positive (7' = 1) with probability 80%
If you don't have cancer, test positive with prob. 10%

About 0.4% of women in their 40s have breast cancer (B = 1)

How likely is it that you have breast cancer if the test is positive?

p(B=1p(T=1/B=1)
p(T=1)

_ 0.004 - 0.8

~0.004-0.8+0.996 x 0.1

=0.031

p(B=1T=1) =

7/8

Important properties

p(AUB) =p(A) +p(B) —p(AN B) (inclusion-exclusion)
p(4) =1-p(4)
If B2 A, p(B)=p(A)+pB\A)=p(4)

p(X,Y) = p(Y|X)p(X) (product rule)
p(X) = Zp(X, y) (sum rule, y discrete)

y
p(X) = /p(X,y) dy (sum rule, y continuous)

y
p(X[Y) p(Yp)((})/];(X) (Bayes theorem)

ElaX +b] =aE[X]+b (linearity of expectation)

Ey[Ex[X|Y]] = E[X] (law of total expectation)

8/8

Machine Learning

02 — Inference and Decision
Part 2: Generative & Discriminative Models

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Inference and decision

e In classification, we seek a classifier that outputs an estimate 4
of the true label y for input x

e Training = determine a suitable classifier
> E.g., in supervised learning, based on a training set
N
D = {(x;,yi) };_, of labeled examples
» Three main approaches: generative, discriminative, function

e Inference = given a new input Xpew, reason about output Ypew

> Often: determine posterior class probabilities p(ynew|®Tnew)
P> Depending on model, can be trivial or very hard

e Decision = predict an output Jnew
> E.g., Bayes classifier: {jnew = argmax, p(Ynew = ¢|Tnew)
> One may also refrain from a decision (reject option)
> Decision is not always needed/desired
(e.g., when composing multiple models)

2/6

Approaches (1)

e Discriminative functions
» Find a discriminative function f() that maps each input « to a
class label g
» Probabilities play no role
> Inference and decision merged
> E.g., k-Nearest Neighbor with majority, (certain) feedforward NNs

e Discriminative models
> Model the posterior class probabilities p(y|x) directly
» But: Inputs are not modeled
> E.g., logistic regression, k-Nearest Neighbor with probabilities,
(other) feedforward NNs

3/6

Approaches (2)

Generative models

e Model joint distribution p(x,y) of inputs and outputs; often:

» Model class-conditional densities p(x|y) for each class y
individually

» Model prior class probabilities p(y)

> p(x,y) = p(zly)p(y)

e For inference, use Bayes' theorem:

o — Py)p(y)

e Called generative models because we can use the model to
generate data

» E.g., given an output, we can “generate” suitable inputs

e Examples: Naive Bayes, LDA/QDA, RBMs, GANs

4/6

Discussion (1)

e Summary

Model | Generative Discriminative Function
Learns | p(x,y) p(ylx) f(z)

e Discriminative functions

>
>
>
>
>

Combine inference and decision

No access to posterior class membership probabilities
Easy to use

But also risky to use since unsure how accurate result is
Hard to combine models

e Discriminative models

>
>

»

Avoids modeling the input, which can be complex

Key advantage: often allows to use a richer feature set (because
we do not need to model their distribution) or less stringent
assumptions

— May lead to better performance

Addresses the above disadvantages of discriminative functions

5/6

Discussion (2)

e Generative models
» Models inputs and outputs jointly — generally demanding
» Some models make strong assumptions on data distribution
» May need less training data / be more accurate than
discriminative models if assumptions indeed hold

> Probabilities p(y|z) may not be well-calibrated when assumptions
do not hold (e.g., Naive Bayes may be over-confident)

> Useful for unsupervised learning (then: p(x) only) or
semi-supervised learning

» Can handle missing data in a principled way

> Also helpful for generating complex data (e.g., text/images),
outlier detection, representation learning, ...

6/6

Machine Learning

02 — Inference and Decision
Part 3: Parameter Estimation

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-2

Parameter estimation

e Suppose we are given a model class with parameters 6
> Generative: p(x,y|0)
> Discriminative: p(y|x,)
> Discriminative function: f(x,8)

e And some training data D = { (@, v:) }\,

e Parameter estimation = estimate the value of 8 using D
» Also called training or learning
» Should fit the training data well
» Should generalize well to new data (more importantly)
> Point estimate 6

e We may or may not be interested in 8 itself
» Qur prime goal is to make predictions
» To do so, we need some information about 0, but not necessarily a
point estimate
> Instead, can use a posterior p(60|D)

2/21

What do probabilities mean?

e Frequentist interpretation
> Probability of an event = relative frequency when repeated often
» Coin, n trials, ny observed heads

1
limn—:f ﬁp(H):i

> Frequentist statistics: unknown parameters often assumed to have
fixed but unknown value 8* — inappropriate to treat as random
variable under frequentist interpretation

> Estimators analyzed w.r.t. data distribution p*, which is
determined by 0*

e Bayesian interpretation
» Probability of an event = degree of belief that event holds
» Degree of belief depends on background knowledge and
assumptions and is influenced by seeing data
> Bayesian statistics: probability distributions associated with
unknown parameters
> Analysis w.r.t. posterior probabilities p(8|D)

e Both interpretations rely on the rules of probability

3/21

Properties of estimators (1)

e We first recap basic properties of (parameter) estimators
focusing on a single parameter §# € R
e Consider a frequentist setting

» True parameter 0", corresponding data distribution p*
> Training data D is given by N iid. samples from p*
> Estimator 0, computes pomt estimate (D)

> E.g., sample mean 4(D) = L3 @ for D={ua; }ivzl

e Estimator 6 has bias
bias[d] %< E[6 — 6*]

> Expectation is w.r.t. the N samples of the data distribution p*:
i.e., Epp«[0(D) — 6]

> If bias[f] = 0, the estimator is unbiased (correct in expectation),

else it is biased

4/21

Properties of estimators (2)

e Estimator 6 has variance

A

var[f] = E[(é — E[é])Q]

e Estimator § has mean squared error (MSE)

mseld] = E[(— 6%)?]

e Bias-variance decomposition states that

mse[d] = bias[d]? + var[d]

e Gives rise to the bias-variance tradeoff, roughly:

>
>
>
>
>
>

Simple models — high bias, low variance

Complex models — low bias, high variance

Variance reduces with amount of available data

Bias may or may not reduce

Less data, simpler model (since otherwise variance high)
More data, more complex models (since otherwise bias high)

5/21

Bias and variance (illustration)

Low High
Variance Variance X

B X,

)2(X
.’ ’X
Low X X
Bias X

X

High
Bias

Top left: underfitting; bottom right: overfitting

Domingos, 2012 6/21

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Bias-variance tradeoff (example)

e Task: predict mean of Gaussian sampled from N (6* = 1,02)
e Blue = sample mean: low bias, high variance
e Red = down-scaled sample mean (by N/(N + 1)):

larger bias, less variance, lower MSE

sampling distribution, truth = 1.0, prior =0.0,n =5 MSE of postmean / MSE of MLE

—O— postMean0 —O— postMean0
—— postMeant 12 —— postMean1
—¥— postMean2 : —¥— postMean2

postMean3 —P— postMean3
1.1

relative MSE

0.5

0
sample size

(a) (b)

Figure 6.4 Left: Sampling distribution of the MAP estimate with different prior strengths xo. (The MLE
corresponds to xo = 0.) Right: MSE relative to that of the MLE versus sample size. Based on Figure 5.6 of
(Hoff 2009). Figure generated by samplingDistGaussShrinkage.

7/21

Likelihood

e Recall: we assumed that data distribution is p*(D) = p(D|6%)
» p determined by assumed model class
(e.g., independent coin flips with success probability 6*)
> 0* fixed, D varies — p(-|0*) is probability distribution
e Likelihood of observed data
def {p(D[&) for generative models

L(8|D) = o
p(y|X,0) for discriminative models

> How likely is dataset D if 6 were the true parameter?

> Intuitively: the larger the likelihood, the more “consistent” the
data is with parameter choice

> Now 6 varies, D fixed — L(:|D) not a probability distribution

e Example: Coin, 4 iid trials, ny = 4 observed heads (= data D)
» Unknown parameter: 6* = true "probability” of heads

,C(Q = 0|TLH = 4) =0

L£(0 = 0.5ny = 4) = 0.0625

16:1 likelihood ratio in favor of 6 = 1 vs. # = 0.5

vvyvyy

8/21

Maximum likelihood estimation (MLE)

e Maximum likelihood estimation (MLE) chooses the value 6
that maximizes the (conditional) likelihood of the data

OvLe = argmax £(6|D)
0
» Probabilistic models only

e Good asymptotic properties (i.e., when N — c0); under mild
conditions:

> Consistent: converges to true value 6* (in probability)
> Efficient: no other estimator has lower asymptotic mean squared error
> Asymptotically normally distributed

e In practice, we do not have N = ¢
» Tendency to overfit training data

9/21

Empirical risk minimization (1)

e In supervised learning, we may not be interested in the
parameters itself, but rather in the corresponding predictions

e Suppose we are given a non-negative, real-valued loss function
L(y,y) that measures how different prediction 3 is from true
answer ¥y
> E.g., the 0-1 loss L(y,y) = L(y # §) for classification tasks
» E.g., the squared loss L(§,y) = (§ — y)? for regression tasks

e Assume that the data follows a distribution p*(x,y)

e The risk R(h) associated with a hypothesis h is the expected
loss over the data distribution

R(D) = Epypr L@ 0)) = [[Lih(@).) 9" (2.0) da dy

» Misclassification rate for 0-1 loss
> Mean squared error (MSE) for squared loss
> Ideally, we want to choose h such that risk is minimized
10/21

Empirical risk minimization (2)

e But: risk cannot be computed since true data distribution p* is
unknown

e The empirical risk is the average loss on the training data
N
D ={(zi, 1) }i2

Remp(h) = % Z L(h(x:), i),

which we can compute
e Empirical risk minimization chooses the estimator that
minimizes Remp(h)

h = argmin Remp(h)
heH

> As we had discussed, typically results in overfitting
» Can be a difficult optimization problem

11/21

Regularized risk minimization

e Regularized risk minimization tries to avoid overfitting to the
training data by adding a penalty term

R:emp(h) = Remp(h) + /\C(h)

> (C'(h) measures the complexity of the model

P>)\ controls strength of penalty

> Ideally, A\C'(h) close to generalization gap R(h) — Remp(h)

» Can be used for discriminative functions and probabilistic models

o Key issues
P> How to measure model complexity?
» E.g., {5 regularization
> How to pick \?
» E.g., cross-validation

e We will revisit this during the course

12/21

Excursion: Learning theory (1)

e Learning theory uses formal methods to study learning tasks
and learning algorithms

e E.g., consider a binary classification problem

| g

>
>
>

Data distribution p* such that each data point () is associated

with a single class (y)

No noise
Hypothesis space is finite (|H| < o0)
H contains a true hypothesis h (s.t. R(h) = 0)

e Version space = set of hypotheses consistent with training data

>

vVvVvyvyy

Consistent means here that all predictions are equal to true label
Implies that empirical risk Remp is zero

Can still make errors on unseen data

In our example setting, version space always non-empty

If only one hypothesis left in version space, it's the right one

But what if there are many? We do not know which one to pick...

13/21

Excursion: Learning theory (2)

e Insight: with sufficient training data, version space unlikely to
contain bad hypotheses

e Can show that

1 1
> —

suffice to ensure that ERM achieves a low generalization error
(< €) with high probability (1 — §)

e Generally, things are more complicated
> Noise
> Infinite hypothesis spaces (e.g., a single real parameter)
» Complex hypothesis spaces
> Potentially high computational cost (e.g., not polynomial)
> Key concepts: PAC learning, VC dimension

14 /21

Prior and posterior

e Now let’s look at Bayesian methods, using iid. coin flips as
example

e Prior belief: p(6)
> Incorporates prior knowledge
> E.g., coin is likely to be fair, coin is likely to show heads, ...
> Different priors may lead to different results — subjective aspect,
controversial (but priors can be very useful)
» Can be uninformative ("nothing” is known, also controversial)

e Posterior belief: p(0|D)

> “Updated” belief after seeing the data
» E.g., do you think the coin is fair after seeing 10 heads and 2 tails?
» Depends on prior and likelihood via Bayes' theorem

p(9]D) = ZW x p(D|O)p(6)

» In words: posterior likelihood x prior

15/21

Example: Bayesian concept learning

e Numbers game
» | envision aset AC {1,...,100}

> | give you some numbers from A
» What is set A?

e Need further assumptions and
sufficient data
e Figure on the right shows
> A hypothesis space of “simple”
rules (6 = correct rule)
> A prior that gives more weight to
simpler explanations (Occam’s
razor)
» The likelihood of {16 }, assuming
data is randomly sampled from A
» The posterior, after seeing { 16 }

endsin 1
endsin2
endsin3
endsin4
endsin5
endsin6
endsin7
endsing
endsing

powers of)

powers of 3

powers of 4|

powers of 5|

powers of 2 + (3
powers of 2 - {32}

data=16

0

L
0.1
prior

post

16 /21

Example: Bayesian concept learning

data=16 8 2 64
T

e Numbers game ‘
» | envisionaset AC {1,...,100} o
» | give you some numbers from A mrs ol T |
. mult of 4
> What is set A7 mutors
. mult of 7 251 25 T
e Need further assumptions and oo
. i mult of 10|
sufficient data il]
endsin 3
e Figure on the right shows e
. 0. " endsin 6
> A hypothesis space of “simple dsin7 e e 1
rules (6 = correct rule) panete 12 — —
. . . owers of 3]
> A prior that gives more weight to povrt o 1]
X i , powers of 5
simpler explanations (Occam’s v
owers of 8]
razor) powers s o 1s]
e
» The likelihood of {16,8,2,64 }, sovorsof 2+ 00
assuming data is randomly e
prior lik %107 post.

sampled from A
» The posterior, after seeing
{16,8,2,64}

16/21

Maximum a posteriori estimation (MAP)

e The maximum a posteriori (MAP) estimate Omap is the
point estimate that maximizes the posterior

Ovap = argmax p(0|D) = argmax L(0|D)p(6)
0 0

e Think: most probable parameter choice given data and prior
e Prior can help to avoid overfitting (see example of slide 16)

e We will see: MLE / MAP estimates sometimes correspond to
certain empirical / regularized risk minimization formulations

17/21

Exampl

e: n iid coin flips,

Priors

=10, ny =1 —)éMLE =0.1

p(81ny)

ny heads

n=10,nq =5 — Oy = 0.5

p(@ 1)

o

n =100, ny = 50 — Oy = 0.5

p(81ny)

18/21

Bayesian inference

e The fully Bayesian approach is to avoid parameter estimation all
together

e Use posterior predictive distribution

P(Dnew|D) = /p(DnewW)P(mD) dog
> E.g., prediction of outcome of n,e, additional trials
> Intuitively, combines predictions of every hypothesis (6) weighted
by its posterior probability (= marginalize out 6)
> posterior predictive = fe new-data likelihood x posterior df

o Likewise, for discriminative models

D(Ynen| D> X new) = / D(Ynew|8: X new)p(6D) d6

19/21

Example: Bayesian linear regression

plugin approximation (MLE) Posterior predictive (known variance)
w
w
w
w
w0
w
)
(a) (b)
functions sampled from plugin approximation to posterior functions sampled from posterior
p
w
P
o
w
w
w
o w
.5 °
w
)
° o
(c) (d)

Figure 7.12 (a) Plug-in approximation to predictive density (we plug in the MLE of the parameters). (b)
Posterior predictive density, obtained by integrating out the parameters. Black curve is posterior mean,
error bars are 2 standard deviations of the posterior predictive density. (c) 10 samples from the plugin
approximation to posterior predictive. (d) 10 samples from the posterior predictive. Figure generated by
linregPostPredDemo. 20/21

Discussion

e Empirical risk minimization, regularized risk minimization, MLE,

and MAP all obtain point estimates

» Empirical risk minimization and MLE prone to overfitting

» Regularized risk minimization uses a model complexity penalty to
avoid overfitting with too-complex models

> MAP estimation uses prior to steer away from unlikely models
(e.g., a prior may have low density for complex models)

» Estimates obtained by solving an optimization problem

e A fully Bayesian approach weights every hypothesis by its
posterior probability

» Uncertainty in parameter estimates taken into account
> Estimates obtained by performing probabilistic inference

21/21

Machine Learning

02 — Inference and Decision
Part 4: Decision

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Bayesian decision theory

e Modeling decisions

» Known data: z € X

» Unknown data: y € Y

> A set A of actions

» Goal: pick a suitable action a € A

e Example: classification
» x: training set + new example

> y: label of new example
> Action a: predict class § = a

e We aim to derive a policy § : X — A to make a decision

e What is the optimal policy?

2/4

Bayes estimator
e Consider an arbitrary but fixed x

e Loss function
» Suppose that we can quantify how good an action a is if we know y
> Via a loss function L(a,y)
> Example: classification, L(a,y) = I(a # y) (0-1 loss)

e Since we do not know ¥, we consider the expected loss

ZL y, a)p(y|e),

> Bayesian approach: expectation w.r.t. data seen so far
> le., p(y|x) is the posterior predictive
e The optimal policy minimizes the expected loss

i(x) = ar;geriin E[L(y,a)]

» (Called the Bayes estimator
3/4

Examples

o Classification with misclassification rate (0-1 loss)
» Bayes estimator: pick most probable class

§ = argmax p(y|x)
y

» Called Bayes optimal classifier

e Regression with MSE (/5 loss)

> Bayes estimator: pick posterior mean
§ = Elyle] = /yp(y\w) dy
e Regression with mean absolute error (¢1 loss)

» Bayes estimator: pick posterior median
» l.e,. pick g such that p(y < g|x) = p(y > g|x) = 0.5

4/4

Machine Learning

03 — Generative Models for Discrete Data
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Recap: Generative models

e Model joint distribution p(x,y) of inputs and outputs; often:

> Model class-conditional densities p(x|y) for each class y
individually

> Model prior class probabilities p(y)

> p(z,y) = p(aly)p(y)

e For inference, use Bayes' theorem:

o = Ply)p(y)

e Called generative models because we can use the model to
generate data

» E.g., given an output, we can “generate” suitable inputs

e Examples: Naive Bayes, LDA/QDA, RBMs, GANs

2/8

Let's count

Here is some data (D):

Age Position | State
young student | poor

old student | poor

old CEO rich

e Generative models estimate p(y) and p(x|y)
e A simple way: count to obtain relative frequencies (=MLE)

State ‘ p(State)

poor 2/3
rich | 1/3
p(x|poor) ‘ young old p(x|rich) ‘ young old
student 1/2 1/2 student 0 0
CEO 0 0 CEO 0 1

3/8

Let's generate

e The joint distribution is estimated as

p(a, poor) ‘ young old

p(a, rich) ‘ young old

student 1/3 1/3 student 0 0
CEO 0 0 CEO 0 1/3
e Sample from the various estimated distributions

From p(x|poor) From p(x|rich) From p(x,y)

young student old CEO old student poor

young student old CEO old CEO rich
old student old CEO young student poor
old student old CEO young student poor

e Sampling is sometimes useful (e.g., to understand or debug a

model)

Let's predict

Using Bayes theorem, we obtain estimates

p(poor|x) ‘ young old p(rich|x) ‘ young old

student 1 1 student 0 0

CEO ? 0 CEO ? 1
Problems

e Overfitting: students can't be rich
e Zero-count problem: cannot predict for a young CEO since we
have never seen one
e Complexity of model
» D binary features, C' classes
— O(C2P) non-redundant parameters (probability table)
> Infeasible to even store for moderately large D
e Possible solutions: use more data, use a prior, make additional
assumptions, use unlabeled data (semi-supervised learning), ...

5/8

Outline (Generative Models for Discrete Data)

1. The Beta-Binomial Model
2. The Dirichlet-Multinomial Model
3. Naive Bayes

Also: worked out frequentist/Bayesian approaches to parameter
estimation and prediction

6/8

Lessons learned

e Beta-binomial model for independent coin flips

e Dirichlet-multinomial model is generalization of Beta-binomial
model to K > 2 categories

e In generative models, it is typically infeasible to model p(x|y)
without additional assumptions

e Naive Bayes assumption: features cond. independent given y
> Naive Bayes classifiers exploit this assumption
» Prior class distribution: model fitting = compute histograms
(or background knowledge)
» Categorical features: model fitting = compute histograms

e Overfitting/zero-count problem may arise

» Can be addressed by adding a prior
» For categorical distributions, Dirichlet-multinomial model suitable
(e.g., add-one smoothing)

7/8

Suggested reading

e Murphy, Ch. 4.6, Bayesian Statistics
e Murphy, Ch. 9.3, Naive Bayes Classifiers

8/8

Machine Learning

03 — Generative Models for Discrete Data
Part 1: The Beta-Binomial Model

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Beta-binomial model

e Coin flips
> Assume we flip a coin n times and observe the outcome
» What can you say about the coin?
> E.g., is it fair? (parameter estimation/inference)
> E.g., what will the next coin flip(s) show? (prediction)

e Beta-binomal model is a simple generative model for coin flips
» Coin flips assumed i.i.d. with (unknown) success probability 6
» Then suffices to record number ny of heads and nt = n — ny tails
(sufficient statistics)
» Beta prior

e Why study this model?

> Fully worked out example of Bayesian inference
— reinforce what we just learned
» Forms basis of other probabilistic models

2/15

Recap: The binomial distribution (1)

e Pick a coin with probability of heads 6, toss it n times

> Let {x1,...,2, } be the outcome (0=tail, 1=head)

> Letnyg =) ,x; € {0,...,n} be number of heads (random variable)
e ny follows binomial distribution Bin(n, #) with probability

mass function

n

Bin(nu|n,0) = ()9”'*(1 — gy

ny

e Expected value: 6n 0=0.5n=10

e ny is a sufficient statistics, i.e., there is
no additional information about the value By
of 6 in the data (order does not matter) .
> Observed data is {x1,...,2, } i
» But we use D = ny in what follows 3

p(ny16)

0 1 2 3 4 5 6 7 8 9 1
N /15

Recap: The binomial distribution (2)

n = 100

p(ns16)

p(ni 1 6)

=05

s
8-
s
w0
S &
4
g S
o
&
9 °
© —
0
®
: o
£
2 =4
° o
S
S
w
S+ 0
3 8
s
3 s
&4 S
3 s
12 3 456 7 8 910 12 3 456 7 8 910
ny ny
@
© S
&4 s
3
o
84
= °
3 2
S £
= 3
s
&
84
S g4
s
° o
84 8
3 3
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Ny

Ny

4/15

Likelihood and posterior

e Recall:
p(0|D) o< p(D|0) p(0)
posterior likelihood prior

» For the beta-binomal model: D = ny and 6 € [0, 1] is the success
probability
e Likelihood of seeing ny heads (= the data) and ny tails after n
i.i.d. trials (= the model)

p(nnld) = Bin(ny|n,) = 7Z_| 0" (1 —0)"T

e Posterior: If we saw ny heads, what is our belief about 67

p(Blny) = ’W x p(nn|9)p(0)

> p(nn) fo (nu|0)p(0) dO is a normalizing constant
e Posterior depends on prior p(); how do we express our prior
belief?

5/15

Beta distribution (prior)

e Let's pick the Beta(a, J) distr. with hyperparameters «, (3
p(0) = Beta(f]a,) = 0“1 (1 — 0)°~'/B(«, B)

©7] a=1, b=1
a=0.5, b=0.5
a=10, b=10
a=5, b=1
a=2, b=5

p(6)
3

0.0 0.2 0.4 0.6 0.8 1.0
0

e We will see: o« — 1 and 8 — 1 can be interpreted as number of
“prior” successes and failures (pseudo-counts)
6/15

Beta distribution (properties)

Notation: X ~ Beta(a, 3)
Parameters

> Shape o € R > 0 (prior successes)
» Shape 3 € R > 0 (prior failures)

Support: X € [0,1]

e Mean
«
FX| =
[X] a—+p
e Mode
a—1

atf—2 for a, 3 > 1 (then unimodal)

7/15

Beta function

e The Beta function B(x,y) arises as the normalizing constant
of the Beta distribution
e Selected properties for real z,y > 0

1
B($,y) - /0 tmil(l — t)yfl dt

B(l’,y) = B(y,az)

A
B +17 :B.’E7
(z +1,y) = B(y)x+y
B) +]- :B s
(z,y) (z y)ery
(x — Dy —1)! .
b - for int > 1
(2,9) CET— or integers 7.y >

n 1
N for int > k>0
<> (n+)Bn—k+Lk+1) o een=ts

8/15

Beta distribution (posterior)

e The posterior distribution is another Beta distribution
p(Bny) oc gHFTAL(1 — gyrTHA-L
p(0lny) = Beta(f|ny + a,nt + 3)
After 10 flips with 5 heads

©7 a=1, b=1
a=0.5, b=0.5
a=10, b=10
a=5, b=1
a=2, b=5

p(8] n)

0.0 0.2 0.4 06 0.8 10 0/15

10, ny =5

n=>0 n =

Examples

(Hulg)d

=1
=5

a=2, b

— a=L,b;

(Hulo)d

1.0

0.8

0.6

0.4

0.2

0.0

50

n = 100, ny

=1

=10, ny

n

10/15

(Hulg)d

(Hulg)d

Discussion

e Prior and the posterior were from same family of distributions
» Such priors are called conjugate priors for the likelihood
> Convenient to use, often “natural” interpretation

e We made independence assumptions

> E.g., all coin flips conditionally independent given 6
» Can be represented using graphical models

®

i=1.n

Standard notation Plate notation

11/15

Posterior predictive distribution (1)

e Suppose we do another coin flip 2, 1. How likely is it to show
heads based on what we learned?

» More than one flip — exercise

e Recall:
p(DneW’D) —/ p(Dnew|9) p(Q‘D) dea
——— —_—— ——
posterior predictive new-data likelihood posterior

where D = ny and Dpew = Tpt1

e |l.e., we seek posterior predictive

ponss [1) = [Do O3p(Olnn) do
> We know the /ike/ihoeod p(xn41 = 1|0) = 6, but we don't know 6
» We know the posterior p(0|ny) = Beta(0|ny + a,nr +)
e To put things together, we start with the joint distribution
p(zn+1 = H, 0|ny) and then marginalize out 0

12/15

Posterior predictive distribution (2)

e Observe that x,4; L ny | 6 under the independent coin flips
assumption

o Implies: p(rs1 = 10, 7H) = planss = 1/6) = 0
e Using the product rule, we obtain

p(znt1 = 1,0|nn)

= P(@ns1 = 110, n0)p(0]nn)

= p(zns1 = 1[0)p(6]nn)

= 0 Beta(0|ng + a,nr + B)
grute(] — gyrTHh-t

" B(nn+a,nt +B)

e This has a similar form as the posterior, where we “see” one
head more

13/15

Posterior predictive distribution (2)

e Joint distribution: p(xy,+1 = 1,0|ny) = 0 Beta(f|nyg + o, nr + 3)
e To obtain the posterior predictive p(z,+1 = 1|nn), we
marginalize out 6 via sum rule

1
P(Ener = Llnn) = / P(ns1 = 1,6m) d9
0

1
= [g1 — o)1 40/B(nk + o, nT + B)
0
- Bny+a+1,np+ 3)
N B(ny + a,nt + p)
- 13(71H + C¥,7l]“+’/3) nH + «
- Bnu+a,nt+B)n+a+p
_ MH +
Cn4a+p

e Here we used the fact that B(z + 1,y) = B(x,y)z/(z + y)

14/15

Posterior predictive distribution (3)

e Let's recap
» We started with a prior and likelihood to obtain the posterior
> We then determined the distribution of new data given the
parameters (= likelihood)
> We put all together to obtain the posterior predictive
distribution

ny +«)

Pl o) = Ber (| 2055

» Simple form (here), interpretable

e posterior predictive = fe new-data likelihood x posterior df
> Assumes: new data conditionally independent of old data given
parameters
e In ML, we use the posterior predictive to

> Perform predictions
» Evaluate models
» Find outliers

15/15

Machine Learning

03 — Generative Models for Discrete Data
Part 2: The Dirichlet-Multinomial Model

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Recall: Let's predict

Using Bayes theorem, we obtain estimates

p(poor|x) ‘ young old p(rich|x) ‘ young old

student 1 1 student 0 0

CEO ? 0 CEO ? 1
Problems

e Overfitting: students can't be rich

e Zero-count problem: cannot predict for a young CEO since we
have never seen one

Coming up
Adress these problems using a suitable prior
— the Dirichlet distribution (=conjugate prior)

2/14

The categorical distribution

e Consider a random variable X ~ Cat(@) over {1,..., K}
» K possible values
> Probabilities of categories given by 8 = (6, 6 --- QK)T

> 6 is probability vector (non-negative, sums to one)
> le, Cat(k|0) = 0k

Patients arrive in

=]

@_|
=)

0‘6

0.4

0.2

]

Spring Summer Autumn Winter

0.0

x

3/14

The multinomial distribution (1)

e Consider a random variable X ~ Cat(0) over {1,...,K }
e How to estimate @ from n observations of X7

» Independent observations x1,...,x,
P> Suppose we see ny instances of category k
> I.e., N = Zz H(l‘l = k)

T; k Nk
Spring Spring 1
Autumn Summer 0
Winter Autumn 2
Winter Winter 2
Autumn

4/14

The multinomial distribution (2)

T
o Let n = (n1 ng - nK) , where >, np =n
» As before: n is sufficient statistics for @ and we set D = n

e Given 6, n follows the multinomial distribution Mu(n,)

@Q:Mu(nm,e):(" >ﬁ9;§k

nl e o o nK
likelihood k=1

e Here we use the multinomial coefficient

n n!
ni--ng) nilngl--ong!

e Multinomial distribution is a generalization of the binomial
distribution to K > 2 categories
> Hiil 6" is probability of sequence (X;)i=1..n, in this order
» Multinomial coefficient is number of distinct ways to reorder the
sequence

5/14

The multinomial distribution (3)

e Suppose 6 = (0.2 0.1 0.3 ().4)T
e Supposen = (1 0 2 2)T

e Then

Mu(n|8,n) = (

Patients arrive in

1,0,2,2

)0.210.100.320.42

= 30-0.0028 = 0.0864

=

08

0.6

0.4

0.2

0.0

]

Sprin

9

Summer

Autumn

Wint

ter

k N
Spring 1
Summer 0
Autumn 2
Winter 2

6/14

Maximum likelihood estimation (MLE)

° LetSK:{OGRK:0§9k§1,2k9k21} be the
probability simplex
> Set of all possible categorical distributions over K values

e One way to estimate 0 is to use maximum likelihood estimation

K
. n
OmLe = argmax Mu(n|0,n) = argmax () | | 0F
0cSk 0cSk ny--Ng k=1

K
= argmax H 0" (take logs)
Sk 124

K
= argmax Z nglog b, = ... (exercise)
0eSk k—1
n (o mo. "K)T
n n n
e MLE estimate = relative frequencies of the categories

7/14

MLE on our example

e Forn=(1 0 2 2)", weobtain Qe = (02 0 04 04)"

e In introductory example, we used MLE for p(y) and p(x|y)
> For p(y), we have two values { poor, rich } — parameter 7
> For p(x|y), we have four “values” {(young, student),

(young, CEO), (old, student), (old, CEO) } — parameter 6,

Age Position | State
young student | poor
old student | poor
old CEO rich
(Age, Position) | Bpoor (Age, Position) ‘ Bich
(young, student) | 1/2 (young, student) | 0
(young, CEO) 0 (young, CEO) 0
(old, student) 1/2 (old, student) 0
(old, CEO) 0 (old, CEO) 1

8/ 14

The Dirichlet distribution (1)

e One way to address overfitting/zero-count problem is to add

prior on 6

e The conjugate prior of the multinomial is the Dirichlet

distribution Dir(«)
> Distribution over probability vectors 8 € Sk

> Elements of @ are probabilities of categories (as before)

o C1 only
—
&5 g— C1/C3 (uniform)
o
C1/C2/C3 (unif)
o_|)
© C3 only C2 only

9/14

6y

00 02 04 06 08

Dirichlet distribution (2)

1.0

i

e Parameterized by vector o € RE with oy, > 0 (concentration
parameters)

o Dir(8la) = 5oy TIC, 05+

e Special case: symmetric Dirichlet distribution
> Single concentration parameter «; set aj = «
> « < 1: multinomials concentrate around single category (sparse)
> « > 1: multinomials spread uniformly over categories (dense)
» « = 1: uniform distribution over multinomials

0
i

0
i

i
i
i

i
i
i

0
81
00 02 04 06 08

1
00 02 014 06 08

I
I
I

T T T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 05 1.0

2 - 63 82-63 2 -8
a=.3 o= a =10

Dirichlet distribution (properties)

e Notation: 8 ~ Dir(«)
Parameters

» Number of categories K € N
» Concentration parameters a € R¥ > 0

Support: 8 € Sk
e Mean

523

Zk/ (&7

For a > 1 (then unimodal), mode is #™M°% with

Eloy] =

egwode o ag —1

Zk/ ot — K

11/14

Maximum a posteriori estimation (MAP)

e Recall: posterior likelihood x prior
e Can show: posterior p(@|n) = Dir(8|n1 + a1, ...,nK + ak)
> Thus the oy can be interpreted as pseudo-counts (as in the
beta-binomial model)
e The maximum a posteriori estimate is the categorical
distribution (@) that maximizes the posterior

e We have
Omap = argmax p(0|n) = argmax Mu(n|n, 8) Dir(0|a)
0eSk 0cSk
= argmax Dir(0|n; + a1, ..., ng + ak)
0eSk
K
= argmax H grrtor—t
0cSk k=1
T
C(mta—-1 matay—1 -+ ng+ag—1)
N n+ay— K ’

K
wher =
ere ag =) 1 O 12/14

MAP on our example (with sym. Dirichlet)

e With o = 1, we obtain the MLE estimate
e With o = 2, we obtain add-one smoothing; let's fix a = 2
e Form=(1 0 2 2)7, we obtain Ouap = (2/9 1/9 3/9 3/9)"
e And for our introductory example
Age Position | State
young student | poor

old student | poor
old CEO rich

(Age, Position) | Opoor (Age, Position) ‘ Bich

(young, student) | 2/6 (young, student) | 1/5
(young, CEO) 1/6 (young, CEO) | 1/5
(old, student) 2/6 (old, student) 1/5

(old, CEO) | 1/6 (old, CEO) | 2/5

13/14

Let's predict with add-one smoothing
Using Bayes theorem, we obtain

p(poor|x, 0) ‘ young old p(rich|xz,0) ‘ young old
student 5/7 5/7 student 2/7T 2/7
CEO 5/9 5/13 CEO 4/9 8/13

Discussion

e For a > 1, we reduce overfitting and avoid the zero-count problem
» There can be rich students
> Can predict for a young CEO, even though we have never seen one

e Complexity of model still present

» D binary features, C classes
— O(C2P) non-redundant parameters (probability table)
> Infeasible to even store for moderately large D

e To combat complexity, let's look at Naive Bayes, the perhaps
simplest possible model

14 /14

Machine Learning

03 — Generative Models for Discrete Data
Part 3: Naive Bayes

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-2

Naive Bayes in a nutshell

e (discrete class labels

> Prior class distribution p(y) is a categorical distribution
> O(C) parameters for prior
» Can often be accurately estimated from sample or domain
knowledge
e The Naive Bayes assumption: features are conditionally
independent given the class label

p(zly) = Hp jly)

e If used to model p(x|y), we obtain a Naive Bayes classifier

e Called "naive” because features are usually not conditionally
independent
» But may nevertheless “work well”
> Usually O(C'D) parameters for class-conditional densities
> Relatively immune to overfitting

2/13

Naive Bayes classifiers

e Naive Bayes is not “one classifier,” but a family of classifiers

e How to model p(z;l|y)?

> Depends on type of feature

> E.g., Bernoulli distribution for binary features

» E.g., categorical distribution for categorical features
» E.g., Gaussian distribution for real-valued features

e Which priors to use (if any)?

e How to train and predict?

» Point estimates: MLE, MAP
» Bayesian inference

3/13

Naive Bayes for categorical data

e For the prior class distribution, we use a categorical distribution
with parameter vector € S¢ (as before)

p(yilm) = Cat(y;|m)

e Let's assume all features are discrete-valued, z;; € {1,..., K }

e Since features are independent under the naive Bayes
assumption, each feature follows a (class-conditional)
categorical distribution as well
» Consider feature j and class ¢
» Class-conditional distribution p(X|y = ¢) is categorical
» With parameter vector 8.; € Sk, we have

4/13

MLE for Naive Bayes for categorical data (1)

e Denote by 8 both 7 and all 8.;'s
e Using the naive Bayes assumption, we obtain likelihood

D
p(ai, yi|0) = Cat(y;|m) [| Cat(wijlyi, 0,,5)
j=1
e Using the i.i.d. assumption, the likelihood of the training data
D = {(xs,y:) } is given by

L(0|D) = Hp x;,yi|0) = HCat yi|) HCat %ij|Yi, 0y,5)

Jj=1
e To obtain the MLE estimate, we can alternatively maximize the
log-likelihood
D C
(BID) logﬁ (0|D) = Z Z log .+ ZZ Z log [0¢j]z;;

c=1ity;=c j=1 c=1i:y;=c

5/13

MLE for Naive Bayes for categorical data (2)

e Log-likelihood (rewritten)

D C K
¢(0|D) defy, g L(6|D) = ch logwc—FZZank log [0

j=1 c=1 k=1

> n.=|{i:y; =c}| is the number of examples for class ¢
» neir = |{i:y; =c, x; =k}| is the number of examples of class ¢
for which feature j takes value k

e The log-likelihood decomposes into a part that depends on &
and a part that depends on the 8.;'s

e We can maximize each part separately and obtain the MLE

estimates
A e A Nejk
Te = — and [ch]k =
n Ne

6/13

Naive Bayes on our example, MLE

Age Position ‘ State

young student

poor
old student | poor
old CEO rich
Age époor,Age Age érich,Age
young 1/2 young 0
old 1/2 old 1
Position 9poo,,pos Position érich,pos
student 1 student 0
CEO 0 CEO 1

7/13

Let's predict: MLE and Naive Bayes

Using Bayes theorem, we obtain

p(poor[:c,é) ‘ young old p(rich|a:,9) ‘ young old

student 1 1 student 0 0
CEO ? 0 CEO ? 1
Discussion

e Same result as original approach (coincidentally)
e Overfitting is and zero-count problem still persists

> Both problems are mildened: e.g., if we see each value at least
once for every feature j and for every class, then the zero-count
problem does not occur

e Simple model

» D features, each with K possible values, C classes
— O(CDK) space
» Training is simple and linear in data size: compute histograms

8/13

Naive Bayes on our example, MAP

As before, we can put a Dirichlet prior on the parameters of
each multinomial to avoid the zero-count problem
As before, for MAP estimation this means adding pseudo-counts

e E.g., with o = 2 for all multinomials and MAP estimates:

Age Position ‘ State

young student

old student t.oc;]r g;g
old CEO '
Age époor,Age Age érich,Age
young 2/4 young 1/3
old 2/4 old 2/3
Position 9poor$pos Position érichﬂpos
student 3/4 student 1/3
CEO 1/4 CEO 2/3

9/13

Let's predict: MAP and Naive Bayes

Using Bayes theorem, we obtain

p(poor|ar:,9) ‘ young old p(rich|az,9) ‘ young old
student 81/97 81/113 student 16/97 32/113
CEO 27/59 27/91 CEO 32/59 64/91

Discussion

e For a > 1, we reduce overfitting and avoid the zero-count
problem

e Simple model

10/13

Bayesian Naive Bayes

e The fully Bayesian approach to prediction is to marginalize out
all parameters
e Posterior predictive is

plo.2l?) = ([Cotlyimp(aip) i
D
[T ([cottartn04,00(6,,17) a0,
j=1
e Suppose we use a Dirichlet prior. We obtain posterior means
_ Ne + Qe A Nejk T Qejk
o= ——— and Ocily = ———="
C n + Zc Oéc [C]] nc + Zk Oécjk;
and posterior predictive cond. on new example
D

p(y = c|lx, D) x 7, H[H_cj]m]-

Jj=1

11/13

Naive Bayes on our example, Bayesian

e E.g., with o =2 on all multinomials:

Age

Position ‘ State

young student
old student
old CEO

Age ‘ époor,Age

poor
poor
rich

young 3/6
old 3/6

Position ‘ 9poor7pos

4/7
3/7

Age ‘ érich,Age
young 2/5
old 3/5

Position ‘ érichpos

student 4/6
CEO 2/6

student 2/5
CEO 3/5

12/13

Let's predict: Bayesian Naive Bayes
Using Bayes theorem, we obtain

p(poor|x, D) ‘ young old p(rich|x, D) ‘ young old
student 25/34 50/77 student 9/34 27/77
CEO 25/52 50/131 CEO 27/52 81/131

Discussion
e Hyperparameters can be estimated as part of model selection
e Add-one smoothing is also commonly used

» Can be interpreted as MAP estimate with Dirichlet prior, a = 2
> Can be interpreted as fully Bayesian inference with uniform
prior (= Dirichlet prior, & = 1)

e Simple model, cheap to compute, reduced overfitting, no
zero-count problem

e But beware: Naive Bayes assumption is a strong assumption

13/13

Machine Learning

04 — Classifiers for Continuous Data
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Outline (Classifiers for Continuous Data)

1. Logistic Regression
2. Softmax regression

3. Gaussian Naive Bayes

2/4

Lessons learned

e Logistic regression is a simple discriminative binary classifier
> Assumes that log odds is linear function of input features
» A generalized linear model
> Efficient to train, interpretable

e Softmax regression (multinomal logistic regression) is a
generalization for multiclass classification

e Gaussian Naive Bayers is a simple generative classifier for
continuous data
» Naive Bayes assumption
Class-conditional densities p(z;|y) assumed Gaussian
Model fitting = estimate means and variances
Related to logistic regression

vvyy

e Naive Bayes or logistic regression?
» It depends...

3/4

Suggested readings
e Murphy, Ch. 10, Logistic Regression

e Tom Mitchell, Generative and Discriminative Classifiers: Naive

Bayes and Logistic Regression (draft), 2016

4/4

https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf
https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Machine Learning

04 — Classifiers for Continuous Data
Part 1: Logistic Regression

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Logistic regression

e Logistic regression (also: logit regression, logit model) is a

discriminative classifier

> Given: D = { (x;,v;) }f\;l
> Sought: p(y|x)

» Dependent variable y is discrete

e Binary classifier, i.e., y € {0,1} is binary

e In a nutshell

> Assume y generated from a coin flip
» Log odds of success are linear in x
> A generalized linear model

e Variants

> Softmax regression (multinomial logistic regression):
y categorical (with more than two classes)

» Ordinal logistic regression: y ordered (not covered here)

2/21

Bernoulli model and odds

e Recall the Bernoulli model Ber () for a single coin filp
> le,Y ~ Ber(6)
> 0 € [0,1] is success probability
0 y=1
> 0)=B) =
pl6) =Berld) =3, 5 . _y
> E[Y] =0, var[Y] = 6(1 — 6)

e What are the odds of success?
> For success probability 6, define the odds on

OddS(@) = %

> Example: § = 0.1, odds(#) = 1/9 (also written 1:9)

e odds(1 — 6) is called odds against
> 9:1 odds against = 1:9 odds on

e When odds(f) = 1, we say odds even

3/21

Odds decision function

e Suppose you are asked whether you expect success
> Say yes, when odds(f) > 1 (i.e., 6 > 0.5)
> Say no, when odds(6) <1 (i.e., # <0.5)
» Here we used decision threshold 1 (i.e., 0.5 on 6)

odds(8)

Note: odds(#) € [0, 0]

4/21

Logit

e logodds(0) is referred to as the log odds or logit function
e We have logit(0) & log odds(#) = log 6 — log(1 — 0)
e The decision function then becomes

> Yes, when logit(6) > 0

» No, when logit(6) <0

logit(8)

T T T
0.0 0.2 0.4 0.6 0.8 1.0

Note: logit(f) € [—o0, o0]

5/21

The logistic function

e Given a logit of 17, what is the success probability 67
1

. def
logit(0) = — f=cn= ——
git(f) =n) = 1 ()
e Here o(n) denotes the logistic function
> Inverse of logit function: o(logit(6)) = 6
> We also write o~1(6) for logit(6)

o
-

@
o

@]
=)

a(n)

0.4
Il

0.2

0.0

T T
-10 -5 0 5 10

6/21

Important properties

1 ~exp(n)

o) = 1 +exp(—n) 14 exp(n)

7 = o)1 = o))

Probability Logit
@) scores (1)
0.0001 -9.21
0.001 -6.90
0.01 -4.59
0.05 -2.94
0.1 -2.19
0.5 0.00
0.9 2.19
0.95 2.94
0.99 4.59
0.999 6.90
0.9999 9.21

7/21

Logistic regression

e Let € R” be an input

e Logistic reggression then assumes that
log odds on y = linear function of x

e Linear function can be described by parameters wy, ..., wp
n=wpy+ wix1 +wexs + - +WpTrp

e We have
ply = 1|z, {w};) = a(wo + ijxj>

J
1

1+ exp(—(wo + _; wjz;))
p(y = Oz, {w};) =1~ 0<w0 + ij%')

1
1+ exp(wo + 32 ; wjz;)

8/21

Notation
e We collect the parameters into a weight vector
T

and a bias term wyg

e We can then use inner products

D
n:wo—i-ijxj =wo+w' & =wy+ (w, x)
j=1

e and obtain

p(y = 1|z, wy, w) = o(wy + (w, x))
p(y = O|$a wOaw) = U(—(wo =+ <'wa m>))
p(y|z, wo, w) = Ber(y|o(wy + (w, x)))

9/21

Example (1D)

p(y[x)

o positive
o negative
—— model prob.
---- model logit
ey
—20
—40
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

X1

10/21

Example (2D)

Data Prediction

11/21

Bias feature

e To simplify implementation or notation, we may omit the
explicit bias term of logistic regression by adding a special bias
feature zg = 1 to inputs

:13:(1 r1 I - JZD)T
T
’w:(wo wp wy - wD)
n=(w,x)
e Then

ply = llz,w) = o((w, z))
p(y =0lz,w) = o(—(w,x))
p(yle, w) = Ber(ylo((w, x)))

e We will mostly focus on the case without a bias term for
simplicity

12/21

Perceptron and decision boundary

e Let w € RP. The perceptron is a classifier with decision rule

.)0 {w,x) <0
Y (w,xz) >0

If we use logistic regression and predict the most likely class, we
obtain the same decision rule

The decision boundary of a classifier is the set of data points
for which the classifier is unsure in that multiple classes achieve
the highest possible probability or score

e l.e., x is on the decision boundary if there exist ¢; # co s.t.

p(y = cilz) = ply = cox) = maxp(y = clz)
For logistic regression/the perceptron, the decision boundary is

{z: (w,x) =0}

What does this mean?

13/21

Inner product (geometric interpretation)

The geometric interpretation of the inner product of two vectors

u,v € R" is given by

(u, v) = [lu]/ [lv]|cos 0,

where —7 < 0 < 7 denotes the angle between u and wv.

(=2}
2
] u
I~
ST v
0
2
o™
e
—_| /6
o
0 I I I I I
0.1 0.3 0.5 0.7 0.9

14 /21

Understanding perceptrons (1)

e Consider the classification rule

.)0 {w,x) <0)0 [wl][z]cosL(w,x) <0
1 (w,e) >0 |1 w2 cos Z(w,x) > 0

Observe
> Negative instances have angle |Z(w, x)| > 90°
» The decision boundary has angle |Z(w, x)| = 90° (includes origin)
> Positive instances have angle |Z(w, z)| < 90°
Decision boundary defines a hyperplane with normal vector w
> = set of points orthogonal to w (a D — 1 dimensional subspace of R”)
> E.g., for two dimensions we have the line wixy + woxs =0
(and consequently x5 = — ¥t x1)
If we add a bias term b # 0, we obtain an affine hyperplane
> l.e., does not go through origin
> For two dimensions, intercept is —b/ws

A classifier for which the decision boundary is (always) a
hyperplane is called a linear classifier

15/21

Understanding perceptrons (2)

o
<
Intercept (= — b/w,)
g
N o
o
o
OgO 8
[} 0O-
o
C\]_
T T T T T T
—4 —2 0 2 4 6 8

16 /21

What can perceptrons learn?

e Perceptrons (with bias) can classify perfectly if there exists an
affine hyperplane that separates the classes

» We then say the data is linearly separable
e Otherwise, the perceptron must make errors on some inputs

e This is quite limited; e.g., perceptrons cannot learn the XOR

function
AND OR XOR
2 pooed
s
® L] @ hS
| b4 %]
Mo separation
Output 0: @ 1@ is posspible

17/21

Image source

http://www.cs.ru.nl/~ths/rt2/col/h10/10neurENG.html

Discussion (1)

e Logistic regression is one of the most popular classifiers
e Provides probabilities
e Easy to fit (more later)

e Easy to interpret

> Suppose we want to predict probability of getting lung cancer

> Features: number of cigarettes per day (x1), minutes of exercise
per day (z2)

> Estimated weights: w = (1.3 —l.l)T

> Means: for every cigarette, odds on getting cancer increased by
factor exp(1.3) ~ 3.7

e Is a binary classifier, but can be extended to more than two
classes (coming up next)

e Is a linear classifier, but can be extended to handle non-linear
decision boundaries (kernel logistic regression, more later)

18/21

Discussion (2)
e Virtually any feature function can be used

e For categorical features, use one-hot encoding

» Encode with binary vector with one element per possible value of
the feature — one weight per possible value

> Entry that corresponds to actual value set to 1; rest 0

» Example: X € {red, green, blue }

» Then x = green becomes x = (0 1 O)T

If features are linearly dependent, MLE weights underdetermined

» Perform feature selection
> Use a prior / regularization

e When examples are linearly separable, MLE weights “infinite”
> Use a prior / regularization

Under mild conditions, can handle imbalanced classes in the
data to some extent

19/21

http://people.ee.duke.edu/~lcarin/iilr.pdf

Graphical models

Here without explicitly showing priors.

i=1.n

_@

Logistic regression

(training)

Naive Bayes
(training)

20/21

Excursion: Generalized linear models

e Logistic regression, where p(y|z, w) = Ber(y|lo(w ")), is an
example of a generalized linear model

e Generally, three components
» An exponential family of probability distributions: Bernoulli
» A linear predictor: n =w'x
» A link function g that connects the mean p of the
cond. distribution of y with the linear predictor: n = g(u)

> Here: =0 and n = g(u) = o~ (1) = logit(p)

e We can pick other distributions and link functions

» E.g., normal distribution + identity link — linear regression
> E.g., Poisson distribution + log link — Poisson regression
» See Wikipedia or lecture Cross Sectional Data Analysis (SoWi)

e More on exponential family in exercise

21/21

https://en.wikipedia.org/w/index.php?title=Generalized_linear_model#Link_function

Machine Learning

04 — Classifiers for Continuous Data
Part 2: Softmax Regression

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Softmax regression

e Recall logistic regression

» Log odds modeled as a linear function of the features
> Technically, first compute logit score n = (w, x)
> Then apply the logistic function to obtain success probability

py = 1z, w) =0o(n)

e Softmax regression (or multinomial logistic regression)
generalizes logistic regression to multiple classes

e Consider a multiclass problem with C' classes
» Instead of one linear function, use C' linear functions
m = (w1,@), ..., o = (we,) (one per class)
» Can also be interpreted as log odds under certain conditions
(exercise)
> Instead of the logistic function, use the softmax function to obtain
p(Y|x,wy,...,we)

2/6

The softmax function (1)

e The softmax function S(n)
» Takes a real vector n = (11,...,nc)" € R®
> And transforms it into an C-dimensional probability vector S(n)

S(m), = —_XPlne)
e = 5 exp()

> Called this way because it exaggerates differences and acts
somewhat like the max function (approximates indicator function
of largest coefficient)

T=100 T=1 T=0.1 T=0.01

1 2 3 1 2 3 1 2 3

Figure 4.4 Softmax distribution S(n/T), where n = (3,0, 1), at different temperatures 7. When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

Murphy, 2012

3/6

The softmax function (2)
Here is a plot of S(3,z2,1)s.

0.6 0.8 1.0
I

S(3, 2, 1),

0.4
I

0.2

e When we fix all but one argument and look at the corresponding
output, we obtain a shifted logistic function

4/6

Logistic regression and softmax

e Recall logistic regression model

1
1+ exp({(w,x))
1 exp((w, x))

p(y = 0lz,w) =

ply =z, w) = 5 +exp(—(w,x)) 1+ exp((w,x))

e We can express this with the softmax function

p(y = Olz, w) = S(0, (w,)1
p(y = 1|$, w) = 5(07 <w>x>)2

— Can be seen as a generalization of the logistic function

5/6

Softmax regression

o Let W = (w1 wy - 'wc)
e For C classes, softmax regression uses the model

p(y =cle, W) = S((wy,x),...,(we,x)). = S(WT.’B)C

e The weight vectors are redundant (exercise)
> We get non-redundant parameters if we set we = 0

e Maximum likelihood estimation
> Let p, = S(W "x;) € S¢ be the predicted probabilities for example i
» Likelihood is given by

N
£(W|X,y) = Hp(yilw’n HS WT:BZ prz
1=1

=1
> Gradient of neg. log-likelihood (lecture 05)
Vwr —{W|X,y) = Z(pic —I(y; = ¢))a;

6/6

Machine Learning

04 — Classifiers for Continuous Data
Part 3: Gaussian Naive Bayes

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-2

Recall: Naive Bayes

e (discrete class labels

> Prior class distribution p(y) is a categorical distribution
> O(C) parameters for prior
» Can often be accurately estimated from sample or domain
knowledge
e The Naive Bayes assumption: features are conditionally
independent given the class label

p(zly) = Hp jly)

e If used to model p(x|y), we obtain a Naive Bayes classifier

e Called "naive” because features are usually not conditionally
independent
» But may nevertheless “work well”
> Usually O(C'D) parameters for class-conditional densities
> Relatively immune to overfitting

2/15

Gaussian Naive Bayes classifier

e When features are continuous, p(z;|y) is continuous

» |.e., feature distriubtions are modeled with a continuous
distribution

e Gaussian Naive Bayes (GNB): use Gaussian distribution
> plajly = c) ~ N(pje, 03,)
> /i is mean parameter of feature j in class ¢
> 0]2.0 is variance parameter of feature j in class ¢
» Prior class probabilities as before
> Total number of parameters: O(DC')

e Maximum likelihood estimate
A N2
o Dimi—e(Tij — fijc)

Z-; —c Tij
=ri=e J and 6%, =

Pje =
J Ne J Ne

9

where n¢ refers to number of training examples of class ¢

3/15

Example (GNB assumptions hold)
1000 red points, 250 green points

Data and MLE fit Posterior class probabilities

4/15

Example (GNB assumptions do not hold)
1000 red points, 250 green points

Data and MLE fit Posterior class probabilities

5/15

Excursion: Quadratic Discriminant Analysis (QDA)

QDA models class-conditional density p(x|y) via multivariate Gaussian
o le, p(xly = c) = N(z|p,, Zc)

e Parameters can be fit separately per class

e Generative, but not Naive Bayes classifier

Data and MLE fit Posterior class probabilities

6/15

Excursion: Linear Discriminant Analysis (LDA)

LDA is a variant of QDA that additionally assumes homoscedasticity.
e Means that covariances among classes are equal
e le., p(xly =c) = N(z|p,.,) (note: X, not ;)

e Gives a linear classifier

Data and MLE fit

Posterior class probabilities

7/15

Gaussian Naive Bayes and logistic regression (1)

e We can also make the homoscedasticity assumption for Gaussian
Naive Bayes
> Then, p(z;ly) = N(xjlijy, 05)
» Let’s call this classifier GNB=

e For binary classification, we will now show:

» For every GNB= classifier, there is an equivalent logistic regression
classifier

» But not the other way around

» Consequently, GNB= is a linear classifier

» Consequently, logistic regression is “more powerful” than GNB=

e For multi-class classification

» GNB= and softmax regression each contain unique classifiers
> GNB= still linear
» More in exercise

8/15

Gaussian Naive Bayes and logistic regression (2)

Let's look at the parametric form of p(y = 1|x).
ply=Dp(zly=1) _

=) = T o p(aly)
B 1
1—|—exp<ln—|—2 |:MJOJH]1‘,L,J+'LL?120§L?():|>
_ 1
1+ exp(—(wo +w'x))’
where

2 2
1—-m Hi1 — Hjo
_ =1 o 7JY
wo . ™ +zj: 202
N]O_le
2

9;

Thus, under our assumptions, we can express p(y|x) in the
parametric form of logistic regression.

9/15

Example (GNB assumptions hold)

1000 red points, 250 green points
Data & MLE fit Posterior class prob. (GNB)

Posterior class prob. (LR)
10/15

Same example with GNB=

1000 red points, 250 green points
Data & MLE fit Posterior class prob. (GNB=)

Posterior class prob. (LR)

11/15

Example (GNB assumptions do not hold)

1000 red points, 250 green points
Data & MLE fit Posterior class prob. (GNB)

Posterior class prob. (LR)

12/15

Same example with GNB=

1000 red points, 250 green points
Data & MLE fit Posterior class prob. (GNB=)

Posterior class prob. (LR)

13/15

Gaussian Naive Bayes and logistic regression (3)

e GNB is generative, LR is discriminative

For binary classification

» When GNB= assumptions hold, GNB, GNB= and logistic
regression asymptotically give identical classifiers

» Otherwise, LR asymptotically often better than GNB=

P> Reason: LR consistent with but not rigidly tied to GNB=
assumptions (and parameter estimates)

Generally though, GNB and LR typically learn different classifiers

Rates of convergence differ

» O(log D) examples for GNB to “converge”
> O(D) examples for LR to “converge”

Gaussian Naive Bayes most suitable if

» GNB assumptions reasonable
» As fallback when few examples available

14/15

http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes

Generalization error vs.

Ng and Jordan, 2001

Iiver disarders (continuous) ‘sonar (continuaus) Bouk (checnts)
o s 07,
045 08
0.45 o3
.04 o
g g g
H H H
035 04
0.4/
03 03
035 20 0 El 9% 20 a0 e 8 100 120 % 100 200 800 400
‘promoters (discrete). fymphography (discrete) breast cancer (discrets)
05 05 05
04 ol 0.45
503 . L 04
; :
02 035
0.1 02 03
v ™ 40 e e 100 %% £ 100 wo %% 100 200 300
m m m
lenses (predict hard vs. soft, discrete) sick (discrete) voting records (discrete)
o 08 [T
04 06/ 03 |
Bos Bos o2
H §
LE 02 L3
o 5 W 15 20 25 % 50 100 150 % 20 40 60 80

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

number of examples (real data)

15/15

http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes

Machine Learning

05 — Point Estimation
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Outline (Point Estimation)

1. Maximum Likelihod Estimation &
Empirical Risk Minimization
2. Gradient-Based Optimization
3. MAP Estimation & Regularized Risk Minimization

2/4

Lessons learned

e Point estimation often involves solving an optimization problem
» Minimize a (non-linear) cost function
> For differentiable cost functions, gradient-based learning dominant

e Gradient-based learning
> First-order methods compute (GD) or estimate (SGD) gradient,
move small step into opposite direction
> Second-order methods also use (approximate) Hessian and can be
superior when applicable
» GD/SGD/variants (currently) often best choice for large data /
many parameters / continuous cost functions

e MLE related to empirical risk minimization
> Same cost functions for matching likelihood / loss
» E.g., for discriminative classifiers: log loss, cross entropy loss, KL
divergence loss

e MAP related to regularized risk minimization
> Same cost function when priors / penalty additionally match

» E.g., spherical Gaussian prior and /5 regularization »

Suggested readings
e Murphy, Ch. 8, Optimization

e Also: Murphy, Ch. 10, Logistic Regression

4/4

Machine Learning

05 — Point Estimation
Part 1: Maximum Likelihod Estimation &
Empirical Risk Minimization

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Recap: Maximum likelihood estimation (MLE)

e Maximum likelihood estimation (MLE) chooses the value 6
that maximizes the likelihood of the data

5 D|6 f ti del
Drie = arsmax £(6]D) = p(D|0) or gfanera '|ve .mo els
6 p(y|X,0) for discriminative models

» Probabilistic models only

e Good properties when N — oo (iid) samples; under mild conditions

> Consistent: converges to true value 8" (in probability)
> Efficient: no other estimator has lower asymptotic mean squared error
» Asymptotically normally distributed

e In practice, we do not have N = ¢
P> Tendency to overfit training data

2/15

Log-likelihood (1)

Instead of maximizing the likelihood, we can

o Maximize the log-likelihood £(8D) % log £(8]D) or
e Minimize the negative log-likelihood —¢(8|D)

(=]
o
‘\ — Likelihood 87 ‘ —— Negative log-likelihood
g =
< \ —— Log-likelihood
—— Negative log-likelihood
j=3
S
- g =
o
£
£
T o
* o] 2 &
2 \
g \
o~ g |
I z o] |
) \
<If_ ‘
-]
T T T T T T T T T T T
0.0 0.2 0.4 06 0.8 1.0 100000 g0 ggle0 g0 ggt0 g
Likelihood Likelihood

3/15

Log-likelihood (2)

e If training examples are iid, then (for discriminative models)

0|X y Hp y2|wz7

0|X y Zlogp yl|mla

> “Summation form” of log-likelihood faciliates gradient-based
parameter estimation (more later)

e For binary classification (y; € {0,1}), we sometimes write

N

(61X, y) = (yilogpa + (1 — u:) log pa),
i=1

where p;c = p(y; = c | x;, 0) refers to the predicted class
probabilities

4/15

Recap: Empirical risk minimization (ERM)

e Empirical risk minimization chooses the estimator that
minimizes Remp(h)

1 N

h = argmin Remp(—

p

heH N ;)

> h is hypothesis (corresponds to a choice of 0)

» L(4§,y) is loss function that measures how different prediction §
is from true answer y

» Focus on prediction error, not parameters

» Also applicable to non-probabilistic models

e Is there any relationship between MLE and ERM?
» We will show: for discriminative models, MLE and ERM with
certain choices of loss functions produce equivalent classifiers
— ERM is more general
» These loss functions include: log loss, cross entropy loss, KL
divergence loss

5/15

Log loss
For probabilistic classifiers, the log loss is given by
Liog(p(ylz),y") = —log p(y*|z),

where y* is the true label and p(y|x) is the probability distribution
that the classifier outputs

o

Log loss

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

p(y1x)
6/15

Empirical risk minimization with log loss

e Empirical risk with log loss

N

1
Remp(0) = N Zz; —log p(yi|wi, 0) < —£(6| X, y)
e For discriminative classifiers, MLE and empirical risk

minimization with log loss

> Use the same objective function (up to constants)

» An MLE estimate also minimizes the empircal risk

» A minimizer of empirical risk is also an MLE estimate

e No closed form solution
» Numerical optimization often used

e Next: cross entropy loss and KL divergence loss

» Close relationship to log loss
> More general than log loss
» Founded in information theory, with which we start

7/15

Background: Variable-Length Codes

e Consider a categorical distr. p(z) = Cat(x|0) over {1,..., K }
e Anna samples a value X and wants to tell Bob the outcome

> Anna and Bob can agree upfront on a codeword (bitstring) ¢(z)
for each category x

> On average, how many bits does Anna have to send to Bob so
that he can determine the value of X7

e Answer: depends on code! Expected codeword length is

Eplle(z)]] = Y p(@) |e(x)|

z plx) cx) |e(z)] z_ plx) cx) (@)
1 5% 00 2 1 5% O 1
2 25% 01 2 2 25% 10 2
3 125% 10 2 3 125% 110 3
4 125% 11 2 4 125% 111 3

Expected length: 2 Expected length: 1.75

8/15

Entropy

e How small can the expected codeword length be?
> Information theory (e.g., see here) tells us that optimal code c*
satisfies:

H(p) < El|lc"(z)]] < H(p) +1
e H(p) is the Shannon entropy of p (above result: with base 2)

Zp log

H,_/
I(z)

> p(x) = probability that Anna selects category =
> Information content I() = optimal length of codeword for =
> Note: I(x) = log (z) —log p(z)

e Entropy is a measure of uncertainty
> Ranges from 0 (no uncertainty, achieved by constant)
» To log K (maximum uncertainty, achieved by uniform distribution)
» Unit is bits with log, / nats with In
(1 nat = 1/1n2 bits ~ 1.44 bits)

9/15

https://www.stevenpigeon.com/Publications/publications/HuffmanChapter.pdf

Entropy (example)

0.5
p(X=1)

Figure 2.21 Entropy of a Bernoulli random variable as a function of 6. The maximum entropy is
log, 2 = 1. Figure generated by bernoulliEntropyFig.

10/15

Cross entropy

e Let's modify the game a bit
» Anna cheats and gives Bob the wrong distribution ¢
»> They use an optimal code for ¢, i.e., codeword for x has log ﬁ bits
» But Anna later selects values according to p, not ¢
P> How many bits are sent on average?

e Answer: cross entropy of ¢ relative to p

Hm®=§ﬁwﬂ%£w

> p(x) = probability that Anna selects category = according to p

> log ﬁ = optimal size of codeword for 2 according to ¢

> H(p,q) > H(p)

11/15

Kullback-Leibler divergence

e On average, how many additional bits are now sent?

Answer: Kullback-Leibler divergence of g w.r.t. p

def
Dy (plla) = H(p.q) Zp 1og

KL divergence is a measure of difference between distributions

> Interpretation: expected number of extra bits for encoding a value
drawn from “true” distribution p using an optimum code for
“estimated” distribution ¢

> Aka relative entropy of ¢ w.r.t. p

Properties

> Dki(pllg) = 0

> Dy (pllg) = 0 iff ¢ = p (almost everywhere)
> In general, Dxi(pllq) # Dxo(qllp)

Concepts generalize to other (i.e., non-categorical) distributions:
H(p) = Ep[—logp(x)] H(p,q) = Ep[-logq(x)]

12/15

Cross entropy loss

e Fix an example (x,y*)
e The empirical distribution p(y) of y (for this example) is

ply) =1y =y,
e., it puts all its mass on the correct label y*
e Now consider the model distribution ¢(y) of some classifier ¢

(applied to this example; i.e., ¢(y) = p(y|x))
e The cross entropy loss w.r.t. the empirical distribution is

Lee(a(y),y*) < Zp —log q(y))
=> ly=y](—logq(y))

» For this reason, log loss is sometimes called cross entropy loss
> But cross entropy loss is more general (we may pick other

distributions than p, e.g., to model noisy labels)
13/15

KL divergence loss

e We can also use KL divergence since:

argmin H (p, q) = argmin[H (p, q) —H (p)] = argmin Dy (p||q)
q q '\;-‘v—-F/ q
indep. of ¢

> Generally, KL divergence loss differs from cross entropy loss by a
model-independent constant
> For empirical distribution (as above), H(p) =0

e Interpretation: we aim to minimize the (KL) divergence of the
model distribution w.r.t. empirical distribution

e In summary, for classification, the following approaches are
equivalent in that they share the same solutions
» Maximum likelihood estimation
» Empirical risk minimization with log loss
» Empirical risk minimization with cross entropy loss
» Empirical risk minimization with KL divergence loss

14 /15

Direction of KL divergence

¢* = argmin,Dxr (pq) ¢" = argmin Dk, (q|p)
— p(x) o — p(z)
> * = \ *
£ - q(x) E [- @
<] 5] \
7] 5
o o Iy
z 2 1
= = \
3 2 ! \
z £l
2 - = 2 \
o - ~ [/ \
” ~ /
- 4 A\
& xr

Figure 3.6: The KL divergence is asymmetric. Suppose we have a distributionp(z) and
wish to approximate it with another distribution ¢(z). We have the choice of minimizing
either Dk, (p|lg) or Dk1,(¢|lp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent.

e Think: p = data (blue); ¢* = fitted model (green)
e Note: we used Dk (pllq) (left)

15/15

Machine Learning

05 — Point Estimation
Part 2: Gradient-Based Optimization

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Parameter estimation and optimization

e Often, parameter estimation requires the solution of a nonlinear
optimization problem of form:

0™ = argmin f(0).
0

0 corresponds to the model parameters

f called cost function

For MLE, f is the neg. log likelihood of the training data: —¢(6|D)
For ERM, f is the empirical risk: Remp(8)

For MAP, f is the neg. log posterior: —log p(0|D)

For RRM, f is the regularized risk: Ry,,(0)

VVVYVYY

A\

e Coming up: common optimization methods used in ML

e Note: In ML, generalization error matters. The optimal solution
(e.g., the ML estimate) may overfit.

2/27

Gradient-based methods

e We often (are forced to) use iterative methods

» Pick a starting point
» Repeatedly update the current point until some stopping criterion

is met
» Qutput the current point

e First-order methods use first-order partial derivatives

» E.g.: gradient descent, stochastic gradient descent
> Typically used for large datasets and/or models with many

parameters

e Second-order methods use second-order information
> Newton method or quasi-Newton methods (BFGS, L-BFGS)

> Take curvature into account
> Typically used for smaller datasets and/or models with few

parameters

3/27

Outline

1. Gradient Descent

427

Continuous gradient descent

Find minimum x* of function f
Pick a starting point xg
Compute gradient V f(xo)
Walk downhill
Differential equation
ox(t)
ot

= —V/f(z(t))

with boundary cond. x(0) = xg

Under certain conditions

z(t) > x

p(t) -1

00 02 04 06 08 1.0

0.0

0.2

0.4

0.6

0.8

1.0
5/27

Gradient descent

Find minimum x* of function f
Pick a starting point xg
Compute gradient V f(xo)
Jump downbhill

Difference equation
Tpi1 = T — V()

Under certain conditions,
approximates CGD in that

x"(t) = xp, + “steps of size t"

satisfies the PDE as n — oo

p(e) - o1

00 0.2 04 06 08 1.0

T T T
—0.5 0.0 0.5 1.0

stepfun(px, py)

0.0

0.2 0.4 0.6 0.8 1.0
t 6/27

Derivatives for logistic regression

0

N
8711)]_6 w’X y ; ng pil]

T

Ta;) increases when we increase w ' x;

e Recall that p;; = o(w
e Consider the contribution of any example i with y; = 1 to the
partial derivative w.r.t. w;
> Zero feature values x;; = 0 do not contribute
» Otherwise, contribution has opposite sign as feature z;;
— Contribution to gradient descent step towards increase of p;;
> More when difference between true label (y; = 1) and prediction

(pi1) larger
» More when feature z;; larger (i.e., its absolute value)

e Similar arguments for y; = 0 (consider the alternative
formulation Zf\;l zi; [(1 = yi) — pio])

7/27

Gradient

e For functions with multiple inputs, there are multiple partial
derivatives; e.g.,

f=al+a3
0
=2
8x1 e
0
=2
8%2 2

e We can gather them all in a single row vector (numerator
layout), the gradient of f

def o I5) o)
Vo f (st e i)
e For the example above, we obtain
V.tf= 2

8/27

Excursion: Matrix calculus

e Gradients can be computed element-by-element or directly using
matrix calculus
> Gives vectorized gradients (good for efficient gradient computation
in software)

e For € R"™, the following rules hold

—oT
V1 c=0,
V. c'z=c'
V1 x'c=c'

Vot x'x =2x"
Vo, 2 Az =x"(A+AT),

where constants ¢ € R, ¢ € R", and A € R™"*" do not depend
on

e Also: multiplicative rule, product rule, chain rule, ...

9/27

Gradient of logistic regression

0
a. . _e w|X y sz] pzl

ow;
e Define the error on example i as ¢; = y; — p;1 (a function of w)
) T
e Define the error vector e = (61 ey - eN)
e Then
0

a—w] H(w|X,y) Zezxw =—e' x;

And therefore

Ver —w| X, y) = —e' X

10/27

Gradient descent summary

e We aim to minimize an objective function such as the negative
log-likelihood

e A single gradient computation and subsequent parameter
update is called an epoch

e In the n-th epoch, we use learning rule
0n+1 — On - 6an(9)
for some learning rate ¢, > 0

e For NLL and logistic regression
> Update rule is w,| ; + w, +eqe) X
> Negative log-likelihood of logistic regression is convex; i.e., each
local optimum is a global optimum
» Under mild conditions on the step size sequence, GD converges to
ML estimate wmLE

11/27

Outline

2. Stochastic Gradient Descent

12/27

Stochastic gradient descent

Find minimum x* of function f

Pick a starting point xg 5]
Approximate gradient @f(aco)

Jump “approximately” downhill Ey
Stochastic difference equation

Tptl = Ty — en@f(mn)

e Under certain conditions, . .
i B —1.0 —0.5 0.0 0.5 1.0
asymptotically approximates stepfun(px,)
(continuous) gradient descent

o(t) 1
0.0 02 04 06 08 10

t 13/27

SGD for logistic regression

e We use

Vo —l(w| X, y) = —e'X = — ZeimT

Vo —l(w|X,y) = —Negx,,

where Z € {1,2,..., N } is a single training example chosen
uniformly and at random from the N examples in the training
set.

e SGD epoch (with or without replacement)
1. Pick a random example z (with or without replacement)
2. Compute approximate gradient @wr —(w|X,y)
3. Update parameters R
Wyl = Wy + 6, VO(w| X, y)

4. Repeat N times

e Observe: only weights for non-zero features updated in each step
14/27

Comparison

e Per epoch, assuming O(D) gradient computation per example

GD SGD
Algorithm Deterministic Randomized
Gradient computations 1 N
Gradient types Exact Approximate
Parameter updates 1 N
Time O(DN) O(DN)
Space O(D) O(D)

e Why stochastic? Empirically, for large datasets:

> Fast convergence to vicinity of optimum
» Randomization may help escape local minima
» Exploitation of “repeated structure”

15/27

GD/SGD in practice (1)

Step size (or learning rate) sequence { €, } needs to be chosen
carefully; widely studied, many options:
e Large — good initially (move quickly), bad later on (juggle
around optimum)
o Keep step size throughout or reduce it gradually
> E.g., constant (useful for online learning)
> Eg., ¢, =a/(b+n) for some constants a, b
> E.g., pick e, <1/L(Vf)if f has bounded gradient
e Bold driver heuristic: After every epoch
> Increase step size slightly when objective decreased (by, say, 5%)
> Decrease step size sharply when objective increased (by, say, 50%)
> May (or should) use validation error, grace period, no increase, ...
e The above choices (most notably, the initial learning rate) are
often treated as hyperparameters in machine learning
e See pytorch's learning rate schedulers for examples
e Line search: optimize the step size directly

€, = argmin f(6,, — eV f(6,))

16 /27

https://en.wikipedia.org/wiki/Lipschitz_continuity
https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

GD/SGD in practice (2)

e SGD is a common learning algorithm

>
>

E.g., training neural networks
Related to incremental gradient descent and online learning

e Many variants exist; e.g.,

>

vVYvyy

»

Use more than one example per step (mini-batch GD)

Polyak averaging
Momentum

Adaptive, per-parameter step sizes (AdaGrad, RMSprop,

AdaDelta, Adam)

More in Deep Learning lecture (spring term)

e And it can (often) be parallelized; e.g.,

>

>
>
>
>

Parallelizing mini-batch gradient computations
Hogwild

Vowpal Wabbit

DSGD++ (for latent factor models)

17/27

http://epubs.siam.org/doi/abs/10.1137/0330046
http://dl.acm.org/citation.cfm?id=3043064
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
https://github.com/JohnLangford/vowpal_wabbit/wiki
http://ieeexplore.ieee.org/document/6413862/

Excursion: Coordinate-Wise Gradient Descent

o

Goal find min «* of function f =

Pick starting point xg
Choose a coordinate j € {1,... D}

Compute gradient for coordinate a%jf

0.0
1

Jump downhill along this coordinate

Sometimes gradients simplify / can
reuse computations s

Variants ~10 05 00 0.5 10

» Coordinate-wise SGD stepfunipx, p7)

» Block-coordinate (S)GD (choose
more than one coordinate)

o(e) -
0.0 02 04 06 08 1.0

0.0 0.2 0.4 0.6 0.8 1.0
¢ 18/27

Outline

3. Second-Order Methods

19/27

First-order Taylor polynomial

e Taylor's theorem tells us that if f is differentiable at some point
a, then there exists function hy such that

f(@) = fla) + f'(a)(z — a) + () (z — a)

P (x) error

and lim,_,, hi(z) =0

70

60

e Pi(x) is the first-order
Taylor polynomial of f at
point a and the =
(asymptotically) best linear
approximation of f at
point a

50
1

30 40
1 1

20

10
1

0
L

20/ 27

Second-order Taylor polynomial

e Taylor's theorem tells us that if f is twice differentiable at some
point a, then there exists function hy such that

f(@) = fa) + f'(a)(z — a) + %f”(a)(w —a)* + ha(z)(zx — a)’

R , A e e

error
Pa(z)

and lim,_,, hao(z) =0

70
|

60
1

e Py(x) is the second-order
Taylor polynomial of f at
point a and the <
(asymptotically) best
quadratic approximation
of f at point a

50

40

30
1

20

10
1

0
L

21/27

Newton's method

e If fis strictly convex (i.e., f”(x) > 0), then we can minimize f
using Newton's method

f'(zn)
f”(xn

Tpal < Ty —

~—

» rhs is stationary point of the 2nd-order Taylor polynomial of f at z,,
> If f is strictly convex, this stationary point is the minimum of P,
— Quadratic approximation of f is minimized in each step

e Discussion
» Can converge in significantly less steps than gradient descent; e.g.,
if f is quadratic, only needs one step
> Need to compute second derivative
> If f is not strictly convex, may converge to any stationary point
(including a local maximum!) or even diverge

22/27

Example

Second-order Taylor polynomial (multivariate)

o If f:RP — R and twice differentiable at x,, € R”, then the
second-order Taylor polynomial at x,, is

1
Po(@) = fu+ g3 (& = @) + 5 (2 — 20) Halw —),
where

» f, = f(x,) denotes the function value,
» g, = (Vg7 f)(x,) denotes the gradient, and
> H, = (V,7Vasf)(x,) denotes the Hessian matrix at x,.

e Hessian is D x D matrix of second-order partial derivatives

9?2 92 92
Tx% &rlang U axlafo
2y 02 L~
H _ 0x2011 8;12% az283’/'D
92 92 92
Oxpdry f Ox pOzra f e 890%

24 /27

Newton's method (multivariate)

e Newton's method then becomes

-1
Tn+1 —xn—H, g,

e Discussion

>
>

>

Newton's method is basic second-order method

Can converge in significantly less steps than GD

(quadratic convergence vs. linear convergence)

Expensive for large D; Hessian takes O(D?) space and its
inversion O(D?) time

Harder to make stochastic

If f is strictly convex (i.e., H positive definite; exercise), also
converges to unique minimum

Otherwise, d, = —H, 'g,, may not be a descent direction
More sophisticated methods can avoid this problem (e.g., use
gradient descent step if d,, is not a descent direction)

25 /27

Example

Example function is quadratic — one step

o
—

26 /27

Newton's method for logistic regression

e Newton's method for MLE estimate of logistic regression
> Hessian has simple form (exercise)
» Newton's method known as iteratively reweighted least squares
(IRLS)
» |RLS very good optimization algorithm if D is not too large

e For large D, Newton's method becomes to costly
> E.g., simple bag-of-words models in natural language processing
tasks may have 10s of thousands of features (and thus parameters
in logistic regression)
P> More complex models may have millions of parameters

e Alternatives include
> Quasi-Newton methods such as BFGS or L-BFGS, which use
gradient information only to build approximation of the (inverse)
Hessian
P> Stochastic gradient descent

e More in MAC 507 Nonlinear Optimization and in Optimization
in Machine Learning

27/27

https://www.wim.uni-mannheim.de/doering/teaching/past-semesters/fs23/optimization-in-machine-learning/
https://www.wim.uni-mannheim.de/doering/teaching/past-semesters/fs23/optimization-in-machine-learning/

Machine Learning

05 — Point Estimation
Part 3: MAP Estimation & Regularized Risk Minimization

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Potential problems with MLE

We use logistic regression as an example throughout, but the
discussion applies generally. Potential problems with MLE:
1. Risk to overfit

> E.g., when too many features (and thus weights)

2. Weights may be non-unique or unstable
> E.g., when training data linearly separable
> E.g., when features (in training data) are linearly dependent

3. Does not optimize for classification error

> Fit with lower likelihood may actually produce less errors
(even on training data)
» Likelihood # error

e We now look closer at these problems
e Using a prior is one option to mitigate 1 and 2

e 3 corresponds to (empirical) risk minimization with 0-1 loss
(NP hard, more in DL course)

Example: Weights not unique

e Consider the following training data

r1 T2 | Y
1 110
1 11
e Observe: Features are linearly dependent
o All these weight vectors are MLE estimates

> w = (1 —1)"

> wy=(0 0)"

> wg= (-1 1)

But they give different estimates for new data
> Tpew = (1 0)"

> o(w] Tpew) = 0.73

> o(wg Tnew) = 0.5
> o(w3 Tnew) ~ 0.27

Which weight vector is the “right” one?

3/12

Example: Weights unstable

Recall: training data is linearly separable if there exists a
weight vector w such that for all ¢

’ ’ <0 ify; =0

Implies correct decisions for all training examples

If w separates the training data, so does w’ = cw for some

constant ¢ > 1; i.e., forall z € D

» Wehaven=w'zand ' = (w') z=cw'xz=cn

» 7 and 1’ have same sign — same decision

» |n'| > |n| — higher confidence in decision

» Putting both together, we conclude that w’ corresponds to higher
training-data likelihood

We can repeat this process ad infinitum

— weights increase without bounds

4/12

Adding a prior

e To mitigate these problems, we can make use of a prior

» Recall: posterior o likelihood x prior
» Recall: prior = apriori belief over distribution of parameters

» Prior also allows to incorporate expert knowledge

e Which prior?
> Beta-binomial model not applicable (why?)
» Prior should not contradict available expert knowledge
» Prior should not unduly “overrule” data (=too strong)

e We discuss: spherical Gaussian prior

» Common, simple choice
» See Stan's recommendations for discussion

5/12

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

Refresher: Gaussian distribution

e Mean p € R, variance 02 € R (or precision A\ = 1/0?)
e Denoted N(u,0?)

« Nalpso?) = A exp[— kel —)]
w=20 W=>5
o2 =1 g4 2
A=1 e e
g‘ fs T T 1\0 g‘fs T T 110
o2 =5 9 9
A=0.2 & &

0.
0.

x x 6/12

Multivariate Gaussian distribution

e Mean pu € RP, covariance = € RP*P (or precision A = =71)
e Denoted N (p, X)
e Let |X| be the determinant of X. If X is positive definite:

RN -12.
N =
0| NENBT =5
T T T
-5 0 5
1
po= (1 iy

(spherical) (diagonal

Spherical Gaussian prior

e w ~ N(0,0%I) for some variance hyperparameter o2 > 0

e Equivalently, w; ~ N(0,0?) and weights independent

» Prior gives highest density to zero weights
Prior density of nonzero weights decreases with distance to zero
a2 controls how fast
Intuitively: posterior keeps weights close to zero unless data
suggests otherwise

vvyy

e Posterior

p(w|X,y,0%) o L(w| X, y) N (w|0,0°T)

» Gaussian is not a conjugate prior, posterior not Gaussian
» No closed-form solution
> Bayesian inference often via approximate methods

e This is for logistic regression
> Generally, replace w by 0

8/12

Maximum a posteriori estimation

e Recall: The maximum a posteriori (MAP) estimate wwmap is
the point estimate that maximizes the posterior

dmap = argmax L(w| X, y) N (w|0, o%T)
w
» Think: most likely weight vector given data and prior

e Taking logs, we obtain

WMAP = argmax -E('w|X,y) + logHN(wj|O,a2)]

w
J

- 1
= argmax [/(w| X, y) — Z ﬁwf]
Al o

: A
= argmax | ((w|X,y) - Hwﬂ,
max|

where \ = 1/0?

9/12

Discussion

e Recall our example

Ty T2 | Y
1 110
1 1|1

» When A > 0, wy = (0 0)T is unique MAP estimate
» New-data predictions do not depend on arbitrary choices anymore

e When data is linearly separable and A > 0, weights remain
bounded (why?)

e With A = 0, prior has no effect and we retain MLE
e Data scale matters
» With MLE (and a bias term), shifting or changing the scale of
parameters does not affect predicted probabilities (assignment 2)
> E.g., when we scale a parameter by factor 10 and its weight by
factor 1/10, we obtain the same predictions
» With MAP, this does not hold: rescaled weight vector has higher
prior density (and thus a lower “penalty” for MAP objective)
> Scale needs to be taken into account (e.g., use z-scores)

10/12

Regularized risk minimization (1)

e Recall that for iid data, MLE estimates for classifiers can be
viewed as empirical risk minimization with log loss in that
N

. 1
WmLE = argmin < z; —log p(yi|zi, 0)
1=

Remp (6)

e MAP estimation with spherical Gaussian priors can be viewed as
regularized risk minimization with ¢5 regularization

1

N :
WMAP = argmln[ﬁz—logp vilzi, 0) + o HOHJ

=1
» Spherical Gaussian parameterized by variance hyperparameter o2
» L2 regularization parameterized by regularization coefficient
hyperparameter \' = A\/N = 1/(No?)
> “Large” weight vectors penalized by their squared L2 norm

11/12

Regularized risk minimization (2)

e /5 regularization leads to GD learning rules with weight decay

an—l—l — 0, — anRemp(on) - 611,)\/971,
=(1— e, \N)0;, — €,V Remp(0,)

e Likewise for SGD; with loss L and example z, we obtain

0n+1 — 0, — EnVL(P(YkBZa en)a yz) - 677/\/911,

» E.g., for penalized logistic reg.: w, 11 ¢+ w, + epe, @, — e Nw,
e Notes

> (5 regularization / weight decay generally applicable (model does
not need to be probabilistic)

» For iid data, MAP estimation with diagonal Gaussian prior can be
expressed as regularized risk minimization with weighted /-
regularization (different weight for each parameter)

» And with a general Gaussian prior as RRM with Tikhonov
regularization (penalty is HA'@HQ)

12/12

Machine Learning

06 — Dimensionality Reduction
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Overview

e So far we have looked at basic generative and discriminative
models for supervised learning

e Coming up: dimensionality reduction (unsupervised learning)

e Focus: the singular value decomposition (SVD)

» A basic unsupervised model

» Useful for dimensionality reduction, data compression, and
denoising data

> Best “low rank” approximation to the data

e By studying the SVD, we also learn about key approaches in ML

» SVD is a matrix factorization model

» SVD is closely related to the principal component analysis (PCA)
» SVD is a latent linear model

» SVD is a linear autoencoder

» SVD is important workhorse of linear algebra

>

2/5

Outline (Dimensionality Reduction)

o s b=

Matrix Decompositions
Singular Value Decomposition
Interpreting the SVD

Using the SVD

Latent Linear Models

3/5

Lessons learned

e SVD is the Swiss Army knife of (numerical) linear algebra
— Ranks, kernels, norms, inverses,

e SVD is also very useful in data analysis
— Dimensionality reduction, noise removal, visualization, ...

e Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

e Selecting the right size for truncated SVD can be difficult

e Interpretation of results can be challenging

e Close relationship to

» PCA (center data)
> Probabilistic PCA (generative model)
> Latent linear models as a general framework

4/5

Suggested reading

e Murphy, Ch. 20: Dimensionality Reduction

e David Skillicorn. Understanding Complex Datasets:
Data Mining with Matrix Decompositions
Ch. 3: Singular Value Decomposition
Chapman and Hall, 2007

e Carl Meyer. Matrix Analysis and Applied Linear Algebra
Ch. 5.12: Singular Value Decomposition
Society for Industrial and Applied Mathematics, 2000
http://www.matrixanalysis.com

e Bishop, Ch. 12: Continuous Latent Variables

e Gene H. Golub & Charles F. Van Loan: Matrix Computations,
3rd ed. Johns Hopkins University Press, 1996

» Excellent source for the algorithms and theory, but very dense

5/5

http://www.matrixanalysis.com

Machine Learning

06 — Dimensionality Reduction
Part 1: Matrix Decompositions

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Matrix decompositions

A matrix decomposition of a data matrix X is given by three

matrices L, M, R such that
X =LMR,

where
e X is an m x n data matrix,
e L is an m X r1 matrix,

e M is an 71 X r9 matrix,

R is an 79 X n matrix, and

r1 and ry are integers > 1.
Oftenry=rg=r>1

Tij = D g Lik Mk The

k!

k:.

K’

R

2/13

Matrix decompositions and constraints

e Decompositions as just defined are not really helpful
> Supposewesetr=r; =ro=n, L=X, M =R=1, (the
n X n identity matrix)
» Then X =LMR=XI,I,=X

e To make decompositions useful, they need to satisfy certain
(carefully chosen) properties or constraints

e For example: small r

» Each example is represented by n numbers in X |
» Each example is represented by r numbers in L J M R
> If r < n, we performed some form of compression

e For example: constraints on factor matrices 7NN
» Compare: integer factorization "
> 391 =17-13
L X

3/13

Approximate matrix decompositions

An approximate matrix decomposition of data matrix X is
given by three matrices L, M, R such that

X ~LMR =X,

where each matrix has conforming dimensions (as before).
e Approximation is important because

>

vvyy

>

Approximate decompositions can be much smaller than exact
decompositions (small r)

Reconstruction X can be viewed as a denoised version of X
Can lead to more insightful /interpretable decompositions

More efficient to compute

Generally, trade-off between approximation error and “usefulness”

e ~ can be defined via a reconstruction error E(X, X)

>
>
>

E is an error function; e.g., root mean squared error (RMSE)
Low means good approximation, high means bad
Finding the best approximation (smallest error) can be hard

e Often: “matrix decomposition” said instead “approximate matrix
decomposition”

4/13

Factor interpretation of matrix decompositions

Assume that M is r x r and diagonal. Consider example 7.

e [0 Row of R = part (or piece), called latent factor (“latent object”)
e [Entry of M = weight of corresponding part

e Row of MR = weighted part

e [Row of L = representation of object via weighted parts,
called embedding, code, scores,

distributed representation, ... sz = likmkﬂg
e Size r controls “compactness’ (often r < n)
Each object can be viewed as a combination R
of r (weighted) “latent objects” (or “proto-
typical objects”). Similarly, each feature can .
be viewed as a combination of r (weighted) 170 :
“latent features.” ’

(e.g., latent feature = "body size"; latent object
relates body size to real features such as “height”,
“weight”, “shoe size")

5/13

Example: Weather data (r =

1.00

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

1)
9.05 16,55 26.73 18.75 17.81
Jan Apr Jul Oct Year
Stockholm -0.70 860 21.90 9.90 10.00
Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80
Budapest 120 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50
Bucharest 150 18.00 28.80 18.00 16.50
Barcelona 1240 17.60 27.50 21.50 20.00
Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 2250 21.50
Athens 12.90 20.30 32.60 23.10 22.30
Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

6/13

Example: Weather data (r = 1), reconstruction
1.00 9.05 1655 26.73 18.75 17.81

Jan Apr Jul Oct Year

0.62 Stockholm 565 10.33 16.68 11.70 11.11
0.69 Minsk 6.21 11.36 18.35 12.87 12.23
0.83 London 755 13.80 2228 15.63 14.85
0.90 Budapest 8.11 14.83 2394 16.80 15.96
0.88 Paris 796 1456 2352 16.50 15.67
0.98 Bucharest 891 16.30 26.32 18.47 17.54
1.09 Barcelona 9.88 18.06 29.17 20.46 19.44
1.14 Rome 10.28 18.80 30.35 21.30 20.23
1.16 Lisbon 10.47 19.15 30.92 21.70 20.61
1.24 Athens 11.21 20.50 33.11 23.23 22.07
1.21 Valencia 10.92 19.96 3224 2262 21.48
1.27 Malta 11.47 20.98 33.88 23.77 22.58

X

(RMSE: 2.66) ;.

Example: Weather data (r =

1.00

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

1.00

1.69
2.11
0.00
1.52
0.30
1.59
-0.66
-0.31
-1.09
-0.35
-1.26
-1.12

2), reconstruction

9.05 16,55 26.73 18.75 17.81

-4.14 027 232 -0.89 -0.69

Jan Apr Jul Oct Year

Stockholm -1.34 10.79 2059 10.20 9.95
Minsk -2.52 11.94 2323 10.99 10.77
London 754 13.80 22.28 15.63 14.85
Budapest 1.82 1524 27.46 1545 14091
Paris 6.71 14.65 2422 16.23 15.46
Bucharest 231 16.74 30.02 17.05 16.44
Barcelona 12.61 17.88 27.64 21.05 19.90
Rome 11.55 18.71 29.64 21.57 20.44
Lisbon 15.00 18.85 28.39 22.67 21.36
Athens 12.65 20.41 3231 2354 2231
Valencia 16.14 19.62 29.31 23.74 2236
Malta 16.10 20.67 31.29 24.76 23.35

X

(RMSE: 0.60)

8/13

Example: Weather data (r

Factor 2

2), plot

Minsk

Stockholm

Paris

London

Budap eh]%uchdrestb

Rome Athens

Barcelona

Lisbon Malta
Valencia

0.6

0.8

I
1.0

Factor 1

I
1.2

9/13

Example: Netflix prize data
(=~ 500k users, ~ 17k movies, ~ 100M ratings)

15
)
%Q S
«\Q’\ st {\@\\& S
» S &
& S S F
10 - M R o N
RO RSN St N
A NN &
A . R
5 N ¥ N
S @& &
05 &\ﬂ‘ ‘&%{- S e &
CIENR &
» N P &®
& BN 35
~ N & AR
g 00 @@q@ Q;\z,“ < ‘;\@“
g & \¢ Si $z\q'
g & §z®"\%\
R Se® O S
05 = G S
Q}«QQB%\ &\@ (\&Q Q@%@Q
/{\\s\'&\ SIS ¥ S @
L FE S SO Fe’
N & W e
-10 | S N N
S _&\g\s
NG
_15 =
1 1 1 1 1 1
-1.5 -1.0 -0.5 0.0 0.5 1.0

Koren et al., 2009

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5197422

Example: k-Means / vector quantization

Original

x; (original)

k-means factors correspond to prototypical faces.

11/13

— 1 i 1 1 41
== 1 Iyl 1k
[P NI ECIRN NSV Sl U R p—

R T oo
T .5 I
1e 1 1 1 I 1
........_--.wlr--.q-..n.._n.“ql
§ i
1 1 1 1 1
N __ 1] _.] 1 o
s i ey st § et TS LT
1 1 1 Ay [
L 1 1 1 1
|.I.‘-_||I‘- |"T|F.—-P|-—.|ﬂl
| 1 i i
1 I 1 1; wl 1
e e e e e i e e e i e o
i 1 ﬁ ik gl
R L

Original
(original)
T

T
1

Example: Non-negative matrix factorization
xT.

12/13

NMF factors correspond to parts of faces.

Lee and Seung, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html

Example: Latent Dirichlet allocation

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH R
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER 1
ACTOR NEW SAYS BENNETT (toplc X Word)
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
The William Randolph Hearst Foundation will give 51.25 million to Lincoln Center, Metropoli-

tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch. education
and the social scrvices” Hearst Foundation President Randolph A. Hearst said Monday in

announcing the grants. Lincoln Center’s share will be $200.000 for its new building, which

will house young artists and provide new public facilitics. The Metropolitan Opera Co. and

New York Philharmonic will receive $400.000 each. The Juilliard School, where music and

the performing arts are taught, will get $250.000. The Hearst Foundation, a leading supporter L

of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000 .
donation, too. (dOCXt0p|C)

Blei et al. Latent dirichlet allocation. JMLR, 2003. 13/13

http://dl.acm.org/citation.cfm?id=944937

Machine Learning

06 — Dimensionality Reduction
Part 2: Singular Value Decomposition

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-2

Definition

Theorem

For each A € R™*™, there are orthogonal matrices U ,,5cm, Vixn,
and a diagonal matrix X, x,, with values

012> 09 2>+ 2 Opin(m,n) = 0 on the main diagonal such that
A=UxV'.

e UXV ' is called the singular value decomposition (SVD) of A
e Values o; are the singular values of A

Columns of U are the left singular vectors of A

Columns of V are the right singular vectors of A

2/9

Characterization of the four fundamental subspaces

The fundamental theorem of linear algebra states that every

matrix A € R"™*" induces four fundamental subspaces:

e The column space (range, image) of dimension rank (A) = r
> All & € R™ that are linear combinations of columns of A

e The left nullspace (cokernel) of dimension m — r

» Left null space is orthogonal to column space
» Set of all vectors € R™ for which z"A=0"

e The row space (coimage) of dimension r

e The nullspace (kernel) of dimension n —r

Explicit bases for these subspaces can be obtained from the SVD:
e Column space: the first r columns of U

e Left null space: the last (m — r) columns of U

e Row space: the first r columns of V'

e Null space: the last (n —) columns of V/

3/9

The four fundamental subspaces

dim r dim r
column

space

nullspace
of AT

nullspace dimm-r

of A

dimn-r

The action of A. Row space to column space, nullspace to zero.

Strang, 93

http://www.jstor.org/stable/2324660

Pseudo-inverse

Problem (least squares, linear regression).

Given A € R™*™ and b € R™, find « € R" minimizing ||Ax — b||,.

e If A is invertible, the solutionis A™'Ax = A 'b= x=A"'b
A pseudo-inverse A1 captures some properties of inverse A"
The Moore—Penrose pseudo-inverse of A is a matrix
AT € R™™ satisfying the following criteria
> AATA=A (but it is possible that AA™ £ I)
> ATAAT = AT (cf. above)
> (AAT)T = AAT (AAT is symmetric)
> (ATA)T =ATA (asis ATA)
o If A=USVT is the SVD of A, then | A" = VS U |
» X7 replaces each o; > 0 by 1/0; and transposes

Theorem.
An optimum solution for the above problem is = A™b.

5/9

Pseudo inverse (illustration)

Strang, 93

column
space

p=Axt

-

nullspace
of AT

nullspace
of A

The inverse of A is (where possible) the pseudo-inverse A™.

6/9

http://www.jstor.org/stable/2324660

Truncated SVD

e The rank of a matrix is number of its non-zero singular values
> Easy to see by writing A = me{" m} ojujv;

A truncated SVD only takes the first & columns of U and V'

and the main k x k submatrix of X, where k called size

k

> Ak = Z]—l o;Uu;v j = UkEka

» rank(Ay) =k (if o > 0)

» Uy and Vi are not orthogonal anymore, but they are
column-orthogonal

If K = min{m,n}, then A, = A; called thin SVD (economy-sized)
If & =rank(A), then A; = A; called compact SVD
If £ < rank(A), then Ay is low-rank approximation of A

. \Qk \z

7/9

SVD is best low-rank approximation

Let A=UXV " be the SVD of A. Then
o Al =S g2
o [Aly =01
» Remember: 01 > 02 > -+ > Opinn,my > 0
o Therefore |Al|, < [|A|z < vn|All,
e Sq. Frobenius norm of truncated SVD is || A% = Zle o?

min{n,m} o

> And of the approximation error ||A — A% = ikl O

The Eckart—Young theorem

Let A, = UkEsz be the size-k truncated SVD of A with
k <rank(A). Then Ay is best rank-k approximation to A in
terms of Frobenius norm. That is

|A— Ag||p < ||A—B| forall rank-k matrices B.

8/9

Relationships to eigendecomposition

e An eigenvector of a square matrix A is a vector v such that A
only changes the magnitude of v

> le. Av =)v forsome A e R
» Such A is an eigenvalue of A
> Try it!
e An eigendecomposition of A is A = QAQ ™!
> The columns of @ are the eigenvectors of A
> Matrix A is a diagonal matrix with the eigenvalues
e Not every (square) matrix has eigendecomposition
> If Ais of form BB, it always has eigendecomposition
e The SVD of A is closely related to the eigendecompositions of
AA" and ATA
> The left singular vectors are the eigenvectors of AA"

» The right singular vectors are the eigenvectors of A" A

» The singular values are the square roots of the eigenvalues of both
AATand ATA

9/9

http://setosa.io/ev/eigenvectors-and-eigenvalues/

Machine Learning

06 — Dimensionality Reduction
Part 3: Interpreting the SVD

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Factor interpretation

e The most common way to interpret the SVD is to consider the

columns of U (or V')

> Let X be examples-by-features and USV ' its SVD

> If two rows have similar values in a column of U, these examples
are somehow similar

» If two columns have similar values in a row of V' |, these
attributes are somehow similar

» In both cases, first entries often matter most — truncated SVD

e Example: people’s ratings
of different wines
” e Scatterplot of first and
i second column of U
[e T ' > left: likes wine
' Tt o > right: doesn't like
s » up: prefers red wine
Ty » bottom: prefers white vine

e Conclusion: winelovers like

red and white, others care
Skillicorn, p. 55 2/17

Figure 8.2. The first two factors for a dataset ranking wines.

Example: Weather data (k =

1.00

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

1.00

1.69
2.11
0.00
1.52
0.30
1.59
-0.66
-0.31
-1.09
-0.35
-1.26
-1.12

2)
9.05 16,55 26.73 18.75 17.81
-4.14 027 232 -0.89 -0.69
Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00
Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80
Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50
Bucharest 150 18.00 28.80 18.00 16.50
Barcelona 1240 17.60 27.50 21.50 20.00
Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 2250 21.50
Athens 12.90 20.30 32.60 23.10 22.30
Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20
X

(RMSE: 0.60)

3/17

Example: Weather data (k = 2), truncated SVD

147.54

0.18
0.19
0.24
0.25
0.25
0.28
0.31
0.32
0.33
0.35
0.34
0.36

20.09

0.41
0.51
0.00
0.37
0.07
0.39
-0.16
-0.07
-0.27
-0.08
-0.31
-0.27

022 040 064 045 043

-0.85 0.06 047 -0.18 -0.14

Jan Apr Jul Oct Year

Stockholm -0.70 860 21.90 9.90 10.00
Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80
Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50
Bucharest 150 18.00 28.80 18.00 16.50
Barcelona 1240 17.60 27.50 21.50 20.00
Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 2250 21.50
Athens 12.90 20.30 32.60 23.10 22.30
Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

X

(RMSE: 0.60)

4/17

Thin SVD of Weather data (U)

Stockholm
Minsk
London

Budapest
Paris
U; = Bucharest
Barcelona
Rome
Lisbon
Athens
Valencia
Malta

1

0.18
0.19
0.24
0.25
0.25
0.28
0.31
0.32
0.33
0.35
0.34
0.36

2

0.41
0.51
0.00
0.37
0.07
0.39
—0.16
-0.07
—0.27
—0.08
—0.31
-0.27

3

0.61
0.08
0.20
—0.39
0.05
—0.49
—0.01
0.30
—0.23
0.10
—0.12
0.12

4

0.28
—0.54
—0.15

0.18
—0.25

0.30

0.33

0.10
-0.27
—0.23
-0.21

0.37

5

—0.32
0.40
0.04

—0.10

—0.22
0.08

—0.26
0.07

—0.46

—0.09
0.17
0.59

5/17

Thin SVD of Weather data (%)

s —

1

2

1{ 147.55 0.00

2
3
4
5

0.00
0.00
0.00
0.00

20.09
0.00
0.00
0.00

3
0.00
0.00
4.25
0.00
0.00

4

0.00
0.00
0.00
1.77
0.00

)
0.00
0.00
0.00
0.00
0.32

6/17

Thin SVD of Weather data (V)

1

Jan [0.22
Apr | 0.40
Vs="Ju| 0.64
Oct | 0.45
Year \0.43

2

—0.85
0.06
0.47

—0.18

—0.14

3

0.31
—0.74
0.54
—0.25
—0.03

4

—0.30

—0.52

—0.16
0.78
0.05

5

0.21
0.17
0.21
0.30
-0.8

7/17

Example: Weather data (r = 2), SVD plot

uz

Minsk
< _{Stockholm harests
S Budap eh]%uc harests
~
AR
Paris
g — London
Rome Athens
~ Barcelona
?__
Lisbon Malta
Valencia
I I I I
0.20 0.25 0.30 0.35

up

8/17

Orthogonal matrices and rotations

e Orthogonal matrices are rotation matrices

e Consider orthogonal matrix Q

e Inner products are retained: (Qz)" (Qy) =z ' Q' Qy=2"y
e Thus Euclidean norms also retained: ||Qz| = ||z||

e Implies that all angles are retained

. [Qol2
cos@ —sinf
¢ In2D:Qp = (sin@ cos 6)
» Consider vector [Qol:1
=re; + yes N
x
> Q <y> =2[Qqla +y[Qpl2 : 7 . .

e Thus: the columns of @Q form "new axes” for rotation Qv
(and also vT Q)

e Similarly: rows of Q form “new axes” for rotation Qv
(and also v ' Q; rotates backwards)

9/17

Geometric interpretation (1)

X50%2

L T 11.64 0
o 0 1.69

10/17

Geometric interpretation (2)

e Let UV T be the SVD of

M
a M, l e SVD shows that every
linear mapping y = Mx
jv*

can be considered as a
v series of rotation,
stretching, and rotation

D) e operations
T
» Matrix V' performs the

first rotation y, = V'@
» Matrix ¥ performs the
stretching y, = Yy,
» Matrix U performs the
second rotation y = Uy,

M=UX-V*

Wikipedia user Georg-Johann 11/17

http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

Direction of largest variation (1)

e The right singular vectors give the
directions of the variation in the data
P The first right singular vector is the
direction of the largest variation

Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013 12/17

Direction of largest variation (2)

e The right singular vectors give the
directions of the variation in the data

P The first right singular vector is the
direction of the largest variation

» The second right singular vector is
orthogonal to the first one and gives
the direction of the second-largest
variation

» First two directions span a
hyperplane

e From Eckart-Young we know that if
we project the data to the spanned
hyperplanes, the (sq.) distance of the
projection is minimized

Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013 13/17

SVvD

and linear regression (1)

Consider the 1-dimensional case.

Recall: linear regression models response y € R as a linear
function of input z € R

Parameterized by a weight vector w = (wp wl)T € R?,
consisting of bias wg and slope w;

Prediction is §j = w - (1 x)T,
the error is (y — §)?

(least squares)

Goal is to minimize
this error, i.e., ||ly — Y|l2

Generally,
set X1 =(1 X),
then w = Xy

n 14/17

SVD and linear regression (2)

e Contrast this to the size-1 truncated SVD of X = (z y)

e We obtain a vector u1, a scaling coefficient o1, and a vector v
e Let's look at the line described by v (roughly corresponds to w)
e Reconstructed data is X = ulalvlT; all points lie on the line

e There is no distinguished response variable;
we minimize (sq.) distance to line instead;
e, | X — X1z

e This is different from regression

n 15/17

SVD and linear regression (3)

16/17

Component interpretation

e Recall that we can write
X=UxV' = Zalul ZX

where X(z) = Uiuiv,?

e This explains the data as a sums of (rank-1) layers

> The first layer explains the most
» The second corrects that by adding and removing smaller values

» The third corrects that by adding and removing even smaller values
|

e The layers don't have to be very intuitive

17/17

Machine Learning

06 — Dimensionality Reduction
Part 4: Using the SVD

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Outline

1. How many factors?

2/18

Problem

e Most applications do not use full SVD, but truncated SVD
» To concentrate on “the most important parts”

e But how to select the size k of the truncated SVD?
» What is important, what is unimportant?
» What is structure, what is noise?
» Too small: all subtlety is lost
» Too big: all smoothing is lost

e Typical methods rely on singular values in a way or another

P> Neither of these methods is fully convincing
> Problem addressed by factor analysis (discussed later)

3/18

Guttman—Kaiser criterion and captured energy

e Perhaps the oldest method is the Guttman—Kaiser criterion:
» Select k£ so that forall i >k, 0; < 1
» Motivation: all components with singular value less than unit are
uninteresting
e Another common method is to select enough singular values
such that the sum of their squares is 90% of the total sum of
the squared singular values
> The exact percentage can be different (80%, 95%)
> Motivation: The resulting matrix “explains” 90% of the (sq.)
Frobenius norm of the matrix

e Problem: Both of these methods are based on arbitrary
thresholds and do not consider the “shape” of the data

4/18

Cattell's Scree test

e Scree plot shows squared singular values in decreasing order
> The plot (hopefully) looks like debris in front of a hill, hence the
name
e The scree test is a subjective decision on the size based on the
shape of the scree plot
e The size should be set to a point where
> there is a clear drop in the magnitudes of the values; or
> the values start to even out
e Problem: Scree test is subjective, and many data don’t have
any clear shapes to use (or have many)
» Automated methods have been developed to detect the shapes
from the scree plot

5/18

Entropy-based method

e Consider the relative contribution of each singular value to the
overall (sq.) Frobenius norm

> Relative contribution of o, is fr, = 03/, 07
e We can treat these as probabilities and define the (normalized)
entropy of the singular values as

min{n,m}

E = ! Z filog fi

_log (min{n, m}) —

» The basis of the logarithm doesn't matter

» We assume that 0- 00 =0

> Low entropy (close to 0): the first singular value has almost all
mass

» High entropy (close to 1): the singular values are almost equal

e The size is selected to be the smallest k& such that Zle fi>Fk
e Problem: Why entropy?

6/18

Random flip of signs

e Multiply every element of the matrix A randomly with either 1
or —1 to get A
> The Frobenius norm doesn't change (|| A|, = ||A| r)

» The spectral norm does change (||Al|, # [|A]|2)
> The change is the larger the more “structure” A has

e Idea: select k such that the residual matrix contains only noise
» X _,. =X — X, is the residual matrix after size-k truncated SVD
> X _4 is based on the last m — k columns of U, min{n, m} — k
singular values, and last n — k rows of v’
> Construct X_;, from X _; by randomly flipping signs
» Select size k to be such that

1% —klly = 11X |2
1 X &l

is small

e Problem: How small is small?

Achlioptas and Mcsherry, 2007

7/18

https://dl.acm.org/citation.cfm?id=1219097

Outline

2. Data preprocessing and PCA

8/18

Normalization

e Consider data normalization before SVD is applied
P> SVD is sensitive to data scaling
> If one attribute is height in meters and another weights in grams,
weight seems to carry much more importance
> |If data is all positive, the first singular vector just explains where in
the positive quadrant the data is

e The z-scores are attributes whose values are transformed by
> Center each attribute (subtract mean)
> Normalize each attributes to unit variance (divide by standard
deviation)
> Implicit assumption: attributes normally distributed (so that
centering and rescaling to unit variance is meaningful)
» Implicit assumption: attributes have equal importance

e Values that have larger magnitude than importance can also be
normalized by first taking logarithms (from positive values) or
cubic roots or ...

9/18

Relationship to PCA (1)

e Truncated SVD can also be used to battle the curse of
dimensionality

> All points are far from each other in very high dimensional spaces

» High dimensionality slows down data mining algorithms

> If we use the truncated SVD, every example is represented by its
row in Uy, (k values instead of n)

> If k£ < n, we performed dimensionality reduction

e SVD is closely related to principal components analysis (PCA)
» Technically, PCA works as follows:

Center each attribute of X to obtain M
Compute the sample covariance matrix § = M "M /(m — 1)
Compute the eigendecomposition S = QAQ " s.t. Q orthogonal

The columns of Q are called principal components

The corresponding eigenvalues in A are the component weights
Try it!

We now show: PCA =~ SVD on centered data

VVYVYVY @ F

10/18

http://setosa.io/ev/principal-component-analysis/

Relationship to PCA (2)

e Relationship between SVD and PCA
> M: centered data, S = M " M /(m — 1): sample covariance
S =QAQ": eigendecomposition of S (computed by PCA)
M =UZV": SVD of M
Observe: SVD of M /v/m — 1 is then U(X/v/m —1)V '
From slide 06-2/9, we know that @ =V
— Principal components = right singular vectors of M
» From slide 06-2/9, we know that 3?/(m — 1) = A
— Components weights = scaled roots of singular values of M

vVVvVYVYyYyY

e PCA associates each data example with a set of scores
» One per principal component
m X n “score matrix’ given by Z = MQ
We have: Z=MQ = (USV'")V =UXZ
Known as the Karhunen—Loéve transform (KLT) of rows of M
For dimensionality reduction, we only take the first & components:

Zy=MQ, =UrXy

vVVvVYVYyYy

e More later when we talk about latent linear models
11/18

Relationship to PCA (3)
M50x2 = U, > Vi=Q;

O B B N 11.64 0 Y9
0 1.69)-

‘‘‘‘‘‘‘

Z,=MQ,=U%; Zos=MQ, =U3%,

o0 o @S ©
b o omcmmmommmo oo o
[o of ° o

What is the difference between the PCA and the SVD of X (# M)?

12/18

Outline

3. Other Uses

13/18

Denoising data

e Common application of SVD is to remove noise from data
» Perturbations with random noise do not significantly affect good
low-rank approximations (see, e.g., Achlioptas and Mcsherry, 2007)
» Assume X = A + E, where A is low-rank data and E is noise
» If noise is iid (mean 0) and not too large, we can approximately
recover A by taking the truncated SVD of X
> As before, key problem is to select &

e Example
’ e Original data
g P> Looks like 1-dimensional with some noise
.o ukg‘;i‘;'ﬁ“
I e The right singular vectors show the directions

» The first looks like the data direction
» The second looks like the noise direction

\/ e The singular values confirm this (large drop)

> o, =11.64
> g9 =1.69

14/18

https://dl.acm.org/citation.cfm?id=1219097

Visualization

e Truncated SVD with k& = 2,3 allows us to visualize the data

» We can plot the projected data points after 2D or 3D PCA
» Or we can scatter plot the entries of two or three singular vectors
» Or we color data points based on their entries in a singular vector

>

Skillicorn, p. 55;

e

Figure 3.2. The first two factors for a dataset ranking wines.

Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013

15/18

Latent semantic analysis

e The latent semantic analysis (LSA) is an information retrieval
method that uses SVD

e The data: a document-term matrix X

> Values are (weighted) term frequencies
> Typically tf-idf values (the frequency of the term in the document
divided by the global frequency of the term)

e The truncated SVD X = UkEng of X is computed

» Matrix U}, associates documents to “topics”

P> Matrix Vi, associates “topics’ to terms

> |If two rows of Uy, are similar, the corresponding documents talk
about the “same topics”

e A query ¢ can be answered by considering its term vector q
> g is projected to g, = (¢ V. =]) T (called: fold in)
> g, is compared to rows of U} and most similar rows are returned

Landauer & Dumais, 1997

16/18

http://lsa.colorado.edu/papers/plato/plato.annote.html

Outline

4. Computing the SVD

17/18

Algorithms for SVD

e In principle, the SVD of X can be computed by computing the
eigendecomposition of X ' X

P This gives us right singular vectors and squares of singular values
» Left singular vectors can be solved: U = XVX™T
» Bad for numerical stability

e Full SVD can be computed in time O(nm min{n, m})
> Matrix X is first reduced to a bidiagonal matrix
» The SVD of the bidiagonal matrix is computed using iterative
methods (similar to eigendecompositions)
e Methods that are fast in practice exist
» Especially for truncated SVD
e Efficient implementation of an SVD algorithm requires
considerable work and knowledge

» Luckily (almost) all numerical computation packages and programs
implement SVD

18/18

http://web.archive.org/web/20180328201310/http://web.mit.edu/ehliu/Public/Yelp/conditioning_and_precision.pdf

Machine Learning

06 — Dimensionality Reduction
Part 5: Latent Linear Models

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Latent variable models

e Latent variable models (LVM) are models that assume that
the data is explained by a set of unobserved latent variables

e Example: Weather data of Slide 06-1/6

» One latent variable z; may correspond to mean temperature
(cold or warm?)

» Another latent variable zo may correspond to temperature variance
(balanced or hot summers/icy winters)

» LVMs then assume that a city's temperature data («;) can be
.

)

explained by its values of the latent variables (z; = (21 2i2)

e LVMs are conceptually very general

> Latent variables can be used to model dependencies (cf. graphical
models)

> E.g., dependencies between features

E.g., dependencies between examples (non-iid data)

»> More in IE678 Deep Learning course

v

2/12

Latent linear models

e In latent linear models (LLM) the relationship between the
example x and the respective latent variables z is linear

r=Wz+p+e

x € RP refers to data point

z € RL to refers latent variables for this data point
Parameter p € R” is a bias term

Parameter W € RP*L describes how to “transform” z
(factor loading matrix)

» e € R is a noise term (independent, mean 0)

vvyvyy

e We can interpret SVD and PCA as LLMs
> SVD:u=0, W=V, z; =%"u, (where u; = UZT)
> PCA:ip=L1% o, W=Q, 2 = Q" (z; —)
» For dimensionality reduction, we only keep the first L < D
components (then generally not exact, €; # 0)
» Neither model is generative

3/12

Factor analysis

e Factor analysis is an LLM where both latent variables and
noise is assumed to be Gaussian

e We obtain the generative model
z~N(0,I)
x|z,0 ~ N(Wz+ p,)
> W c RP*P s a diagonal covariance matrix of the noise
» Diagonal since z; should explain the correlation in the data, not

the noise term
> Parameters are 6 = { W, u, ¥}

e One can show that the marginal distribution is Gaussian, too

p(z]0) = N(z|p, WW T +)

4/12

Probabilistic PCA

e When ¥ = 52T (isotropic Gaussian noise), the resulting model
is called probabilistic PCA (PPCA)

e In PPCA, data is generated by transforming a standard
multivariate Gaussian r.v. (z) into data (x)

1. Map point to mean Wz + u
2. Add Gaussian N (0, ¥) noise

Example: 2D data (D = 2), 1D latent variable (L = 1)

A A
X, Y %
p(x[2)
: &
Z|w|
p(z) p(x)

5/12

Why factor analysis?

e If data is assumed multi-variate Gaussian (MVN) in factor
analysis, why not directly estimate the mean vector and
covariance matrix?

e Reason 1: PPCA defines a density on @ with less parameters
» PPCA: D for mean, DL for W
» MVN: D for mean, D? for ¥

e Reason 2: Hope that z reveal interesting properties / are useful
> Posterior of latent variables

p(z|@,0) = N(z|m, %)
S=I+W'elw)!
m=XW ¥z —p)
» m are called scores (= cond. expectation of latent variable)
» Dimensionality reduction when L < D: z,m € R
» Latent variables then serve as a bottleneck, i.e., a small,

compressed representation of the data

6/12

Reconstruction of PCA vs. PPCA

-5 3 E = = = o g B

(a) (b)

Figure 12.5 An illustration of PCA and PPCA where D = 2 and L = 1. Circles are the original data
points, crosses are the reconstructions. The red star is the data mean. (a) PCA. The points are orthogonally
projected onto the line. Figure generated by pcaDemo2d. (b) PPCA. The projection is no longer orthogonal:
the reconstructions are shrunk towards the data mean (red star). Based on Figure 7.6 of (Nabney 2001).
Figure generated by ppcaDemo2d.

7/12

Unidentifiability

e Parameters of FA are unidentifiable, i.e., multiple different
parameter choices correspond to the same data distribution
> E.g., if we rotate W via an orthogonal matrix R, we obtain an
equivalent marginal distribution (cf. slide 4), but different scores
(rotated too)

e Unidentifiability implies that “true” parameters cannot be found
> Even with infinite data
» Does not affect predictive performance of the model
(we can find an equivalent parameterization)
» Does affect interpretation of the factors

e Common solutions
> Force W's columns to be orthogonal, order by norm (as in PCA)
> Force W to be lower triangular
> Use a (sparsity-promoting) prior on weights
> Use a non-Gaussian prior on the latent factors (e.g., ICA)

8/12

Discussion (1)

e Parameters of FA models can be fit using the EM algorithm
(more later)

e For PPCA, MLE estimate (assuming centered data) is

Wie = Q. (AL — o21)'/?

1 D
OinLe = D_1L Z Aj
j=L+1

» Q) are first L eigenvectors of data covariance matrix (as in PCA)

» Ay contains the corresponding eigenvalues (as in PCA); they are
subsequently “reduced” by o2 (towards 0)

» When noise variance o2 — 0 (no noise) in PPCA, we obtain PCA

> MLE 63, ¢ of noise (or error) is average variance of discarded
dimensions

9/12

Discussion (2)

e Choosing number of latent dimensions

» Since PPCA is probabilistic, model selection is more principled
(e.g., use L that maximizes the likelihood of validation data)

» PCA can reconstruct the better the more components

» PPCA model gets punished if it uses too many components (and
thus puts probability mass on regions with little data)

e Can be extended in multiple ways; e.g.,

» In supervised PCA (Bayesian factor regression), additionally
model target y|z, 0 ~ N (w, z + i, 02)

> Also possible for other label distributions (e.g., classification)

> In independent component analysis (ICA), use a non-Gaussian
prior distribution on the z, which can give more interpretable (and
unique) results

10/12

Reconstruction error of PCA vs. PPCA

rain set reconsiruciion arrer et set recorsiruction aror

ol »
1 |
a0 B
2 2|
w w0
W e o o £ e o
numpcs um pea
(@) (b)

Figure 1214 Reconstruction error on MNIST vs number of latent dimensions used by PCA. (a) Training
set. (b) Test set. Figure generated by pcaOverfitDemo.

io rain set negaina oglk

et tost ot negatvn gl
21 N
B
23
19
M g 22
£ 9] 5
£ i
£ 3
i
9
15
19
14
! 100 E 400 E 100 200 400 S00
meos nam s
(a) (b)

Figure 12.15 Negative log likelihood on MNIST vs number of latent dimensions used by PPCA. (a) Training
set. (b) Test set. Figure generated by pcaOverfitDemo.

11/12

Example: ICA vs. PCA

truth

[AARAARAAARANA A N-';.w‘,u” ML
o LA AT LA i}
I | AR U H UL
}'u"w‘-.“.-\)'.\w,“.w‘w,'b”\,‘\-‘l,‘ [k w“ﬂ\“n‘u‘mw R

n 100 200 300 400 500

1) H
f

frH('W Y

0 100 200 300 400 500

fﬂ/\ /] ’/A/V/W/V/I/M W

- ’Jr 4

o 100 200 300 400 500
o R Ty MwMM;ﬂHWV’W MW’{
% 100 200 300 400 500

(a)

PCA estimate

10
0 \,’“VW"\ \A /»"‘ph g ”’WJL"“JH"\."MW Iﬂ f\r“wﬂ" Aty w
% 100 200 300 400 500
5

0 bbbl AR AR ARAAAAAA AN AT

100 200 300 400 500

o
)’W’T‘“ \”‘Jl,’(l’.\“\n‘/ Lt b ‘\.'A ‘v"“\ﬂn’ﬂ P LA,{!"*

100 200 300 400 500

“
o}wf ~N Wy prd V‘I\W'WAWHWP/“JlN A AUl '{
0

100 200 300 400 500

observed signals
10
0 L“~\:,/‘{"\M"MA/mW\"J‘*N’h>-”n"“UV’WNl'I’Vv'\fV,‘WWFM»{“ﬂ"f;/*

-10
0 100 200 300 400 500

5
)- PRI M A A MVNN'\,F/'WW

-5

0 100 200 300 400 500
10

e

O AN i S A ot w{

- 100 200 300 00 500
0 !‘,\,‘ M\J'\/lf"\‘rf"fr’ M’k’, uA,L-L}«“‘ﬁﬂy WLJ‘WJ’JWW/" \u ‘,J‘A
o 100 200 aou a0 500

b
ICA estimate
))
S]

D 100 200 300 400 500

0 k oo st st Moy MW“M‘]“M%
n

100 200 300 400 500
|1 AR FiARr AR AR
F‘w"mw‘j\;“.u““s\,e‘u\f".“J‘.e';t;"uhu‘Uu,,‘w\;"”'l‘m;“m‘.,‘\J‘,JWM
2 100 200 300 400 500

2.
r J r F J\ NN H
MY

300 400

12/12

Machine Learning

07 — EM Algorithm & Mixture Models
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Overview

e So far we assumed that all relevant variables are observed
» In supervised learning: { (x;,y;) } during training
(and @5t during prediction)
» In unsupervised learning: {z; }

e Coming up: How can we fit parameters if data is missing?

» Training data is incomplete
> Model contains latent variables (such as PPCA)

e In this lecture

» The EM algorithm for ML/MAP parameter estimation
> Mixture models, a powerful and useful class of models that can be
fit with EM

2/5

Outline (The EM Algorithm)

1. Introduction
2. The EM Algorithm
3. Mixture Models

3/5

Summary

e EM algorithm

Framework for ML or MAP parameter estimation with missing data
E.g., partially observed data or LVMs

Iterates E(xpectation) and M(aximization) steps

E step infers missing-data distribution using current parameters

M step updates parameters using current missing-data distribution

VVVYYVY

xture models

Density modeling, clustering, mixture of experts

For clustering, provides soft clustering (cluster membership
probabilities instead for hard assignment)

In GMMs, each component distribution is a multivariate Gaussian
Parameter estimation via EM

e Mi
> LVM with categorical latent variable
>
>

vy

4/5

Literature

e Murphy, Ch. 8.7 Bound Optimization, Ch. 3.5 Mixture Models,
Ch. 21.4 Clustering using mixture models

e Mohammed J. Zaki, Wagner Meira Jr
Data Mining and Analysis: Fundamental Concepts and
Algorithms (Chapter 13.3)
2nd edition, Cambridge University Press, 2020

e Geoffrey McLachlan, Thriyambakam Krishnan
The EM Algorithm and Extensions
2nd edition, Wiley-Interscience, 2008

5/5

https://dataminingbook.info/book_html/chap13/book.html

Machine Learning

07 — EM Algorithm & Mixture Models
Part 1: Introduction

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

The EM Algorithm

e The EM algorithm is a framework to estimate model
parameters with missing data
» Due to Dempster, Laird, Rubin (1977)
> Rather a framework than an algorithm
» Entire books can be written about it

e Useful when

» Observed data and missing data jointly modeled

» MLE or MAP estimation desired, but direct methods are involved

> But: parameter estimation would be “easy”, when all data were
known (M step)

» But: handling of missing values would be “easy”, when all
parameters were known (E step)

o Key idea
» |terative method

» Alternate between E step (using current parameter estimates) and
M step (using “filled in" data)

2/12

http://web.mit.edu/6.435/www/Dempster77.pdf
https://www.wiley.com/en-us/The+EM+Algorithm+and+Extensions%2C+2nd+Edition-p-9780471201700

Recall: Multivariate Gaussian distribution

e Mean pu € RP, covariance = € RP*P (or precision A = =71)
e Denoted N (p, X)
e Let |X| be the determinant of X. If X is positive definite:

RN -12.
N =
0| NENEBT =5
T T T
-5 0 5
1
po= (1 iy

(spherical) (diagonal

MLE for Multivariate Gaussian

e Generative model: & ~ N (p,X)

e With N iid. observations, x1,...,xy, ML estimate is given by
sample mean and (uncorrected) sample covariance:
. 1 & 1 . N
PMLE = 37 sz XMLE = N Z(wi—u)(wi—u)T
i i

4/12

Missing data mechanisms (1)

e Some reasons for missing data

> High cost of (complete) data aquisition
» Errors in data aquisition

» Non-response in surveys

> Latent variable models

e Missing data mechanism is important for data analysis

» Relationship between the complete data and the event that a data
item is missing

e Missing Completely At Random (MCAR)

> Event that data item is missing is independent of observed and
missing data, i.e., occurs completely at random

> No systematic reason for why data is missing

Rare in practice

» Example: some questions only asked to random subset of persons
in a survey

v

5/12

Missing data mechanisms (2)

e Missing At Random (MAR)
» Event that data item is missing depends on observed data but not

on missing data
> Reason for missing data is systematic, but can be explained by

observed data

> Example: students write 4 assignments (4 observed variables per
student), only the ones who passed 3 assignments write the exam
(1 variable per student)

e Missing Not At Random (MNAR) (non-ignorable)
» Event that data item is missing can depend on observed and
missing data
» Example: persons with high-income may respond to questions
about income with lower probability

e Mechanism often cannot be determined
> Here we are mainly interested in latent variable models (= MCAR)
» Generally, we subsequently assume: MCAR oder MAR

6/12

Example: Multivariate Gaussian with missing values

e Generative model: ~ N (u, X), 2D

e MAR mechanism: in each example (z1,z2), x2 is likely to be
missing when z; > 1 (otherwise observed)

e Each data point with missing data lies on a line (given by 1),
but we do not know where

(e}

° g%%%
@O

[e}
o
o

oo

5 0 5 7/12

Complete case analysis

e Complete case analysis (listwise deletion) is simplest method
» Ignores all data points with missing data
» Can lead to biased estimates when mechanism is not MCAR
> Does not use all available data

» Not useful for LVMs

ot~

8/12

Marginals and conditionals of Gaussian models

Theorem

Suppose x = (x1,x2) is jointly Gaussian with parameters
1y Y1 e -1 A A12>
= y 2 = 5 A = E = .
H (H2> (221 222> (A21 Ay
Then the marginals are given by
p(x1) = N(z1lpy, En1), p(z2) = N(22|ps, B22),
and the conditional distribution by
p(x1|z2) = N(21|p1)2, Z1)2)
Mg = py + S1285 (T2 — o)
=H1— Af11A12(fB2)
=p(Anp; — Az — py))
Yip =% - 21222_21221 = A1_11

9/12

Missing-data distribution

If we know the model parameters, we can use this result to
determine the distribution of missing data. E.g., for our 2D

example with p = 1) and = = (7" 7'2) | we obtain
2 O21 022

p(x2]z1) = N(z2lpe + 021077 (21 — 1), 022 — 02107, 012).

|
ot
o
ot

10/12

Intuition of EM algorithm

e Given the model parameters, we can determine the distribution
of missing data

» But we do not know the model parameters

e Given the distribution of missing data, we can determine the
model parameters

> But we do not know the distribution of missing data

e The EM algorithm exploits these observations

1.
2.

Start with initial parameter estimate (e.g., random)
Determine distribution of missing data based on current parameter
estimate — E step

. Estimate parameters based on this distribution of missing data

— M step

. Iterate steps 2 and 3 until a stopping criterion is satisfied

11/12

Example

Data
od

o
° 9
o gb)%%
o 9

12/12

Example

Initial parameters

12/12

Example

After E step #1

12/12

Example

After M step #1

Example

After E step #2

12/12

Example

After M step #2

12/12

Example

After E step #3

12/12

Example

After M step #3

12/12

Example

After E step #100

12/12

Machine Learning

07 — EM Algorithm & Mixture Models
Part 2: The EM Algorithm

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-2

Terminology

e We split all available data into

> z = observed data

P> z = missing data

» d = (x,z) = complete data

» Generally, x, 2z, and d are sets of variables
e E.g., for iid data with missing values for each data point

> x={w }1111 = observed values for each example

> 2= {2z}, = missing values for each example

> d={d;})", withd; = (x;, 2;)

> Set of observed and missing values may be differ for each example
e Our focus

> Given a generative model class p(x, z|0),

> Determine the observed-data ML estimate Oy g = argmaxg p(x|6)

e EM also applicable (but not discussed here) for
> MAP estimation Oyap = argmaxg p(x|0)p(6)
> Discriminative models of form p(y, z|x) when explanatory
variables x fully observed
2/9

Observed-data log-likelihood
e Complete-data log-likelihood
(e(8) = log p(x. =|6)
cannot be determined (and thus maximized), since z unknown

e Instead, we maximize the observed-data log-likelihood

£0(6) Lo p(a[6) = log [p(w.2[6) dz
z
e But how? E.g., may use a gradient-based optimizer
» Enforcing constraints on 0 can be tricky
> Integral can be tricky to evaluate; e.g., 8 influences both
distribution of missing values and likelihood of observed values

(,(6) = log / p(z|z.0)p(2]0) dz

e EM is often much simpler (but not always faster)

3/9

Missing-data distribution

Given a parameter estimate 8(), we can determine the distribution
of the missing data z

p(z, 2|0W)
p(z0®)

In the examples so far, we visualized p(z|x, O(t)).

p(Z‘.’IJ, G(t)) =

4/9

E step

e In the E step, the EM algorithm “computes” the Q function
(auxiliary function)

def
= Ez'a;’e(t) [Ec(a)]

_ / p(z|z,00) logp(e, 2(6) d=

z

Q(6le™)

depends on 6(t) depends on 8
> 9) determines missing-data distribution (old parameters, fixed)
» 6 determines complete-data log-likelihood (new parameters)
» Q function corresponds to expected complete-data
log-likelihood for a fixed missing-data distribution

e “Compute” means to determine quantities that can be used to
evaluate Q(0]0™) efficiently (with) fixed)

> E.g., determine missing-data distribution p(z|z,0®)
> E.g., express Q function in closed form

5/9

M step

In the M step, the EM algorithm computes new parameter values
by maximizing the Q function

0+ argmax Q(0|6™)
7]

After the M-step, the estimated missing-data distribution of z
changes since the parameter changed. This is not accounted for in
the Q function, thus: E step, M step, E step, M step, ...

Theorem

The EM algorithm monotonically increases the observed-data
log-likelihood in that

go(e(t-‘rl)) > Eo(e(t))
and

lo(01H)) > £,(0M) if 81) is not a stationary point of (.

6/9

Proof > (1)
1. Rewrite the observed data log-likelihood as

£5(8) = log p(z|0) = log p(x, 2|0) — log p(2|z, O)

2. Take conditional expectations on both sides

lo(0) = E,, g [logp(, 2|0)] — E_, g0 [log p(z|, 0)]
=Q(0]6") + H(o]6")

e E, | o[~ logp(z|z,8)] is cross entropy® of

> H(6]6")
p(z|xz, 0) (new parameters) relative to p(z|z,8®) (old
parameters, used in Q function)

> Observed-data log-likelihood = Q function + cross entropy

!Note: We write H(q|p) = E,[—logg] in this lecture for consistency with
the @ function. In lecture 05-1, we wrote H (p, q) instead.

7/9

Proof > (2)
3. Express improvement in terms of () and H
go(a(t-‘rl)) _ go(a(t))
= QO — QoW 0M) + H(O TV |0W) — H(OM W)

>0 (M step) > 0 (see below)

4. Q function non-decreasing since that is the objective of M step

5. Cross entropy also non-decreasing since H(q|p) > H (p|p)
(Gibbs’ inequality). Step by step:

H(qlp) — H(plp) = Ep[—log q/p] (Jensen's inequality)
> —log Eylq/p] (def. expectation)
q(z)
= — 10 / z dz
e [P25
=—logl =0,

where p = p(z|z,0")) and ¢ = p(z[=, 6"+

8/9

Discussion

e Convergence to local maximum or stationary point of £,(6)
> May not find global maximum
> May run multiple times with different initializations

(e.g., random restarts)

e In practice, use stopping criterion

> E.g., small improvement in observed-data log-likelihood or Q function
» E.g., small change of parameters

>

E.g., limit of total number of iterations or time budget

e Depending on model, E and M steps may still be complicated

e Many variants

>

vVVvyVvyy

Goals include better convergence, support for complex models,
parallelizability

Generalized EM (don’t maximize but improve Q)

Stochastic or batch EM (use subset of examples)

Monte-Carlo EM (approximate E step)

Hard EM (impute missing values)

9/9

Machine Learning

07 — EM Algorithm & Mixture Models
Part 3: Mixture Models

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Mixture models
e A mixture model (MM) is a latent variable model with a single
categorical latent variable z per example x
z ~ Cat(m)
x ~ some distribution p(x|z,)

e Equivalently,
m|0 Zﬂ'kpk 213|0 Ogﬁkgl,z:ﬂ'k:1

» Data modeled as a mixture of K base distributions py (mixture

components), where py.(x|6) def p(x|z =k, 0)
> Mixing weights 7, where 7, = p(z = k|9)
» Convex combination (7 € S¥)

e Interpretation: each data point generated from one base
distribution — latent variable z

e Main applications: density modeling, clustering

2/16

K-means clustering

I{-means is perhaps most popular clustering objective

Given a distance function, partition examples into K clusters
Each cluster represented by a centroid (= cluster mean)
Goal is to minimize sum of sq. distances between each data
point and its closest centroid

Space partitioned by Voronoi diagram of centroids

We will see: closely related to (Gaussian) mixture models

3/16

https://en.wikipedia.org/wiki/Voronoi_diagram

Assumptions of K-means clustering

K-means clustering inherently assumes that
1. Clusters are spherical,

2. Clusters are non-overlapping,

3. Clusters have similar sizes.

4/16

Gaussian mixture models (GMM)

Gaussian mixture models (GMMs) are MMs in which the base
distributions are multivariate Gaussians.

p(xz|0) = ZWkN (|py,, i)

e Generative model
e Note: p(x|0) is not Gaussian (e.g., may have multiple modes)

e Can be viewed as soft clustering variant of K-means

» 2z corresponds to cluster identifier (as in K-means)

» Data points within cluster k£ assumed to be Gaussian with
“centroid” ,;, and covariance Xy,

» 7, models size of cluster (since 7, = p(z = k|))

» Determine cluster membership probabilities p(z = k|z, 0) to
obtain soft clustering

» Any MM can be interpreted as a soft clustering

5/16

Example: Shape of clusters

e In K-means, shape of a cluster (ultimately) determined by
centroids of other clusters

e In GMMs, shape of clusters is modeled explicitly

6/16

Example: Soft clustering

e In K-means, each data point is assigned to exactly one cluster
(hard clustering)

» Overlapping clusters cannot be handled appropriately

e In GMMs, cluster membership probabilities are explicitly
modeled

7/16

Example: Cluster sizes

e |In K-means, cluster sizes are not modeled
» Large clusters contribute many “distances” to the objective, but
small clusters just a few
» This penalizes small clusters

e GMMs model cluster sizes explicitly

8/16

EM for GMMs: Likelihood, responsibility

e N independent data points { x1,...,zx }

Model parameters 0 = Uy { py,, Xk, 7k }
Likelihood of x; in k-th cluster:

fr(z;) d:efp(wilzi =k, 0) = N (x|, Zp)

Complete-data likelihood of (x;, ;)

p(@i, zi = k|0) = p(z; = k[O)p(xi|2i = k,0)

= 7 fr(x;)

Cluster membership probabilities of x; in k-th cluster

wi, p(z = k|ai, 0) = p(®i,z = K|O) _ mfr(@i)

p(xil0) > T S ()

> Also referred to as responsibility of the k-th mixture component
for data point x;

9/16

EM for GMMs: E step

e Compute cluster membership probabilities {wz(,?} based on

current parameters o®)
wl) p(z = klxi, 60)

T .
o Let z = (21 ZN) . Q function is

Q(616") = E_, g [logp(X, 2|6)]

— Zzwg,? log| e fie () |
= ZZU} log 7 —i—ZZw log fr(x

e Q function uses “old" cluster memberships probabilities
— That's what we compute in the E step

10/16

EM for GMMs: M step

e M step now sets

0+ argmax Q(0|0™)
[

e One can show that

t+1
Z wzk

t+1) t
'ul(€ Z w(t) Zwl(k)mz
1) 1 1
2}(€t+ Z (t Zw t+))(wl . Ml(gt+))T

e Observe: Similar to ML estimates for MVNs (07-1- slide 4), but
data points are now weighted by cluster membership
probabilities

11/16

Example run of EM algorithm

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm

0
—

10

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm

Initial parameters

0
—

10

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After E step #1

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After M step #1

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After E step #2

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After M step #2

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After E step #3

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After M step #3

0
—

—15 —10 -5 0 5 10 15

12/16

Example run of EM algorithm
After M step #6

0
—

—10

—15

—15 10 15

12/16

Example run of EM algorithm
After M step #10

0
—

—10

—15

—15 —10 -5 0 5 10 15

12/16

GMMs and K-means

e Lloyd’s algorithm is popular method for K-means clustering

1.

2.
3.
4.

Start with initial centroids

(e.g., random, farthest point clustering / K-means++)

Assign each data point to its closest centroid

Set each centroid to the mean of the data points assigned to it
Repeat steps 243 until some stopping criterion is met

e Equivalent to certain GMM with hard EM; i.e.,

>
>

v

v

Use (a priori) equally-likely clusters (m; = +)

Use spherical Gaussians (X = I)

Use hard cluster assignments in E step

(w;r = 1 for most likely cluster; zero for all other clusters)
Only centroids p;, need to be computed in M step

13/16

Discussion

e EM for GMMs determines cluster membership probabilities, but
no hard clustering

» At the very end, may assign each point to its most likely cluster

e Large number of parameters when data high-dimensional

» Covariance matrices have O(D?) parameters
— O(K D?) parameters in total

» Can be reduced, for example, by using diagonal covariances
matrices or by combination with factor analysis

> Overfitting (e.g., singularities) may arise — use MAP estimation

e Discriminative variant of MMs called mixture of experts

p(y’a),e) = ZP(Z = k‘w70)p(y|m7z =k, 0)
k

» Each component model considered an expert
» Gating function p(z; = k|x;, 0) decides which expert to use

14/16

Example: Mixture of experts

export prodictions, fixed mixing weights=0 gating functions, fixed mixing weights=0

Figure 11.6 (a) Some data fit with three separate regression lines. (b) Gating functions for three different
“experts”. (c) The conditionally weighted average of the three expert predictions. Figure generated by

mixexpDemo.
15/16

Some other LVMs

p(xi|z:) p(z:) Name Section
MVN Discrete Mixture of Gaussians 11.2.1
Prod. Discrete Discrete Mixture of multinomials 1.2.2
Prod. Gaussian Prod. Gaussian Factor analysis/ probabilistic PCA 12.1.5
Prod. Gaussian Prod. Laplace =~ Probabilistic ICA/ sparse coding ~ 12.6
Prod. Discrete Prod. Gaussian ~Multinomial PCA 2723
Prod. Discrete Dirichlet Latent Dirichlet allocation 273
Prod. Noisy-OR Prod. Bernoulli BN20/ QMR 10.2.3
Prod. Bernoulli ~ Prod. Bernoulli ~ Sigmoid belief net 2717

Table 1.1 Summary of some popular directed latent variable models. Here “Prod” means product, so
“Prod. Discrete” in the likelihood means a factored distribution of the form []; Cat(i;|z:), and “Prod.
Gaussian” means a factored distribution of the form [, NV (z;]2;). “PCA” stands for “principal components
analysis”. “ICA” stands for “indepedendent components analysis”.

16/16

Machine Learning

08 — Kernels and Vector Machines
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Overview
e So far: inputs represented by a fixed-size feature vector x; € R”

e For some inputs, not clear how to do this
» E.g., sequences of variable length
(such as text documents or protein sequences)
» E.g., graphs (such as molecular structure)

e Kernel approach: from features to similarity
> Kernel approaches make use of a kernel function k(x,z’) that
can be interpreted as “similarity” between objects and x’
» Supervised learning: model output based on similar inputs
» Unsupervised learning: use custom notions of similarity
(e.g., for clustering)
> Also useful when data represented as fixed-size feature vectors

e Kernel trick = modify learning algorithms to work solely with
kernel functions — can use arbitrary inputs

» E.g., linear regression, logistic regression, support vector machines,
KNN, K-medoids, PCA, ...

2/9

Example: Logistic regression

Very high complexity

Medium complexity

A=10

High complexity

Low complexity

A =100

3/9

Example:

Very high complexity

Logistic regression

Ax0

Medium complexity

A=10

High complexity

Low complexity

A =100

4/9

Example:

Very high complexity

Medium complexity

Logistic regression (Gaussian kernel)

A0, 0% = 0.571 A=0.1, 0% =0.571

High complexity

A=1,0%=05T1 A =10, 0* = 0.571

Low complexity

5/9

=0.571

0.01, o?

c

=0.571

()
=0.571

= 1000, o
=0.1, 0%

c
c

Axejdwod y3iy Aisp A1ixo|dwod wnips|p

Example: Support vector machine (Gaussian kernel)

6/9

Outline (Kernels and Vector Machines)

1. Kernels

2. Kernel Machines and Vector Machines
3. The Kernel Trick
4

. Sparse Vector Machines

Summary

e Kernel approaches make use of a kernel function x(x, 2’)
» Can be interpreted as “similarity” between objects « and x’
> Allows to use structured objects
» Can help to prevent underfitting (e.g., of a linear model)

Kernel machines use similarity to K prototypes as features

Vector machines use similarity to other data points as features

Kernel trick: directly work in kernel's feature space
> Mercer kernels = inner product in kernel feature space
» Modify learning algorithms to work solely with kernel function calls

» Many methods have been be kernelized: e.g., linear regression,
logistic regression, SVM, KNN, K-Means, PCA, ...

Sparsity via prior/regularization (L1VM) or objective (SVM)
» Reduces prediction costs and (hopefully) generalization error

8/9

Literature
e Murphy, Ch. 17, Kernel Methods

e John Shawe-Taylor, Nello Cristianini
Kernel Methods for Pattern Analysis
Cambridge University Press, 2004

9/9

Machine Learning

08 — Kernels and Vector Machines
Part 1: Kernels

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Kernel functions

e A kernel function is a real-valued function k(xz,z’) € R

*» Inputs x,x’ € X from some (arbitrary) input space
> Typically symmetric: k(x, ') = k(a',)

> Sometimes non-negative: x(x,x’) =0

Then: may be interpreted as measure of similarity

v

e Sometimes: term kernel used to refer to Mercer kernels

> Positive semi-definite kernels

» Can be expressed using an inner product on “transformed” inputs

» Kernelization of learning algorithms using the kernel trick requires
kernel function to be a Mercer kernels

e Examples: Gaussian kernel, linear kernel, polynomial kernel,
cosine similarity kernel, string kernels, graph kernels, Laplacian
kernel, probability product kernel, Fisher kernel, ...

2/9

Gaussian kernel (1)

e Gaussian kernel given by
1
k(z,x') = exp (—2(:10 —)Tz - :1;’))

> Takes values in [0, 1]; in particular, x(x,) =1
» Decreases exponentially in sq. Mahalanobis distance

e Special case: diagonal covariance
D
131)
k(z,x') = exp (—2 Z ?(:vj —))
j=1%J

» o; can be interpreted as length scale of dimension j
> When o; — o0, dimension j is ignored
» Known as ARD kernel or squared exponential kernel

3/9

Gaussian kernel (2)

e Special case: isotropic Gaussian kernel

w0 = o0 (505 o~]2

202

» o2 known as bandwidth

» Example of an radial basis function (RBF) kernel: only a
function of || — /||

> Rough interpretation: objects with ||x — &'[|, = 30 are dissimilar

101 — 2=0.1,0=032
—— 02=1.0,05=1.00

0.8 1 — 02=30,0=173
— 02=10.0, 0 =3.16

0.6

0.4 4

0.2

0.0 4

Gaussian kernel (3)

0% =10, 0 =100

500

0?2 =100, 0 = 3.16

5/9

Some other kernels

T/

e Linear kernel: k(xz, ') =x'x

e Linear kernel with basis function expansion: s(x, ') = ¢(x) ¢(z')

Polynomial kernel: k(x,2') = (y& 2’ + 7)™ with v,7 > 0
» Corresponds to (certain) basis function expansion with all
interaction terms up to degree M (when ~y,r # 0; see slide 8)

Cosine similarity kernel: x(z,x') = z"x'/(|z| ||Z’|)
» E.g., useful for comparing documents (x is TF-IDF representation)

String kernel: k(x, &) = X . 4+ wens(T)ns(x’)

» x and =’ are strings over alphabet A
ns(x) is number of times substring s occurs in @
E.g., large when many common substring (of high weight)
E.g., zero when no common substring (of nonzero weight)
Special cases: bag-of-characters kernel (ws = 0 when [s| # 1),
k-spectrum kernel (ws = 0 when |s| # k), bag-of-words kernel
(ws = 0 if s not bordered by word boundaries)

>
>
>
>

6/9

Mercer kernel
e A kernel is a Mercer kernel if the Gram matrix (kernel matrix)

k(x1,21) -+ k(x1,xN)
K =

k(xny,x1) - K(xN,ZN)

is positive semi-definite (psd) for all inputs { z; }fil
e Recall: A e R™" is psd iff symmetric and vT Av > 0 for all v € R®

e Implies that eigendecomposition exists and all A; > 0:

K = QAQ" = (QA'?)(QA"?)!
> Set (x;) = [QA'?]]
> Then k;j = k(xi, ;) = ¢(x;) " ()
e Mercer's theorem: k is psd iff. there exists a “feature map”
b X = RP st kw(z,2’) = ¢u(x) ¢p(a’) for all z,x' € X
» D may be a finite (e.g., polynomial kernel) or infinite (e.g.,
Gaussian kernel)

7/9

Example: Polynomial kernel

e Consider the polynomial kernel k(x,2') = (1 + "x')?

e For each &, z’ € R?, we have
(1+ax'x)?

= (1+ 2] + x2w§)2

=14 2z2) 4 2xoxh + (x12))? + (x22h)? + 2212 202

e Can be written as ¢, () " ¢, (z) with

¢H(w)=(1 V21 \2x9 z? 23 \/§$1$2)T€RD

for D=6
e Generally, feature map of polynomial kernel contains all
interaction terms up to degree M
e We will see: using this kernel is equivalent to working in the
above 6-dimensional feature space
» With kernel trick, only the kernel function is evaluated, however
> For this reason, we can handle infinite-dimensional features spaces
(such as the one of the Gaussian kernel)
8/9

Discussion

e Mercer kernels determine an implicit feature map
» k(x, ') = ¢(x) Tp(z') for some ¢
» Thus: k computes inner product of mapped features
» But: k is not an inner product on X
(e.g., k(ax,z’) may not be equal to ar(x,x’))

e Showing that a kernel function is Mercer can be complicated
> If k(x,x') = ¢(x) T d(x’) for some ¢, then x is Mercer
» k(x,2’) = cis a Mercer kernel for any c € Ry
» Sums and products of Mercer kernels are Mercer kernels, as is
multiplication by non-negative scalar and exponentiation of a
Mercer kernel
> Non-Mercer kernels can also be useful (e.g., in kernel machines)

e Kernel matrix can be large: N? entries

9/9

Machine Learning

08 — Kernels and Vector Machines
Part 2: Kernel Machines and Vector Machines

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Kernel machines

e A kernel machine is a generalized linear model which uses a
kernelized feature vector for its inputs:

T
¢km(m) = (’{(wvy’l) R(maHQ) "43(51’7#1())

» The p;, € X are a set of K centroids (or prototypes)

> If k is an RBF kernel, called RBF network

e Linear predictor specified by weight vector w € R¥ predictor

(@) = w' Gy (@) = D wik(e, py)
k

» Consider a centroid p;, and suppose x measures similarity
*» Contribution the larger the more similar x is to p,
» Contribution the larger the higher the centroid’s weight |wy|
» Contribution can be positive (wy, > 0) or negative (wy < 0)
e Examples

> Linear regression: p(y|z, w) = N(w ' ¢xm(x), 0?)

> Logistic regression: p(y|z,w) = Ber(y|o(w " dum(x)))

2/11

Example: Linear regression, RBF centroids

20 0.
0.6
10|
P! 0.4]
0
02
=10
0 5 10 15 20 (] 5 10 15 20
20 0.04
b 0.03| 5 1
10
® 0.02) 10
B¢ 0,2
0 001 15
1o ol 20
0 5 10 15 20 0 5 10 15 20 2 4 6 8 10
20 gx10”
) 7.8 5
10| ° =
L) 78 10
v L g 15|
oo ..0. LK) 7.4
bt 20
-10 7.
(] 5 10 15 20 0 5 10 15 20 2 4 6 8 10

Figure 14.3 RBF basis in 1d. Left column: fitted function. Middle column: basis functions evaluated on
a grid. Right column: design matrix. Top to bottom we show different bandwidths: 7 = 0.1, 7 = 0.5,
7 = 50. Figure generated by linregRbfDemo.

3/11

Example: Logistic regression, RBF centroids (1)

A= 0, 0 = 100.000 A= 0, 0% = 0.500

=
= T
: :
o c
c (90}
= e
Qa
° €
=
oo S
_,f“ [9}
=
A= 0, 02 =0.010 A= 0, 0% =0.001
= <
S =
2 ‘s
o
c o
o &
o o
e >
e £
N =

4/11

Example: Logistic regression, RBF centroids (2)

A=1,0° = 0.500

A= 0, 0% = 0.500

>
z
& z
- %
£ -
O °ge IS
< °5 Q
&0 o 2
- b
& T
()
>

A =10, 0 = 0.500 A =100, 0 = 0.500

Medium complexity
Low complexity

5/11

Which centroids?

e On low-dimensional inputs, may use a grid
» But: breaks down on high dimensionality (curse of dimensionality)

e If p;, € R, may use numerical optimization
» But: kernels are most useful for structured input spaces

e Cluster the data and use cluster centers?

> Cluster centers are generally dense regions in input space, but may
not be most useful for predicting outputs

6/11

Vector machines

e Vector machines use the data points as centroids

77(213) = aT¢vm Zaz 337,7

e Model is parameterized by a weight «; for each data point
» To predict, need access to all data points x; (assuming all a; # 0)
» N weights, N data points, O(N) cost to predict
» Expensive for large datasets

e Various approaches exist to select a subset of the data points

> These methods “encourage” choices of a; = 0
— Corresponding data points ignored

» Can use a sparsity-promoting prior; e.g., £1 (LIVM)

» Can use customized loss function — support vector machines (SVM)

> Pro: lower computational cost, lower space consumption

» Cons: also affects model complexity (and thus generalization
performance)

7/11

L2

1
A=1,0%=0571

Example: Logistic regression, RBF centroids

A0, 0% = 0.571

Axejdwod y3iy Aisp

A1ixo|dwod wnips|p

8/11

Example: Logistic regression, RBF centroids, L1

A=0.1,0°

=0.571

Kixe|dwod y3iy

A= 0, 0% = 0571

Axejdwod y3iy Aisp

A1ixo|dwod wnips|p

9/11

Example: Linear SVM, RBF centroids

=0.1, 0> = 0.571

C = 1000, 0* = 0.571

‘oc‘%".‘ L4
.

c

Axejdwod y3iy Aisp

=0.0001, ¢ = 0.571

=0.01, o2

c

=0.571

c

A1ixo|dwod wnips|p

10/11

Kixe|dwod y3iy

K =64

Ko dwod moT

1

K

Axejdwod y3iy Aisp

Example: KNN (for reference)

K =16

A1ixo|dwod wnips|p

11/11

Machine Learning

08 — Kernels and Vector Machines
Part 3: The Kernel Trick

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Kernel trick

e Rather than working on kernelized feature vectors

bum(@) = (5(@, 1) K(@.22) ... Kz, TN))
the kernel trick modifies the learning algorithm directly

e Key idea of the kernel trick

> Express the learning algorithm in a way that accesses the data only
in terms of inner products of form (x, ")

» Then replace all inner products of form (&, ") by calls to the
kernel function x(x, ')

e Discussion
> Requires the kernel to be a Mercer kernel
» Then approach is equivalent to working on the implicit feature
representation ¢, corresponding to k

2/7

Recall: K-nearest neighbor classifier (A NN)

e Simple, non-parametric classifier

e Uses statistics about neighbors N (x, 2), i.e., the K training
points closest to classify test input x:

1
p(y:dwa-@:K):E Z H(yZ:C)7
ieNK(w,@)

where I(e) is the indicator function

I(e) =

1 if eis true
0 if eis false
e Discussion
> Makes probabilistic predictions
» Example of memory-based learning
> Key assumption: close points have similar labels
> Requires a suitable distance function and sufficient data

3/7

Kernelized K'NN

KNN accesses the training data to obtain the K-closest
neighbors Nk (x,) of x in D

With squared Euclidean distance, we have
d(@;, x) = |[@; — o||5 = (x; — @, 2; — @)
= <mi7 w’b> + <$a $> - 2<mi> $>
After replacing inner products by kernel function calls, we obtain

di(xi,) = Kz, ;) + k(x,) — 26(x;,)

For example, with an Gaussian RBF kernel, this simplifies to

d,bf(mi, iIZ) =2— 2&(2&, ZB)
> Distance d,us the smaller the more similar ; and x are
» For this choice of kernel, we obtain the same neighbors as KNN
and hence the same classifier

Key advantage: can use K'NN on structured objects

4/7

Kernelized ridge regression (1)

e Kernel trick harder to apply to parametric models

e Here we outline how to kernelize ridge regression
(= linear regression with {5 regularization)

e Regularized risk formulation

Remp(w) = | Xw — y|* + A [Jw]*

e Can show: optimal solution given by

w=X"(XX"T+yN)ty

> Since [X X "];; = {(xi,x;), we can kernelize this subexpression by
using the kernel matrix K instead (recall: K;; = r(x;,;))
» But what about the leading X " term?

5/7

Kernelized ridge regression (2)

e So far, we have

w=X"(K+My) 'y

> Called primal variables (one per feature)

e Define

a=(K+My)ly

» Called dual variables (one per example)
» Can be computed solely via kernel calls (= is kernelized)

e Rewrite the primal variables using the dual ones
N
w=X"a= Z ;T
=1

» Optimal weight vector is thus linear combination of the data points
» Cannot compute w without accessing X though (not kernelized)

6/7

Kernelized ridge regression (3)

e Let's plugin w = 'V | oy, to predict

N N
fl@)=w'z = <Z am?) T = Z ai{xi,)
i=1 i=1

> This we can kernelize!

e Final predictor is

R N
fl@) =) airlai @)
i=1

» That's the predictor we have seen on slide 07-2/77
» But: with kernel trick, £5 regularization is applied to w (not)

» w = implicit weight vector for transformed features (¢, (x))
> a = explicit weight vector for data points (¢um(x))

7/7

Machine Learning

08 — Kernels and Vector Machines
Part 4: Sparse Vector Machines

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Sparse Vector Machines

e Recall: vector machines (VM) use linear predictor
N

n(x) = wo + Z a;k(x;, x)
i=1

» Sparse VM: few «;'s non-zero — few data points matter
> Sparsity reduces overfitting and computational cost
> Important esp. when N is large

e Non-kernelized: explicitly use features ¢ym(x) = (Ii(:l)i,m))i]\;l
Directly learn «, can be used with any kernel

> Feature space determined by training data

Regularization/prior on «

> Sparsity achievable via feature selection / prior / regularization

v

v

e Kernelized: implicitly use transformed features ¢, ()

» Use Mercer kernel and apply kernel trick

> Feature space determined by kernel x
Regularization/prior on (implicit) weights for transformed features
Sparsity achievable via modified loss — support vector machine

v

v

2/25

Sparsity via ¢, regularization

In the regularized risk minimization framework, we may directly
encourage sparsity using the £y pseudo-norm

Jo(0) = Remp(0) + X 0],

> Recall: ||8]|, = no. nonzero entries in 6

Penalty |||, corresponds to number of relevant parameters
— variable selection

Coefficient A trades off fit (A small) and sparsity (A large)

Hard optimization problem

3/25

https://epubs.siam.org/doi/10.1137/S0097539792240406

Sparsity via /1 regularization
e We may use the /| regularization instead

J1(0) = Remp(0) + A 10|,

> Recall: ||@]|; = sum of absolute values of entries in 8
> Agrees with [|0], if 6 € {—1,0,1}"
e Encourages sparsity
» In contrast to /5 (see next slide)
Leads to shrinkage

> Larger nonzero parameter values penalized more than smaller ones
— biased estimator

Easier to optimize, e.g., via subgradient-based methods

With squared loss, known as LASSO (/east absolute shrinkage
and selection operator)

Can be combined with additional regularizers
(e.g., lo — elastic net)

4/25

https://doi.org/10.1111%2Fj.1467-9868.2005.00503.x

Example: L1VM (logistic regression, RBF features)

Objective: argmin,, ,(3; —log Ber(yi|o(wo + a ¢um(x:))) + A ;)

A= 0, 0% = 0.571 A=0.1,0%=0571

Very high complexity
High complexity

Medium complexity
Low complexity

5/25

Why ¢ regularization? (1)
Let's look at a two-dimensional parameter space 6 € R2.
e Border of blue area = /¢; unit ball

e Red lines = £y “unit ball’ — axes except 0

e (g unit ball intersects £; unit ball at extreme points

Recht, 2012 6/25

http://www.cs.rpi.edu/~drinep/RandNLA/slides/Recht_RandNLA@FOCS_2012.pdf

Why ¢ regularization? (2)

Let's find a solution to the problem 8T@ = y w.r.t. 6.
e Underdetermined system with infinitely many solution

e Sparse solution: ming [|6]|, s.t. 8 x =y
» Example: 6; =0, 02 = y/zo — o norm=1
e Using /; instead: ming |6, st. 8 x =y
» Increasing ¢; norm can be seen as
“inflating” the ¢; unit ball
> Minimum ¢; norm
= minimum inflation
> Achieved at intersection
with 67 or 65 axis
(whatever is smaller)
e /1 tends to select extreme
points — variable selection

Recht, 2012

http://www.cs.rpi.edu/~drinep/RandNLA/slides/Recht_RandNLA@FOCS_2012.pdf

Sparsity via prior

e Consider probabilistic model p(:|@) and a prior p(€)
> Prior is sparsity-promoting if substantial probability mass at /
density around regions where @ contains zeros
> Encourages sparse MAP estimates

e Example: Latent Dirichlet Allocation
» Goal: given a document collection, find overall topics and topic
distribution of each document
> Makes sparsity assumptions between topics and words / documents
» Uses Dirichlet prior with & « 1, which is sparsity-promoting

61
il I i

00 02 04 06 08 10

i

i

T T
-1.0 -05 0.0 05 1.0

8/25

https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

Example: Latent Dirichlet allocation

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS

SHOW PROGRAM PEOPLE SCHOOLS

MUSIC BUDGET CHILD EDUCATION

MOVIE BILLION YEARS TEACHERS

PLAY FEDERAL FAMILIES HIGH R

MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER |

ACTOR NEW SAYS BENNETT (toplc X Word) ’
FIRST STATE FAMILY MANIGAT

YORK PLAN WELFARE NAMPHY feW Words per
OPERA MONEY MEN STATE to p | C

THEATER PROGRAMS PERCENT PRESIDENT

ACTRESS GOVERNMENT CARE ELEMENTARY

LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch. education
and the social scrvices” Hearst Foundation President Randolph A. Hearst said Monday in L d .
announcing the grants. Lincoln Center’s share will be $200.000 for its new building, which (OCXtoplc)v
will house young artists and provide new public facilitics. The Metropolitan Opera Co. and H

New York Philharmonic will receive $400.000 each. The Juilliard School, where music and feW t0p|CS per
the performing arts are taught, will get $250.,000. The Hearst Foundation. a leading supporter doc

of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000
donation, too.

Blei et al. Latent dirichlet allocation. JMLR, 2003. 9/25

http://dl.acm.org/citation.cfm?id=944937

Example: Laplace distribution

e Recall: RRM with ¢ regularization & MAP with Gaussian prior
e Likewise, RRM with ¢; regularization 2 MAP with Laplace prior

1 0 —
Lap(6]u,b) = ~ exp (—‘ : “’)

> For sparsity, we use location = 0 (= mean/median/mode)
» Scale parameter b controls strength of prior (variance is 2b?)

1.0 1

0.8 1

0.6 1

0.4

0.2

0.0 1

—4 -2 0 2 4 10/25

Support vector machines

e Recall: kernel trick
> Mercer kernel x
Rewrite learning/prediction algorithm in terms of inner products
> Replace inner product by kernel calls
» Equivalent to working in the implicit feature space of the kernel

v

e Recall: kernelized ridge regression
» Squared loss, ¢5 regularization (on weights for impl. kernel features)
> Train: a = (K + M y) "y

Predict: n(x) = wo + Y, aik(xi,)

> « generally not sparse

Natural probabilistic interpretation

v

v

e Support vector machines (SVMs) modify loss for sparsity
» ~ linear predictor + kernel trick + sparsity/large margin

Predict: n(x) = wo + Y, a;k(x;,) as well

Few a;'s nonzero, corresponding x; called support vectors

No natural probabilistic interpretation

v

v

v

11/25

e-insensitive loss

e Key idea of SVMs: no loss on examples predicted “well enough”

» Such examples do not affect the cost at the solution
» And they do not affect predictions (o; = 0)

e For regression, Vapnik proposed c-insensitive loss

R 0 if ly—g|<e
Le(y,y)={ | |

ly —g| — e otherwise
= (|y - y| - €)+7

where (z)4+ = max(0, x).
» Data points with labels within an e-tube around the prediction
incur no loss, i.e., when y € (§j —¢,9 +¢€)

12/25

[[lustration

(a) (b)

Figure 14.10 (a) lllustration of ¢2, Huber and e-insensitive loss functions, where ¢ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the e-tube used in SVM regression. Points above the tube have
& > 0 and & = 0. Points below the tube have {; = 0 and & > 0. Points inside the tube have
& = & = 0. Based on Figure 7.7 of (Bishop 2006a).

13/25

SVMs for regression (SVR)

e Using the e-insensitive loss with a linear predictor, we obtain
support vector regression (SVR):

) 1
J = C) Le(yir (i) + 5 w]?

> g(a;) linear in feature space of kernel
With linear kernel, called linear SVR
£y regularization on weight as in ridge regression
C = 1/Xis a regularization constant

v

v

v

e Convex problem, can be solved via quadratic programming
> Solution has form g(x) = wo + >, aik(z, x;)
» «a; = 0 iff g; lies strictly within e-tube around label y;, i.e.,

9i ¢ (yi —€yi +€)
> Support vectors (a; > 0) lie on or outside of e-tube

e Hyperparameters: ¢, C, kernel parameters

14 /25

Hinge loss

e SVM are popular method for classification (SVC)

o Let ye {—1,1} and consider the decision rule

§ = sgn(n(x)),

where 7)(x) is a score/predictor produced by the classifier

e In SVC, we use a linear predictor and the hinge loss

0 if yn > 1
Lhinge(%”) = {

1 —yn otherwise
= (1 —yn)+

» yn called margin

» Observe: yn > 1 iff prediction correct (y = sgn(n)) and predictor
“confident” in that score large (|n| > 1)

> Data points with large margin do not incur loss

15/25

Hinge loss, illustration

Loss

4.0 1

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0

0.5 1

0.0 1

—— 0-1 loss
——— Hinge loss

Log loss

16 /25

SVMs for classification (SVC)

e Using the hinge loss with a linear predictor 7, we obtain support
vector classification (SVC):

1
J = C’Z Linge (i, n(x:)) + 2]|

n(x;) linear in feature space of kernel
With linear kernel, called linear SVC
{5 regularization on weight as in ridge regression
C = 1/)\ is a regularization constant

v v v Vv

e Convex problem, can be solved via quadratic programming
> Standard solvers O(N?), SMO often faster, linear SVC O(N)
> Solution has form n(x) = wo + Y, aik(x, x;)
» «a; = 0 iff margin large in that ny > 1
> Support vectors (a; > 0) have small margin
(misclassified and/or n < 1)

e Hyperparameters: C, kernel parameters

17/25

https://web.iitd.ac.in/~sumeet/tr-98-14.pdf

The large-margin principle

e Large-margin principle: select a decision boundary with a large
margin (= distance to the closest training point)

e Goal is to reduces generalization error; e.g.,
> Consider a perfect classifier (e.g., linearly separable training data)
» Observe: All points “within margin” of a training point will be
classified just as the training point
> The larger the margin, the more consistent the output of the
classifier is around the training data

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin. 18/25

SVMs are large-margin classifiers (1)

e Consider linear SVM with n(z) = wo + w 'z

n(@)

llwll

» Why? Let &, be orthogonal projection of x to decison boundary
» Write x = x| + ri2:
» Observe that

e Distance of x to decision boundary is r =

Twll

n(:c)—wo—i-w QCJ_‘F’UJT()
— |w ||
=0 S~
=r||wl|

» Note: r > 0 for positive predictions, r < 0 for negatives

e For lin. sep. training data, maximum margin classifier given by

argmax min y;7; = argmax min y; —-,
w,wo 2 w,wo v || H

where 1; = 1)(x;) = wo + w'x and r; = n;/ |w||
> At solution, all points correctly classified (y;r; > 0)
» And margin y;r; = |r;| as large as possible
19/25

SVMs are large-margin classifiers (2)

e argmax,, ,,, min; y;7;/||wl||

e Observe: rescaling w and wg by constant ¢ > 0

Scales y;7; by factor ¢

» But does not change margin r; = n;/ |w]|

» Thus: can add constraints y;n; = 1 without changing the solution
» Inner minimum then 1/ ||wl||

v

e Rewritten optimization problem

1
argmin§ |w|® st ymi=1fori=1,...,N

w,wo

» Constraint = correct prediction, margin at least 1

20/25

SVMs are large-margin classifiers (3)

e argmin, . 3 |w|> st ym=1fori=1,...,N

e What if data not linearly separable (in kernel's feature space)?
No feasible solution with g;n; = 1 for all 7 exists

Idea: introduce slack variable £; > 0 for each data point

& = 0 — correctly classified, large margin (> 1)

0 < & <1 — correctly classified, small margin (€ (0, 1))

» & =1 — incorrectly classified

>
>
>
>

e Objective with soft margin constraints

. 1
afgmlnCZfi t3 lwl* st &=0,ym=>1-§

w,wo i

> 1 lw|? for large margin
> > & for few errors (too-small margin or misclassified)
» (' is hyperparameter that controls trade-off

21/25

SVMs are large-margin classifiers (4)

e argmin,, ., CY &+ % HwH2 st. §=20,ym=>1-&
e Observe: we have & > 1 — y;m; and & = 0, hence at optimum

& = max(0,1 — yin;) = (1 — vini)+ = Lhinge Vi, M)

e We obtain the SVM objective (slide 17)

argmlnCZ Linge(yi,mi) + 5 HwH2

w,wo

» C controls allowed training errors and affects generalization error
— Often set via cross-validation

» Sometimes: parameterized using C' = 1/(vN), where v roughly
corresponds to the fraction of misclassified training examples

22/25

=0.571

0.01, o?

c

=0.571

()
=0.571

= 1000, o
=0.1, 0%

c
c

Axejdwod y3iy Aisp A1ixo|dwod wnips|p

Example: Support vector machine (Gaussian kernel)

23/25

Example: Support vector machine (poly3 kernel)

C = 1000

High complexity

Very high complexity

C=01 C =0.01

Medium complexity
Low complexity

24 /25

Discussion

e Key ingredients to SVM

1. Kernel trick — prevents underfitting with linear classifier
2. Sparsity / large margin — prevents overfitting

e Key ingredients to L1IVM

» Use kernel (solely) to generate explicit features ¢ym
» /1 regularization for sparsity

e SVM or L1VM?

» Both are discriminative kernel methods

» Often similar performance in practice

» L1VMs probabilistic, SVMs not

» L1VMs fast to train, SVMs slow (unless linear)

» L1VMs handle multiclass classification naturally, SVMs with
difficulties

» L1VMs any kernel, SVMs Mercer kernel

» Both: kernel parameters / regularization weights need tuning

25/25

Machine Learning

09 — Hyperparameter Optimization
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Design decisions in machine learning

e Using machine learning in a application involves many design

decisions; e.g.:

>

VVVVYYVYY

Data collection and preprocessing

Feature engineering

Model class & architecture engineering
Learning algorithm

Training objective (e.g., loss, regularization)
Hyperparameters of these components

e How to choose?

>
>

Choices matter since they may heavily impact performance
Space of possible choices is large and difficult to navigate

2/8

Example: Link Prediction for Knowledge Graphs (1)

Task: Given a knowledge graph, predict missing links.

FB15K-237 WNRR

40 b
g
s 30 o B
c
i
®
3 20 1 B
©
>

10 + B

0 - -

RESCAL TransE DlstMuItCompIEx ConvE RESCAL TransE DlstMuItCompIEx ConvE

Performance over quasi-random hyperparameter configurations
(validation data, higher is better)

Large influence of design choices.

Ruffinelli et al., 2020 3/8

https://iclr.cc/virtual_2020/poster_BkxSmlBFvr.html

Example: Link Prediction for Knowledge Graphs (2)

FB15K-237
38 A
36 A .
34 o © ®
« 32 .
£ o
= 30- ®
28 A . Large
26 - Recent
. @® Ours
24 . @ First

1) 3 5\ ©) o) 9) 9) 9)
agsch-? 1(3@ @0 it 001 - pEr O e 001 e @01 R 292 on 20

Reported performance of various KGE models
(test data, higher is better)

Good choices key for model selection and comparative studies.

Ruffinelli et al., 2020

4/8

https://iclr.cc/virtual_2020/poster_BkxSmlBFvr.html

Automated Machine Learning (AutoML)

e Vision of Automated Machine Learning (AutoML)
» Decide in a data-driven, objective, and automated way

» User simply provides data, system does the rest
» Democratization: make ML accessible to “everyone”

e In practice also: semi-automate
» Reduce need for human in the loop
> Make practice of ML more systematic and efficient
» Improve performance
» Improve reproducibility and fairness of scientific studies

e Many approaches, many systems, active research area

e Key directions
> Hyperparameter optimization (our focus)
> Meta-learning (learn how to learn)
»> Neural architecture search

5/8

Outline (Hyperparameter Optimization)

0= o

Overview

The Hyperparameter Optimization Problem
Blackbox Optimization

Multi-Fidelity Optimization

HPO in Practice

6/8

Summary

e Hyperparameter tuning important part of ML pipeline
» Choices matter and are difficult to make

Automated hyperparameter optimization

> Explore the hyperparameter configuration space automatically
> Use validation protocol to assess configurations

Blackbox optimization methods

» Only based on results of evaluations
> E.g., grid search, random search, ES, CMA-ES, Bayesian
optimization

Multi-fidelity methods

» Open the blackbox to use cheaper low-fidelity "approximation”
» Especially useful for expensive tasks

» E.g., successive halving, Hyperband, BOHB

In practice, HPO method needs to selected and parameterized
> E.g., hyperparameter bounds and transformations very important

7/8

Suggested reading

e Automated Machine Learning: Methods, Systems, Challenges (Ch. 1)
Editors: Frank Hutter, Lars Kotthoff, Joaquin Vanschoren
Springer, 2019

e AutoML tutorial @ NIPS18 (slides, videos)
Frank Hutter, Joaquin Vanschoren

Additional resources

e Taking the Human Out of the Loop: A Review of Bayesian
Optimization
Shabhriari et al., Proc. of the IEEE, 2016

8/8

https://www.automl.org/book/
https://media.neurips.cc/Conferences/NIPS2018/Slides/hutter-vanschoren-part1-2.pdf
https://www.youtube.com/watch?v=0eBR8a4MQ30
https://ieeexplore.ieee.org/document/7352306
https://ieeexplore.ieee.org/document/7352306

Machine Learning

09 — Hyperparameter Optimization
Part 1: The Hyperparameter Optimization Problem

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Types of hyperparameters

e Hyperparameters influence the learning process

» In contrast, parameters are learned
> In practice, can have many hyperparameters (e.g., 10s or 100s)

e Discrete hyperparameters; e.g.,

> kin a kNN classifier
» Number of units in a hidden layer of an FNN

e Continuous hyperparameters; e.g.,

» Learning rate
» Regularization weight

e Categorical hyperparameters; e.g.,
> Use early stopping (yes/no)
> Learning algorithm (SGD, Adagrad, Adam)
> Type of regularization (L1, L2, L3)
> Activation function (tanh, Relu)
> Operator (convolution layer, max pooling layer)

Hyperparameter optimization

e Hyperparameter optimization (HPO): automatically select
values for the hyperparameters

e Important part of ML pipeline

Prepare Data > Build & Train Models > Deploy & Predict

Data
Ingestion J

T

H

Data storage

Data
Preparation

Normalization
Transformation

Validation

Featurization

Model Building
& Training

Hyper-parameter
tuning

Automatic model
selection

Model testing

Model validation

Model
Deployment

Deployment

Batch scoring

locations

e This is challenging!
» Hyperparameter configuration space is complex and high-dimensional
> Model training/evaluation can be expensive
» Cannot directly optimize generalization performance due to limited
training data

» Often neither gradient nor useful properties such as convexity
Melo, 2019

https://azure.microsoft.com/de-de/blog/how-to-accelerate-devops-with-machine-learning-lifecycle-management/

Hyperparameter configuration space
e [hyperparameters

e [-th hyperparameter has domain A;

e Hyperparameter configuration space: A = Ay x Ag x--- X A,
» When hyperparameters for preprocessing/algorithms are included,
HPO also referred to as full model selection (FMS) or combined
algorithm selection and hyperparameter optimization (CASH)

e Space may contain conditional hyperparameters

» Only active for certain choices of other hyperparameters

P Structure can be modeled using a directed acyclic graph

> Example: algorithm (kNN, LogReg) and algorithm
hyperparameters (k only active when kNN is chosen)

» Example: number of layers in an FNN and configuration of layer i
(only active when at least i layers)

4/6

https://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
https://arxiv.org/abs/1208.3719
https://arxiv.org/abs/1208.3719

Definition

Definition: Hyperparameter Optimization

Given data D, the HPO problem is to find

A* = argmin V (A, D).
AEA

e V is a validation protocol

» Measures the performance of using hyperparameter configuration
A for a particular task based on data D
» Often needs to be approximated since only finite dataset available

e Example: holdout validation or cross validation with a
user-defined loss (e.g., misclassification rate)

e Alternatives/variants
> Multiple objectives (e.g., consider resource consumption)
» Ensembling: combine multiple good hyperparameter configurations
> Bayesian model selection: integrate out hyperparameters

5/6

Example: Holdout validation

Hyperparameter

&

|

— Training
Training results
data

1

Historical
data

1 Validation
Validation results

data

e Holdout validation produces model as side product
e In general, validation protocol can be expensive to evaluate
P Several strategies to reduce cost exists

Zheng, 2015

6/6

https://www.slideshare.net/AliceZheng3/evaluating-machine-learning-models-a-beginners-guide?from_action=save

Machine Learning

09 — Hyperparameter Optimization
Part 2: Blackbox Optimization

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-2

Blackbox optimization

e Any blackbox optimization method can be used for HPO
> Goal is to find miny V' (\)
> V(A) can be evaluated (or approximated)
» No knowledge about what happens “inside” V'
> No access to gradient information such as VAV(A)

Hyperparameter values

Optimizer ‘ Validation protocol (V)

Validation loss

e Generally, use history { (A;, V(A;)) }i; to decide where to
evaluate next (A,+1)

» Explored hyperparameter values often called trials
> Note: closely related to learning

2/27

Approaches to blackbox optimization

e Model-free methods: do not use history
» Example: grid search, random search

e Stochastic search: maintain probability distribution p(\)

» Used to sample new values of X to evaluate
» Updated with new observations
» Example: population-based methods, simulated annealing

e Global optimization: maintain model V() plus confidence

» Use model to choose where to evaluate next
> Exploration/exploitation trade-off
P> Example: Bayesian optimization

3/27

Grid search

e Grid search is most basic HPO method

» Specify a finite set of choices for each hyperparameter
> Evaluate all combinations of these choices (Cartesian product)

e Example: 2 real-valued hyperparameters and a 10x10 grid

1.0

0.8 1

X X X X[
X X X X[—

0.6 1

0
X x x x\\x ¥ x/x x x|-

<
0.41

0.2 1

XXXXQ

X X X X X X X X X X[
X X X X /X X X X X X
X X X X X X X X X X[
X X X X X X X X X X[
X X X X X X X X X X[
X X X X X X X X X X[
X X X X X X X X X X

X X X X

0.0 " .
0.0 0.2 0.4

o
o

0.8 1.0

X
=

Wikipedia 4/27

https://en.wikipedia.org/wiki/Hyperparameter_optimization

Random search

e Random search samples configurations from A at random

e Example: 2 real-valued hyperparameters, 100 trials
(using uniform sampling)

1.0 AL T | %J(| lx)!\ L1 [0 L] -
« XX X x X =
[x X X =
0.8 % X X -
X X X% X X =
X X x X =

X x
4 X X X =
0.6 X\ % x < X < & X Xxxé
< X X —
0.4 x < X XX y =
X =
0.2 . X x* X - x B
x XX % X X =
X X X X X =
0.0 XX X . X X x X =
0.0 0.2 0.4 0.6 0.8 1.0

Wikipedia 5/27

https://en.wikipedia.org/wiki/Hyperparameter_optimization

Discussion (1)

e Grid search suffers from the curse of dimensionality
» Number of trials grows exponentially with dimensionality of
configuration space
» E.g., 30 hyperparameters with 4 choices each — > 102 trials

e Random search explores configuration space better
» E.g., consider L real hyperparameters and n trials
» Random search explores n values per hyperparameters
» Grid search explores only n'/% values per hyperparameter
» Especially problematic if some hyperparameters are unimportant

Grid Search Random Search

(&) [©) (6}
Important parameter

Unimportant parameter
(0]
Q@
o
Unimportant parameter
(@]

Important parameter

Hutter et al., 2019 6/27

https://www.automl.org/book/

Discussion (2)

e Choice of grid points problematic
» May be non-trivial
> May significantly affect (or bias) results
e Both methods are parallelizable across a set of workers
> Easier to do for random search (no synchronization needed)

Random search easy to shrink/expand number of trials

e Random search generally preferable over grid search

> More efficient empirically and theoretically
» Hence useful baseline

May take far longer than “guided” search method

» E.g., HPO on L binary features without interactions require O(2%)
trials with random search but O(L) with suitable guided search

» Still, random search often a component of such methods
(e.g., for initialization and exploration)

7/27

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Population-based methods (1)

e Population-based methods maintain a population of
configurations

» Special case of stochastic search
» Population used to determine which trials to perform next
> Population updated based on results (e.g., mutation, cross-over)

e Example: evolution strategy (ES)
» Maintain an isotropic Gaussian /\/(H(t),azI)
» In ¢-th iteration,
1. Sample A\ configurations from /\/’(0(”,021) (offspring) and
evaluate
2. Keep best u results
3. Use their mean as ¢V
(11, \)-ES: select best results from offspring only
(1t + M)-ES: include prior trials (parents)
Example: (1 + 1)-ES = hill climbing

vVVvYy

8/27

Population-based methods (2)

e Example: covariance matrix adaptation (CMA-ES)
» Improves on ES by modeling covariance as well
» Very competitive in benchmarks
> Easy to use and parallelize

Generation 1 Generation 2 Generation 3
Generation 4 Generation 5 Generation 6

Wikipedia 9/27

http://www.cmap.polytechnique.fr/~nikolaus.hansen/ws1p34.pdf
https://en.wikipedia.org/wiki/CMA-ES

Bayesian Optimization

e Bayesian optimization
> State-of-the-art global optimization framework
» Very good results for HPO empirically

e Approach

1. Maintain a probabilistic surrogate model of V()

2. Optimize an acquisition function using the surrogate model to
select next configuration

3. Update surrogate model and repeat

e Surrogate model cheap to evaluate

e Acquisition function trades off exploration and exploitation

» Determines “utility” of evaluating a each configuration
> Takes uncertainty provided by surrogate model into account

10/27

Hutter et al., 2019

observation

Iteration 3

objective function

new observation 7
/

acquisition function

Iteration 4

posterior mean

posterior uncertainty

11/27

https://www.automl.org/book/

Surrogate models

e Used to model current knowledge about V()

e At its heart, a regression problem
» Input & = A corresponds to hyperparameter configuration
> Output y = V() corresponds to validation loss

> Data is given by trials so far: D = {(X;,V(\;)) }i;

e Parametric models
> Parameter vector € with prior p(6) .
» Used to derive posterior predictive p(V|X, D) = [p(V|A, 0)p(6|D) d6,
which accounts for uncertainty about parameters 6
» Example: Bayesian linear regression
> p(VIA,0,0%) = N (8T A 0?)
> p(8) is normal inverse gamma (=conjugate prior)
> Posterior predictive also Gaussian & can be computed in closed
form
» But: linearity assumption not suitable for HPO
> Example: Gaussian process regression (coming up)
» Think: Bayesian + kernel + linear regression
» Commonly used for HPO, but also when little data and/or no
gradients available

12/27

Recall: Bayesian linear regression (from 02-3)

plugin approximation (MLE) Posterior predictive (known variance)
w
w
w
w
w0
w
)
(a) (b)
functions sampled from plugin approximation to posterior functions sampled from posterior
p
w
P
o
w
w
w
o w
.5 °
w
)
° o
(c) (d)

Figure 7.12 (a) Plug-in approximation to predictive density (we plug in the MLE of the parameters). (b)
Posterior predictive density, obtained by integrating out the parameters. Black curve is posterior mean,
error bars are 2 standard deviations of the posterior predictive density. (c) 10 samples from the plugin
approximation to posterior predictive. (d) 10 samples from the posterior predictive. Figure generated by
linregPostPredDemo. 13 /27

Gaussian process regression

e Gaussian process regression (GPR) often used in HPO with BO

» Gaussian process GP (. x) represents a distribution over
possible functions; for us: validation functions (from A to R)

> GPR is a non-parameteric Bayesian approach that uses a GP as a
prior to build a regression model

> Parameters: inputs A; and corresponding outputs f; (= V(A;))

» Hyperparameters: kernel x, prior mean function pg: A - R
— need to be chosen adequately

e Obtained by kernelizing Bayesian linear regression

> Recall: lecture 08 on kernels

> Use kernel k(A1, A2) to measure similarity between configurations

> “Replace” design matrix X = (A})7, with kernel matrix K
(Where Kij = K(Ai, A]))

> Use kernel trick

e Intuitively, prior ensures smoothness, i.e., that similar inputs
(according to kernel) produce similar outputs

14 /27

lllustration (1)

Sample of functions from a Gaussian process

Durrande, 2016 15 /27

http://gpss.cc/gpuqss16/slides/durrande_school.pdf

lllustration (2)

Observations (1-dimensional)

|

1.5

1.0

f(z)
0.5

-0.5 0.0

-1.0

0.0 0.2 0.4 0.6 0.8 1.0

Durrande, 2016 16 /27

http://gpss.cc/gpuqss16/slides/durrande_school.pdf

lllustration (3)

Samples from Gaussian process conditioned on observations
(=samples from GPR model)

Durrande, 2016 17 /27

http://gpss.cc/gpuqss16/slides/durrande_school.pdf

lllustration (4)

Conditional distribution of functions cond. on observations

(=GPR model)
|
< |
Il
e
No|
’go
N
2
< |
) 0.2 0.4 0.6 0.8 1.0
X

Durrande, 2016 18 /27

http://gpss.cc/gpuqss16/slides/durrande_school.pdf

Gaussian process regression (prediction)

Consider new input A4 and data D = { (A, fi) }iy

For clarity, let's write F; for unknown values (random variable)
and f; for observed values (constants)

> We want to reason about F, the unknown value at Ay

GPR model
1. GP gives us joint distribution p(Fy,..., F,, F})
2. GPR determines cond. distribution

pr(Fy = 1) p(Fy = fIF = fi,. .., Fp = f)

Using a GPR model

> Prediction = posterior mean f, = E,. [f]

Uncertainty = posterior variance o2 = var, [f]

Sampling = sample value from p

fy and o3 are shown on slide 18 for various choices of A € [0,1]
Samples are shown on slides 15 and 17 (each function sampled
sequentially and by conditioning on previous values)

VVvVYVYyYy

19/27

Details (Step 1)
Step 1: GP gives us joint distribution p(Fy, ..., F,, F})

-
e Let F = (F1 e By F+)

> Fis an (n + 1)-dimensional random variable

» Elements are unknown function values at Ay, ..., Ay, Ap
e GP(up, k) assumes that F,..., F,, Fy are jointly Gaussian

» In particular, that F' is a multivariate Gaussian
F~N(m,K)

> m is an (n + 1)-dimensional mean vector with m; = po(\;)
> Kisn (n+1) x (n+ 1)-dimensional covariance matrix with
kij = Ii()\i,)\j)

e Observe: distribution of F' completely determined by p and x
(for our choices of Aq,..., Ap, At)

» GP thus serves as a prior on function values
» Hyperparameters i and x define this prior

20/ 27

Details (Step 2)

Step 2: GPR determines cond. distribution

pi(Fe=FH YL pFy = fIF = f1,.., Fu = fn)

e We assumed p(F') = N (F|m, K) (a multivariate Gaussian)

e We know f1, ..., fn, but not f.
e p, is obtained by conditioning p(F') on observed values fi,..., fn

> Need to compute a conditional of a Gaussian (cf. 07-1/9)
> Partition into observed (o) and new (+) parts

)) e)
f+ my ki, kit
> where ft,mT kit €R; £, Mo, kot, ko € R"; Koo € R™*™
> All values but f* are known
> We obtain: pi(f) = N(f|us,0%) (that's another Gaussian)
> Bt =my + hoKo_ol(mO - .fo)
> U<2|— = k++ - kIOK;olko+

21/27

GPR for BO

e GPR can be used as a surrogate model in BO

> But: V() is often a random variable itself (since we often
perform random choices during model fitting)

» This can be modeled by observation noise

> With isotropic Gaussian noise (as in linear regression), we assume
V(X)) ~ N(fi,0?), i.e., we observed only a noisy variant of f;

» o2 is an additional hyperparameter

e Cost: O(n?) to fit (compute K '), then O(n?) per prediction
— Expensive for large number of observations

e Predictions used to maximize acquisition function
> Aquisition function has form a(A") € R
> Given AT, a(AT) computed based on f, (prediction) and o3
(uncertainty)

22/27

Matérn kernels

e Common choice: a Matérn kernel
> Stationary kernel (value only depends on difference of in inputs)
» Smoothness parameter v (kernel differentiable | — 1] times)
» 1 — co— Equivalent to squared exponential kernel

(Gaussian kernel with diagonal covariance)

> v =1/2 — Equivalent to exponential kernel
> Parameterized by length scales o; (one per hyperparameter) and

bandwidth o2

Kernel profile

Samples from prior

Samples from posterior

MATERN1
— MATERN3
— MATERNS
Sa-Exp

NS

Fig. 3. (Left): Visualization of various kernel profiles. The hori:

axis rep. the di

r > 0.(Mi from GP priors with the

corresponding kernels. (Right): Samples from GP posteriors given two data points (black circles). Note the sharper drop in the Matérn1 kernel

leads to rough features in the

while

from a GP with the Matérn3 and Matérn5 kernels are increasingly smooth.

e Choice of kernels can have large impact (I!1)

23 /27

https://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf
http://gpss.cc/gpuqss16/slides/durrande_school.pdf

Discussion and alternatives

e GP regression in Bayesian optimization

>

>
>

>
>

Traditional choice: expressive, smooth, well-calibrated uncertainty
estimates, closed-form predictive distribution

Cubic cost — feasible only when limited function evaluations
Complex configuration spaces problematic: high dimensionality,
discrete/categorical variables, conditional hyperparameters
Strong assumptions on noise

Harder to parallelize

— Many approaches/variants proposed in the literature

e Alternative;: Random forests

>
>

Natively handle larger and also conditional spaces
E.g., SMAC framework

e Alternative: Tree-Structured Parzen Estimators (TPE)

>

>
>

Model densities of good (p(A]V < «)) and bad (p(A]V > «)
choices using a kernel density estimator (Parzen estimator)
Multiple such estimators arranged in a tree for conditional spaces
Good empirical performance on structured HPO tasks

24 /27

https://ml.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf
https://papers.nips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html

Acquisition function

e Many acquisition functions « exist, no single best one
e Improvement-based methods try to improve over a target 7
» Ideally, value close to minimum
> Heuristically, best value so far
e Probability of improvement (PI): apj(A) = p(V(A) < 7)
» Can work well when target close to minimum
» Otherwise may exploit too aggressively

Expected improvement (EI): ag () = E[(— V(A))]
> Incorporates amount of improvement (if any)

Alternative: upper confidence bound (UCB)

> E.g., set ayce(A) such that p(V(A) < aycs(A)) = 0.05
» Optimistic method

Alternative: information-based methods use posterior
distribution p(A*|V') of best configuration

25 /27

Acquisition function (example)

— Pl
— E
— UucB
— 75
— PES

Fig. 5. Visualization of the surrogate regression model and various
acquisition functions. (Top) The true objective function is shown as a
dashed line and the probabilistic regression model is shown as a blue
line with a shaded region delimiting the 2o, credible intervals. Finally,
the observations are shown as red crosses. (Bottom) Four acquisition
functions are shown. In the case of PI, the optimal mode is much closer
to the best observation as in the alternative methods, which explains
its greedy behavior. In contrast, the randomization in TS all itto
explore more aggressively.

(maximization problem shown here)

e Note: Acquisition function needs to be maximized

— Auxiliary optimization techniques
Shahriari, 2016 y p q 26 /27

https://ieeexplore.ieee.org/document/7352306

Practical considerations

e Description of configuration space

» Often box constrained

» Sometimes logarithm of hyperparameter optimized
(e.g., learning rate, regularization weight)

» As so often, choices matter

e Practical constraints

» In practice, often additional constraints: memory consumption,
training time, prediction time, energy usage, ...

> E.g., a single slow configuration should not consume all of the
available time budget

> Can usually only be observed afterwards (e.g., training time)

> Simplest approach: add penalty term to V() for constraint
violations

27/27

Machine Learning

09 — Hyperparameter Optimization
Part 3: Multi-Fidelity Optimization

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Low-fidelity approximations

e Blackbox optimization can be expensive

>
>
>
>

Increasing dataset sizes

Increasingly complex models

Even training a single HP configuration may take a long time
Example: BERT training took 4 days

e |dea: “probe” a configuration in a less costly manner using
low-fidelity approximations

>

vVvyVvyy

>

Often done when performing manual HP tuning

Use a subset of the data

Use reduced inputs (e.g., feature subset, lower-resulution images)
Use reduced models (e.g., used by GPT-4)

Train for a few iterations

Use a subset of the cross-validation folds

e Tradeoff between quality of approximation and runtime

| 4
>

Lower fidelity — faster but lower quality
Higher fidelity — slower but higher quality

2/17

https://nlp.stanford.edu/seminar/details/jdevlin.pdf
https://arxiv.org/pdf/2303.08774.pdf

Multi-fidelity hyperparameter optimization

e Multi-fidelity optimization methods
» Systematically use low-fidelty approximations for HPO
» Usually involve multiple fidelities
> Allows to explore larger parts of HP configuration space within a
given computational budget
> For expensive learning tasks, runtime gains often outperform
approximation error in practice

1. Predictive termination methods

P Successively increase fidelity for a single configuration
» Stop when increasing fidelity further not beneficial — reduce cost
» Based on learning curve prediction

2. Selection with static fidelities

> Fixed schedule of fidelities to try (from low to high)
> Select which configurations to explore (further)

3. Selection with adaptive fidelities
P Also choose fidelities actively

3/17

Predictive termination

e Learning curve = performance of an iterative ML algorithm as
a function of iterations/training time

e HPO with predictive termination

>

>
>
>

>
>

Use any HPO method for iterative ML algorithms, but modify the
validation protocol

Validate regularly (e.g., after every k iterations)

We obtain a partial learning curve

Use a learning curve model to estimate whether the partial
learning curve is likely to fall behind the best model found so far
If so, terminate training and output estimated final performance
If not, continue training

e Learning curve model

>
>
>

Key goal is to identify “bad” configurations quickly

Only few observations per curve: uncertainty modeling is key
May exploit prior knowledge, e.g., learning curves are
non-increasing and saturate

4/17

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf

Parametric learning curve model of Domhan et al. (1)

e Linear combination of 11 suitable parametric functions and
additive Gaussian noise

e Prior: positive weights, non-decreasing

Reference name | Formula
06 — vapor pressure Ay = 0.10 vapor pressure exp(a + é + clog(x))
— pow; &y =007 pows c— az—®
— log log linear Ay = 0.05 i
0.5, — Hill; Ay = 0.02 log log linear log(alog(x) + b)
= 1. Ymax "
. log power Ay = 0.02 Hills Tt -
9 — weighted comb. Ay = 0.001 log power o
504 — pow, Ay =-0.01 g p H(_Ls)”
S e
S — MMF Ay = -0.02 ow c— (az +b)~®
© —— exp; Ay =-0.04 P! 4 -8
0.3 — Janoschek Ay = -0.04 MMF X T (ra)
— Weibull Ay = -0.04 exps ¢— e—ar+b
~—— ilog, Ay =-0.05 5
o — data Janoschek a—(a—pB)e "™
. _ s
Weibull a—(a— e =2
100 200 300 200 i o
epochs 1logz €~ Iogz

Figure 1: Left: A typical learning curve and extrapolations from its first part (the end of which is marked with a vertical line),
with each of the 11 individual parametric models. The legend is sorted by the residual of the predictions at epoch 300. Right:
the formulas for our 11 parameteric learning curve models fi ().

Domhan et al., 2015 5/17

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf

Parametric learning curve model of Domhan et al. (2)

0.9
0.8
0.7

L)
o

o«
'S

accuracy
accuracy
o
[
accuracy

o o oo
=R

o 100 200 300 0 100 200 300
epochs epochs

(a) Without predictive termination (b) Random subset of Figure 4a () With predictive termination

0.35
— standard early stopping — SMAC
i = pendictvn eriaaion serian 030 = B ¥ane v
go25
oas £ 0.20
£ °
- ® 0.15
™]
®0.10
>
o0 0.05
— standard early stopping
— prodictiva tarmination critarion 0.00/
. FTT T o0 E o e mams owe o000 seom &o00 70bon 12 3 4 5 &6
Duration [sac] Duration [sec] total configuration time [sec] le4
(a) SMAC on k-means CIFAR-10 (b) TPE on k-means CIFAR-10 (c) SMAC on MNIST

Domhan et al., 2015 6/17

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf

Background: Multi-armed bandits

e Multi-fidelity HPO can be modeled as particular multi-armed
bandit problems

e Generally, a multi-armed bandit (MAB) is
> A set of L real reward distributions B ={Ry,...,Rp }

>
>
>

Casino analogy: L slot machines, each with a single arm to pull
Reward obtained by sampling from R; of some arm ¢
Key question: Which arm to pull? (allocation)

e MAB problem: maximize payoff over H pulls (horizon)

>

vvyvyy

Payoff = cumulative reward

Reward distributions unknown, but reward observed after each pull
Exploration/exploitation trade-off

Explore: pull an arm to gather information about its reward distribution
Exploit: pull an arm with high (estimated) reward

e Many techniques, many variants

7/17

HPO and multi-armed bandits (1)

e HPO and MAB are closely related

> Arm = hyperparameter configuration

» Pull an arm = train with this hyperparameter configuration
» Loss = observed validation loss

e Best-arm identification
> Goal is not to maximize payoff, but to estimate the “best” arm
> A pure exploration problem

> Strategies well-suited for maximizing payoff may not be well suited
for best-arm identification

e Many-armed bandits

» Number of arms > number of available trials
> E.g., when continuous variable included
» Cf. methods discussed for blackbox optimization

8/17

https://arxiv.org/pdf/0802.2655.pdf

HPO and multi-armed bandits (2)
e Multi-fidelity HPO can also be modeled

» First pull of arm ¢ = train low-fidelity model

» Subsequent pulls of arm ¢ = continue training to obtain a
higher-fidelity model

» Example: pull an arm = train for one additional SGD epoch

e Non-stochastic multi-armed bandit problem
> As MAP, but when pulling arm ¢ for the T;-th time, observe loss
i, (no randomness)
» Loss of an arm changes when its being pulled
(oblivious to any pulls of other arms)
> Losses converge in that v; = limy, o0 li, exists
> Goal is to identify best arm (lowest v;)

e Think: T; = fidelity, l;;; = low-fidelity validation loss, v; =
full-fidelity validation loss

e Difficult problem; e.g., cannot reject an arm or verify best arm
» In general, convergence to v; may be arbitrarily slow

9/17

https://arxiv.org/pdf/1502.07943.pdf

Successive halving

e A simple technique is successive halving (SH)

Input: set of n arms, overall budget B

Output: estimate of best arm

Budget distributed evenly over R = [log,(n + 1)] rounds
(=~ B/R pulls per round)
Start with all arms active, then in each round

> Pull each active arm equally often (=~ doubles each round)
> Remove the half of the active arms with the largest loss
> After R rounds, only one arm survives — estimate of best arm

Prespecifying the budget can be avoided by a "doubling trick”

» Start with B < n, then repeatedly double B

» Reuse existing arms — no repeated computation

> When B* is the optimal budget, effective budget with doubling
trick is < 2B*

10/17

https://arxiv.org/pdf/1502.07943.pdf

Successive halving (example)

1
w
w
o
0 12.5% 25% 50% 100%
budget

Fig. 1.3 Illustration of successive halving for eight algorithms/configurations. After evaluating all
algorithms on % of the total budget, half of them are dropped and the budget given to the remaining
algorithms is doubled

Hutter et al., 2019 11/17

https://www.automl.org/book/

Successive halving (discussion)

e Very simple, performs well
e Analysis and experimental study by Jamieson and Talwalkar (2016)
» Under certain conditions, provably better than random search
» Generally not much worse than random search
> Better anytime performance than random search
» Empirically good HPO performance w.r.t. other bandit methods
» One reason: few runs of validation protocol necessary
(2n + 1, which is often < B)
e Instead of halving, may use other factors
» HPO hyperparameter 7 (e.g., n = 2 for SH)
> In each round, keep 1/n of best arms, multiply budget by n
e In HPO, arms are sampled from the HP configuration space.

But how many arms should we use? (“n vs. B/n problem”)
P> Many with small budget each

— may terminate good configurations prematurely
» Few with large budget each

— may waste resources on poor configurations

» Trade-off may not be easy to make by user
12/17

https://arxiv.org/pdf/1502.07943.pdf

n vs B/n problem (example)

HPO for LeNet on MNIST

Li et al., 2018

Successive halving with n = 3

s low — few configurations with large budget each
s high — many configurations with small budget each
Optimal choice neither too low nor too high (here: s = 3)

1.00

le-2

nepoch=81

Test error

s=0 Baseline
s=1
s=2
s=3
s=4
Hyperband

Figure 3: Performance of individual brackets s and HYPERBAND.

0.5

1.0
Seconds

15

2.0
le6

13/17

https://arxiv.org/abs/1603.06560

Hyperband

e Hyperband addresses the n vs B/n problem

e Key idea: run successive halving repeatedly from scratch with
fixed budget but different number of configurations
e Input: maximum per-configuration budget R, factor n (def. 3)
> Perform |log, R+ 1] runs of successive halving, called brackets
> Initial budget (r) in first round starts at 1 and is multiplied by n
from bracket to bracket
» Run as many configurations (n) with budget R as possible to not
exceed a fixed per-bracket budget (B’ = R|log, R+ 1])

s=4 s=3 s=2 s=1 s=0

ng v | ngorio |\ nmg o | ngori | ng T
81 1 |27 3 |9 9 |6 275 81
27 3 |9 9 |3 272 81
9 9 |3 271 81
3 27 |1 81
1 81

W o = o =

Table 1: The values of n; and r; for the brackets of HYPERBAND corresponding to various
values of s, when R =81 and n = 3.

14/17

https://arxiv.org/abs/1603.06560

Discussion

e Introduced, analyzed, and empirically studied by Li et al. (2018)
P> Modeled as non-stochastic infinitely-armed bandit problem
> Can be extended to avoid specifying R (similar to doubling trick)
> Hyperband most useful when domain information on n-vs-B/n
trade-off is not available
> In practice, Hyperband outperformed by successive halving with
“right” number of configurations

T AW I | Y
032 hyperband (finite) spearmint
0.30 hyperband (infinite)—— random
_ — SMAC —— random 2x
£0.287 —— SMAC (early) —— bracket s=4
I 026l T TPE
n
2 0.
fid
[] _\;
©0.24 \ﬁx
I
2022
< g\
0.20
0.18
0 10 20 30 40 50

Multiple of R Used

(a) CIFAR-10 .

https://arxiv.org/abs/1603.06560

Beyond Hyperband

e Hyperband is based on random search

» Observations used to determine how many resources to spent on
each configuration, but not used to select suitable configurations

» Methods such as BOHB combine Bayesian optimization and
Hyperband

» Hyperband for quick improvements in the beginning

> Bayesian optimization for good performance in the long run

e Hyperband uses a prespecified set of fidelities
» Implicitly via parameter 1 and budget
» Usually only a small number (e.g., < 5) and only one type (e.g.,
iterations) of fidelities considered
» One approach beyond: multi-fidelity BO methods such as BOCA

16/17

https://arxiv.org/abs/1807.01774
http://proceedings.mlr.press/v70/kandasamy17a

Example: BOHB
107!

3

20x speedup

—a— RS

10° 101 102

10° 10

10° 10°
wall clock time [s]

Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult
Hutter and Vanschoren, 2018

17/17

https://media.neurips.cc/Conferences/NIPS2018/Slides/hutter-vanschoren-part1-2.pdf

Machine Learning

09 — Hyperparameter Optimization
Part 4: HPO in Practice

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2023-1

Which method to use?

e Choice of HPO method difficult and application-dependent

e No standard, well-accepted HPO benchmark yet

>
>
>
>

Evaluation protocols and metrics differ in the literature
In progress: HPOBench, successor of HPOlib

Related: COCO for blackbox optimizers
Different authors use different evaluation methods

e Some criteria for choosing an HPO method

>

vVVvyvyy

»

Structure of search space (small? large? real-valued? conditional?)
Number of possible evaluations (10s? 100s? 1000s?)

Degree of possible parallelization (1 worker? few? hundreds?)
Expertise and domain knowledge to set HPO hyperparameters
Multiple fidelities possible?

Extensibility and/or anytime properties needed?

e Recommendations of Feurer and Hutter (2019)

>
>
>
>

Multiple fidelities — BOHB

Real-valued, few trials — BO with Gaussian processes
Real-valued, many trials — CMA-ES

Large/categorical /conditional spaces — BO with SMAC or TPE

2/4

https://ml4aad.org/automl/hpolib/
http://aad.informatik.uni-freiburg.de/papers/13-BayesOpt_EmpiricalFoundation.pdf
https://coco.gforge.inria.fr/
https://www.automl.org/book/

How to set HPO hyperparameters?

e HPO methods have hyperparameters themselves
> Note: these are not the hyperparameters subject to HPO!
> Even present for basic methods such as grid search (which grid?)
or random search (which sampling distribution?)
» Choice many have significant impact

e Manual specification
> Implementations typically aim to provide sensible default choices
> (Hopefully) easier to set by experts than hyperparameters of
learning problem

e Estimate value of HPO hyperparameters from data

> Using a point estimate (e.g., marginal likelihood of data in BO)
> Problem: generally little data available (few trials)
» Problem: Not always possible (e.g., grid points)

e Fully Bayesian treatment of HPO hyperparameters

> Integrate out HPO hyperparameters
» E.g., possible for Gaussian processes (length scales, covariance
amplitude, observation noise, constant mean)

3/4

https://arxiv.org/pdf/1206.2944.pdf

Can HPO lead to overfitting?

e Hyperparameters typically tuned on validation loss
> No overfitting to training data
» Validation data is limited, however
» Overfitting to validation data is a concern
» Observed empirically

e Strategies against overfitting

» Vary training and validation splits across function evaluations

> With BO, do not choose model with best observed performance,
but with best estimated mean performance

> Use a separate holdout set to detect HPO overfitting or reassess
found configurations

> Prefer stable optima (flat around optimum) over sharp optima

> Use ensembles/Bayesian model selection (cf. 09-1, slide 5)

4/4

https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf

Machine Learning
A - Probability Refresher

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Probability theory is nothing but common sense reduced
to calculation.
— Pierre Laplace, 1812

Basic terms

Sample space) = set of outcomes

e Event A C 2 = some outcomes

> Special cases: () (empty event), Q (trivial event)
» Can be complicated — consider only events from some event
space X

Can combine events A and B

> AUB, ANB, A\B, A=Q\ 4, ...

» Disjoint iff ANB =10

Probability space = triple (2, %, p)

> Informally, p : ¥ — [0, 1] assigns a probability to events
» Usual properties (e.g., p(2) = 1)

We will often think in terms of random variables
> and ¥ implicit

3/22

Random variables

e We often associate random variables with data attributes

Both observed and unobserved ones

E.g., p(heart disease=true | age > 50, gender=male)

E.g., p(shows a zero=true | image pixels)

E.g., p(is spam=true | words in e-mail)

E.g., p(stock tomorrow > 100 | stock history)

echnically, random variables (RV) are functions

Val(X) = set of possible values

Random variable X : Q — Val(X),

Maps each outcome w € 2 to a value X (w) in Val(X)

X =zmeans {w| X(w)=2x}

X <z means {w| X(w) <z}

Sample space often implicit (e.g., cross product of the

possible-value sets of the considered variables)

e RV is discrete if possible values finite/countably infinite
> Eg., Val(X)={0,1}or Val(X) =N

e RV is continuous if possible values uncountably infinite
> Eg., Val(X) =R

[]
S vvwvwvy

VVVVYYVYY

4/22

Discrete random variables (1)

e Described via probability mass function fx : Val(X) — [0, 1]
fx(@) =p(X =2)

e Example: Bernoulli distribution Ber(6)
» Models coin flip with probability 6 of heads
> Val(X)={0,1} — binary RV
> fx(1) =0, fx(0)=1-10

Fair coin My special coin

1.0
10

0.8
0.8

0.6
I
0‘5

f(x)
)

0.4

0.2
0.2

0.0
0.0

5/22

Discrete random variables (2)

e Example: categorical distribution Cat(6)
> Generalization of Bernoulli distribution to k& > 0 categories
> Probabilities of categories given by 6 = (91, cee Qk), summing to 1

Patients arrive in

=

o _|
=)

0‘8

0.4

0.2

]

Spring Summer Autumn Winter

0.0

e Others: binomial, multinomial, Poisson, empirical, ...

6/22

Union of events
e Given events A and B, the probability of “A or B" is given by

p(AV B) = p(A) +p(B) = p(AN B)
= p(A) + p(B) if A and B are disjoint

e Generalizes to principle of inclusion-exclusion

p(Vii A) = Y CDVIp(Ases 45)

e Allows to derive upper and lower bounds, e.g., union bound

p(Vizy Ai) < D00 p(Aq)

7/22

Joint probabilities and sum rule
e The joint probability of events A and B is given by
p(A, B) = p(ANB)
e Sum rule (law of total probability)

p(X =z) = Z p(X =2,Y =vy)
y€Val(y)

> p(X = x) is called the marginal distribution
» When we apply the sum rule, we say that we marginalize out Y

E><arT1p|e 1)(;¥} }f) ‘ H T
X=H |01 0.2
X=T |03 04

p(X=H)= Y pX=HY=y)
ye{H,T}

—p(X =H,Y =H) +p(X =H,Y =T) = 0.3

8/22

Conditional probability
e The conditional probability of A, given that B is true, is
defined as
p(A, B)
p(B)

p(A|B) = if p(B) >0

e Can be represented in a conditional probability table (CPT)

Joint probabilities CPT
p(X,Y)| H T p(X|Y)| H T
X=H |01 02 X=H|025 033
X=T |03 04 X=T |0.75 0.66

9/22

Product rule

e Conditional probability: p(A|B) = p(A, B)/p(B)
e Implies the product rule

p(A, B) = p(A|B)p(B)
e Generalizes to chain rule

p(Arn) = p(A1)p(A2|A1)p(Asz|AL, A2) - p(An|Arn—1)

10/22

Bayes' rule

e Using the product rule, we obtain Bayes’ rule

_ pAp(BlA)
paB) = "o

e In terms of RVs:

p(X =2)p(Y = y|X =)
p(Y =y)

e Many applications, foundation of Bayesian statistics (more later)

p(X =alY =y) =

11/22

Example: Medical diagnosis

e A mammogram is a test for breast cancer

e Suppose you are a women in your 40s

e If you have cancer, test positive (7' = 1) with probability 80%
e If you don't have cancer, test positive with prob. 10%

About 0.4% of women in their 40s have breast cancer (B = 1)

How likely is it that you have breast cancer if the test is positive?

p(B=1p(T=1/B=1)
p(T=1)

_ 0.004 - 0.8

~0.004-0.8+0.9996 x 0.1

=0.031

p(B=1T=1) =

12/22

Independence

e We say X and Y are (unconditionally/marginally) independent
iff

Vo,y:p(X =2,Y =y) = p(X = z)p(Y = y)

l.e., joint probability equals product of marginals

Example: throw two coins X, Y

» Assuming that the coins are fair and throws are independent, we
have for example

PX=HY=T)=pX =H)p(Y =T) =0.25

Very useful, thus special notation: X LY

Note: disjointness # independence

13/22

Conditional independence

e Unconditional independence is rare
e X and Y are conditionally independent given Z iff

Ve, y,z p(X =2, =y|Z = 2)
=p(X =z|Z =2)p(Y = y|Z = z)

Denoted X L Y | Z
Example

> Event that it rains tomorrow (X)

> Event that ground is currently wet (V)
> Event that it rains now (Z)

» Then: X Y YbutX LY |Z

Note: X LY | Z does not imply X LY
Note: X LY does notimply X LY | Z

14/22

Continuous random variables

e Described via cumulative distribution function (cdf)
Fx : Val(X) — [0,1]
Fx(z) =p(X <)
e Non-decreasing
e pla< X <b)=Fx(b)— Fx(a)fora<b
e If derivative exists, we obtain the probability density function
(pdf) fx : Val(X) — R*
d
fx(@) = EFX(JU)

e Probability of range corresponds to area below pdf:

b
p(aSXSb):/ fx(x) dx

e Examples: uniform, Gaussian, Student’s ¢, Laplace, Gamma,
Beta, Dirichlet, ...

15/22

The Gaussian Distribution (1)

e Normal distribution N (u, 0?)
» 1 is a mean parameter
» o2 is a variance parameter (sometimes: precision A = 1/0?)
» Standard normal distribution: A/(0,1)
» Most widely used continuous distribution in statistics and ML

e pdf given by

1 1
N(x“jﬂ 02) = \/W exp <_O'(x - lu’)2>
cdf pdf

F(x)
()

16 /22

The Gaussian Distribution (2)
pw=0 =2

< <
o o
« @
S S
2 g 3 g 3

oc=1

- -
S S
o | o |

T T T T T T T T T T

-10 -5 0 5 10 -10 -5 0 5 10

x x
0 0
o o
s s
° °
24 24
=~ o =~ ©
2 £ ES
0“=5

0 0
=8 8
S s
o s
&4 8

T T T T T ST T T T T

-10 -5 0 5 10 -10 -5 0 5 10

17/22

Mean, variance, covariance

e The mean or expected value u of a RV is given by

E[X] = Z zfx(x) if X is discrete
x€Val(x)
E[X] = /a:fx(x) dz if X is continuous

e The variance o2 is given by
var [X] = E[(X — p)?)

o Useful fact: var [X] = E[X?] — E[X]?

e The covariance is given by

Cov[X,Y] = E[(X — E[X])(Y — E[Y])]

18/22

“Flaw of averages”

Mean correct, variance ignored

Savage, 2009.

But the AVERAGE state
of the drunk is DEAD

Be careful with expected values!

The

_ Stateof

" the drunk

at his AVERAGE
ition

is ALIVE.

Elg(X)] # g(E[X])

19/22

http://www.flawofaverages.com/

Notation

We will work with many random variables.

We write X ~ N (0, 1) to say that r.v. X has the specified distr.

We write p(X = z) to refer to the pmf (when X discrete) or
pdf (continuous)

We often drop the r.v. from our notation (when clear from text)

> Write p(z) instead of p(X =) (marginal distribution)
> Write p(z,y) instead of p(X = z,Y = y) (joint distribution)
> Write p(z]y) instead of p(X = z|Y = y) (conditional distribution)

p(x) can refer to a probability (x fixed) or a distribution (x
variable)

We write X L Y if X and Y are independent

We write X | Y|Z if X and Y are conditionally independent
given Z

20/22

Important properties

p(AUB) =p(A) +p(B) —p(AN B) (inclusion-exclusion)
p(4) =1-p(4)
If B2 A, p(B)=p(A)+pB\A)=p(4)

p(X,Y) = p(Y|X)p(X) (product rule)
p(X) = Zp(X, y) (sum rule, y discrete)

y
p(X) = /p(X,y) dy (sum rule, y continuous)

y
p(X[Y) p(Yp)((})/];(X) (Bayes theorem)

ElaX +b] =aE[X]+b (linearity of expectation)

Ey[Ex[X|Y]] = E[X] (law of total expectation)

21/22

Literature

e Murphy, Ch. 2, Probability: Univariate Models
e Goodfellow et al., Ch. 3: Probability and Information Theory

22/22

Machine Learning
B — Vectors & Matrices

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2022-1

Outline

1. Vectors
2. Matrices

3. Summary

2/39

Outline

1. Vectors

3/39

Vector

A vector is

A 1D array of numbers

A geometric entity with magnitude and direction
A matrix with exactly one row or column

» Called row vector and column vector, resp.
> Transpose v ' transposes a row vector into a
column vector and vice versa

A (latent) attri

A (latent) object/example

bute/feature

Jan Apr
4) Stockholm (—0.70 8.60

Year

Stockholm [9.95
Minsk 10.77
London 14.85
Budapest | 14.91
Paris 15.46
Bucharests| 16.44
Barcelona | 19.90
Rome 20.44
Lisbon 21.36
Athens 22.31
Valencia | 22.36
Malta 23.35

Jul Oct Year
21.90 9.90 10.00)

4/39

Vector norm

The norm of vector defines its magnitude. Let

"
’U:(’Ul vy v Un) .
e Euclidean norm: |jv|| = 4/>" " ; v?

» Corresponds to intuitive notion of length in Euclidean space
e (, norm for 1 <p < oo |||, = (31, v [P) /P
» /¢, norm = sum of absolute values
(Manhattan distance from origin)
» /{5 norm = Euclidean norm
(bird-fly distance from origin)
» (.. norm = maximum absolute value
» The ¢, norms never increase as p increases, i.e.,

[0l < ll0ll, fora>0

o= (1)

e Properties of vector norms (-3
> |[v|| >0 when v #0and |v| =0iffv=0 lvlly =7
» |lav|| = |a| ||v|| (absolute scalability) vl =5
> |lv1 + va|| < ||vi|| + ||v2] (triangle inequality) V]l =4

Norms and distances

The distance between two vectors u, v € R™ can be quantified
with norm [ju — v||.
Jan Apr Jul Oct Year

e Stockholm, s = (_070 860 21.90 9.90 10.00)
e Minsk, ~m=(-210 1220 23.60 10.20 10.60)

o Athens, a=(12.90 20.30 32.60 23.10 22.30)

lq s m a Uy s m a

s 000 7.60 6150 s 000 427 27.60

m 760 000 56.70 m 427 0.00 25.98

a 6150 56.70 0.00 a 27.60 2598 0.00
I8 s m a

s 0.00 3.60 13.60
m 3.60 0.00 15.00
a 13.60 15.00 0.00

6/39

Dot product (algebraic definition)

The dot product of two vectors u,v € R" is given by

n
u-v= E Uz ;.
i=1

Also known as scalar product

An inner product for Euclidean space: (u,v)

Matrix product of a row and a column vector: u'v

Properties (with a,b € R)

> uv=v-u

> (au) v =a(u-v)

> (au+bv) w=(au) w+ (bv) w

Many uses, many interpretations

7/39

With dot products, we can ...

e Compute the (squared) Euclidean norm

e Determine the value of a coordinate
Vi = U - €4,
where e; denotes the i-th standard basis vector (i.e., [e;]; =1
if i = j else 0)
e Compute the sum of the elements of a vector

n

v'lnzzvia

=1

where 1., is the all-ones vector of dimensionality n

8/39

Dot product: Weighted sum

The elements of one vector are interpreted as weights for the
elements of the other vector.

Example: Anna goes shopping

ltem ‘ Bread Butter Pizza
Price/piece 1€ 0.50€ 3€
Quantity bought 1 2 5

How much does Anna pay?

Prices can be interpreted as “weights™: p = (1 0.5 S)T
Quantities are n = (1 2 S)T
Totalisp-n=1-1405-243-5=17

Similarly: Can interpret quantities as weights for prices

9/39

Dot product: Expected value

One vector corresponds to probabilities, the other one to a random
variable.

Example: Bob is gambling

Outcome ‘Jackpot Win Loss
Probability 0.1 02 07

Amount won 5€ 1€ -2€
How much does Bob win in expectation? (Should he play?)

i T
Probabilities p = (0.1 0.2 0.7)
> A non-negative vector that sums to one (||p||; = 1) is called a
probability vector
> Corresponds to a probability distribution over a finite set of
outcomes
-
Amounts won & = (5 1 —2)

» Corresponds to a random variable; associates a real value with
each outcome

Expected value p-x =0.1-5+0.2-1+0.7- (=2) = —0.7

10/39

Dot product: Sample variance

Denote by u = %ZZ u; the mean of u. If we treat the entries of u
as samples from some distribution, then the sample variance is
given by

2 1 ¢ o Ju—al (u—a)-(u—a)
57 = Z(uz —u)* = =

n—14 n—1 n—1
=1

)

where w denotes the sample mean vector, i.e., [u]; = u for
1< <n.

° Example
> (10 11 12)"
> a=1La=(11 11 11)"

> u— a:(—l 0o 1)'

> 52 =1, ||lul* =365

e Variances are thus closely related to norms; the key difference is
centering and averaging

e When we center data before analyzing it, dot products are

proportional to variances (u - u) or covariances (u - v)
11/39

Dot product: Sets and intersections

The indicator vector of a subset 7" of aset S = {s1,...,8,} is
the vector @ such that z; =1ifs; € T and z; =0if s; ¢ T. If u
and v are indicator vectors for subsets U,V C S, resp., then
u-v=|UNV]

e S = { France, Germany, Denmark, Poland }
e Anna visited France, Germany, and Poland: u = (1 1 0 1)—r

e Bob visited Germany, Denmark, and Poland: v = (O 1 1 1)—r

e Number of countries visited by both:

u-v=1-04+1-14+0-1+1-1= 2= |{ Germany, Poland }|

12/39

Dot product (geometric definition)

An alternative geometric definition of the dot product of two
vectors u,v € R" is

u-v = |ul| ||v][cos,

where —7 < 0 < 7 denotes the angle between u and wv.

(=2}
2
] u
I~
ST v
0
2
o™
e
—_| /6
o
0 I I I I I I I I I 1
0.1 0.3 0.5 0.7 0.9
13/39

Why is this?

Let's focus on the 2D case. Recall the law of cosines: a

? =a®+b%> — 2abcosh.

Now set u = B — C and v = A — C and observe

thatv —u=A - B. A

2 2 2 a
g PPl el ol C
2ab 2|l ||v]
L uwutvov—(v—u)- (v—u)
2|l o]

u-utv-v—v-vt+2u-v—u-u

v
2]l ol /0
u-v

- c u B
[l o]

14/39

Dot product: Test for orthogonality

Two nonzero vectors u, v € R™ are orthogonal iff u - v = 0.

e Since 0 = u - v = |lu|| [|[v] cosf and |ju||, ||v|| > 0, we have
cosf =0

e And this means that the angle is 90 degrees

A\

15/39

Dot product: Cosine similarity (1)

The angle between w and v is another way to measure the
similarity between two vectors. The cosine similarity of u and v
is given by

u-v

cos(w:v) = ol

o —1 <cos(u,v) <1
e Vectors that point in roughly the same direction
— small angle — cosine similarity &~ 1

e Vectors that point in roughly opposite directions
— large angle — cosine similarity ~ —1

e Vectors that are roughly orthogonal
— roughly right angle — cosine similarity ~ 0

e Example: Determine the similarity between a document and a
query in IR

16/39

Dot product: Cosine similarity (2)

570,
L
#buys
A
"r%:
104 &3}‘“ Fuclidean

17/39

Dot product: Pearson correlation

The sample Pearson correlation coefficient is a measure of
linear correlation. It is given by

(z—z) (y—9)

lz —z| ly — 9

Tey =

e Numerator proportional to the sample covariance
e Denominator proportional to sample standard deviations
e Related to cosine similarity, but performs centering

p=-1 ‘ -1<p <0

0< p <+1 p=+1 p=0

18/39

Dot product: Similarity

The dot product itself can also be seen as a measure of similarity
or compatibility. Recall

u - v = ||ul ||v] cos .

Example: Shopping transactions

e Like in previous example, vectors u and v correspond to persons

Elements correponds to frequencies of buying each product

We can think of the direction of a vector as “preference’

» Which products are being bought?
» cos@ large when uw and v have similar interest

We can think of the magnitude of a vector as “strength”

> How much is being bought?
> |lu|l||v|| large when both persons buy a lot

If u- v is large, u and v have similar shopping behavior and buy
a lot

19/39

Dot product: Projection

The vector projection of v onto w is given by

i () u-v u u-v
proj, (v) = = U
lull Al
——
scalar
projection n
o
o
e The scalar projection l_ u
describes how far v points ST v
in the direction u 7
|
e The vector projection =
is a vector pointing this far 7]
. . . o _|
in the direction of u 3 4 oiu(v)
e Note: norm of u (when # 0)] .
does not affect result, only <=7
direction does R LU USELEUNEL
01 03 05 07 09

20/39

Outline

2. Matrices

21/39

Notation

Let A € R™*" be a real m x n matrix. We write
e aj; or A;j (both scalars) for the value of entry (i, j)
e a; or A.; (both column vectors) for the j-th column of A

e a; (column vector) or A;. (row vector) for the i-th row of A
Thus

ail ai2 Aln
a1 a2 -+ Qgp
A=
Gml OGm2 " Gmn
Al:
A2:
:(A:l As -+ An) = .
A

22/39

Full matrix ring (addition)

The set of all matrices in R™*™ form a ring, the full matrix ring.

e Addition and substraction are element-wise

[A + B]ij =aj + bl'j
[A — BJ;;

aij — bij

Addition is associative and commutative

The additive identity is the n x n zero matrix 0,«p,
The additive inverse is —A with [—A];; = —ay;

In general [cA];; = ca;j for ¢ € R (scalar multiplication)

23/39

Full matrix ring (multiplication)
e For multiplication, we take dot products
[AB],'J' = a; - bj = Zaikbkj
B
k=1 |
e The multiplicative identity is !
the n x n identity matrix I, a] -
10 -0
01 --- 0 A c
00 --- 1

Multiplication is associative, but not commutative

(AB # BA in general)

Multiplication distributes over addition
(A(BB+C)=AB+ AC and (B+C)A=BA+CA)
Multiplication does not always have an inverse (division)

24/39

Rectangular matrices

e We generally have rectangular matrices A € R™*"

e We can only add and substract matrices of the same dimensions
(Am><n + Bmxn)

e We can only multiply matrices with a matching inner dimension
> We can multiply A € R™*" with B € R™*" (inner dimension is)

> Gives an m x n matrix (outer dimensions)
> [ABlij = a; - b; =3 _; aib;

25/39

Interpretation for matrix multiplication (1)

When we multiply A and B, we compute all dot products between
rows of A and columns of B.

e We can apply any of the interpretations of the dot product
e E.g., weighted sum

m supermarkets, r products, n persons

a;, = price of product k at supermarket ¢

b = quantity of product k bought by person j
[AB];; = how much the j-th person would pay
when buying at the i-th supermarket b;

vVVvVYVYyYyY

e E.g., covariance

oy
» |f all columns of A,,,x,, are centered s
T _
(Zk A1 = 0), then ml—lA A E Rnx™ T
is the sample covariance matrix
> [-1- AT A};; holds the sample variance
of column ¢ A C
> [ﬁATA]ij holds the sample covariance
between columns i and j

26/39

Interpretation for matrix multiplication (2)

We can also interpret rows ¢ of AB as a linear combination of the
rows of B with the coefficients coming from A
[AB]Z = ailBlz + ai2B2: + -+ airBrca

and, similarly, the columns of AB as linear combinations of the
columns of A

[AB].j = b1;Aq + byjAn+ -+ bjA,.

-—=—=

_—————— e

i 1 1 =1 1
I P R R S
| 1 1= &= 1

A (each square is a column) B [AB];;

27/39

Interpretation for matrix multiplication (3)

We can view matrix AB as the sum of the r component

matrices obtained by multiplying the k-th column of A and the
k-th row of B:

AB = A:lBlz + A:2B2: + -+ AZT‘BT:

e Components A.;Bj. are outer products (m X n matrices)
e Note: when u € R™ and v € R"™, the matrix product
» u'w corresponds to a dot product (a scalar), m = n required
> wv' corresponds to an outer product (an m x n matrix)
e In our supermarket example
» Components correspond to products
» Entry (i,) of k-th component indicates how much the j-th person
would pay for product k when buying at the i-th supermarket

= C

28/39

Transposes
The matrix transpose AT switches rows and columns, i.e.,
[AT];; = aji.

The following properties hold

e (A=A
e (A+B)'=A"+B"
e (cA)T =cAT
e (AB)T=B"A"

29/39

Summing and scaling

Let A € R™*" Denote by 1,, the all-ones vector of dimensionality
n. For s € R™, denote by diag (s) the n x n matrix with the
entries of s on the main diagonal:

s 0 -~ 0
0 sy --- 0
diag (s) =) .
0 0 --- s,

Al,, computes the row sums of A

1, A computes the column sums of A

A diag (c) scales each column j of A by ¢;, c € R”

diag (r) A scales each row i of A by r;, r € R™

30/39

Matrices as linear maps

e A matrix A € R™*" is a linear map from R to R™
> If x € R", then y = Ax € R™ is the image of x
> y= Z?zl a;x;, i.e., a linear combination of the columns of A

e If A e R™" and B € R"*", then AB maps from R" to R™
» Product AB corresponds to composition of linear maps A and B

e Square matrix A € R™*" is invertible (= nonsingular) iff there
is matrix B € R"™" such that AB =1

> Matrix B is the inverse of A, denoted A™!
> If A isinvertible, then AA "= A TA=1T
> AA 'z =A"tAz =12z
> Non-square matrices do not have (general) inverses but can have
right or left inversess AR=Tor LA=1
e The transpose of A € R™*" is a linear map A" : R — R
> (A7) = Ay
> Generally, transpose is not the inverse (AA" # I)

31/39

Matrix norms

e Matrix norms measure the magnitude of the matrix
» Magnitude of the values in the matrix
> Magnitude of the image

e Operator norms measure how large the image of a unit vector
can get

> Induced by a vector norm

> Forp > 1, |A]], = max{||Az[|, | ||z[|, = 1}

» ||A|l; = maximum sum of absolute values of a column
> ||A|l,, = maximum sum of absolute values of a row

» Spectral norm: || A||, = largest singular value of A (more later)

e The Frobenius norm is the vector-£5 norm applied to the
elements of a matrix (treating them as a vector)

> [|Allp = \/ D Z;‘L:l azzj
> Note: [[All # [Al

32/39

Matrix rank and linear independence

e A vector u € R" is linearly dependent on set of vectors
V ={v;} CR"™if u can be expressed as a linear combination of
vectors in V

> u=> av; forsomeai,...,a, ER
» Set V is linearly dependent if some v; € V is linearly dependent
on V' \ {v;}

» If V is not linearly dependent, it is linearly independent

e The column rank of matrix A is the maximum number of
linearly independent columns of A

e The row rank of A is the maximum number of linearly
independent rows of A

e The Schein rank of A is the least integer r such that A = LR
for some L € R™*" and R € R"™*"
> Equivalently, the least r such that A is a sum of r vector outer

products

e All these ranks are equivalent

» E.g., matrix has rank 1 iff it is an outer product of two (non-zero)

vectors
33/39

Matrices as systems of linear equations

e A matrix can hold the coefficients of a system of linear
equations (c.f. Chinese Nine Chapters on Arithmetic)

1171 + a12T2 + - - + A1nTn = by

a1 @12 - Qln 1 b1

a2171 + a22T2 + -+ + a2nTn = b2 as1 @22 - Gon o bo
= =

am1 am?2 e Amn Tn bm

Am1%1 + Gm222 + -+ + AmnTn = bm

e If the coefficient matrix A is invertible, the system has exact
solution & = A~'b

e If m < n the system is underdetermined and can have an
infinite number of solutions

e If m > n the system is overdetermined and (usually) does not
have an exact solution

e The least-squares solution is the vector @ that minimizes
| Az — b||3 (cf. linear regression)

34/39

Special types of matrices

e The diagonals of matrix A go from top-left to bottom-right
» The main diagonal contains the elements a;;
» The k-th upper diagonal contains the elements a; ;1)
» The k-th lower diagonal contains the elements a(; 1) ;)
» The anti-diagonals go from top-right to bottom-left
e Matrix is diagonal if all its non-zero values are in a diagonal
(typically main diagonal)
» Bi-diagonal matrices have values in two diagonals, etc.
e Matrix A is upper (right) triangular if all of its non-zeros are
in or above the main diagonal
> Lower (left) triangular matrices have all non-zeros in or below
main diagonal
» Upper left and lower right triangular matrices: replace diagonal
with anti-diagonal
e A square matrix P is permutation matrix if each row and each
column of P has exactly one 1 and rest are Os
> If P is a permutation matrix, PA permutes the order of the rows
and AP the order of the columns of A

35/39

Orthogonal matrices

e Aset V ={v;} C R"is orthogonal if all vectors in V" are
mutually orthogonal

> v.u=0forallvAuecV
» If all vectors in V" also have unit norm (||v|l, =1), V' is
orthonormal

e A square matrix A is orthogonal if its columns are a set of
orthonormal (!) vectors or equivalently

> Its rows are orthonormal
>» ATA=1,
> A l=A"
e An m X n matrix A is
» column-orthogonal if columns are a set of orthonormal vectors
(only possible if m > n); then AT is left inverse (AT A =1I,,)
» row-orthogonal if rows are a set of orthonormal vectors (only
possible if m < n); then AT is right inverse (AA" =1,,)
e If A and B are orthogonal, so is AB

» Similarly: column-orthogonality and row-orthogonality is preserved

36/39

Outline

3. Summary

37/39

Lessons learned

e Many uses, many interpretations

» Vectors

» Matrices

» Dot products
» Matrix products

e Magnitudes and distances are measured by norms
e Basic concepts of linear algebra

e Special types of matrices: diagonal, triangular, orthogonal

38/39

Suggested reading
e Murphy, Ch. 7.1-7.3.1

e A linear algebra text book such as
» Carl Meyer
Matrix Analysis and Applied Linear Algebra
Society for Industrial and
Applied Mathematics, 2000
http://www.matrixanalysis.com (used to be freely available)

e Wolfram MathWorld articles

e Wikipedia articles

39/39

http://www.matrixanalysis.com
http://mathworld.wolfram.com
http://en.wikipedia.org/wiki/Portal:Mathematics

	01 Introduction
	01-1 What is Machine Learning?
	01-2 Types of Machine Learning
	01-3 Basic Concepts

	02 Inference and Decision
	02-1 Probability Refresher
	02-2 Generative & Discriminative Models
	02-3 Parameter Estimation
	02-4 Decision

	03 Generative Models for Discrete Data
	03-1 The Beta-Binomial Model
	03-2 The Dirichlet-Multinomial Model
	03-3 Naive Bayes

	04 Classifiers for Continuous Data
	04-1 Logistic Regression
	04-2 Softmax Regression
	04-3 Gaussian Naive Bayes

	05 Point Estimation
	05-1 Maximum Likelihod Estimation & Empirical Risk Minimization
	05-2 Gradient-Based Optimization
	05-3 MAP Estimation & Regularized Risk Minimization

	06 Dimensionality Reduction
	06-1 Matrix Decompositions
	06-2 Singular Value Decomposition
	06-3 Interpreting the SVD
	06-4 Using the SVD
	06-5 Latent Linear Models

	07 EM Algorithm & Mixture Models
	07-1 Introduction
	07-2 The EM Algorithm
	07-3 Mixture Models

	08 Kernels and Vector Machines
	08-1 Kernels
	08-2 Kernel Machines and Vector Machines
	08-3 The Kernel Trick
	08-4 Sparse Vector Machines

	09 Hyperparameter Optimization
	09-1 The Hyperparameter Optimization Problem
	09-2 Blackbox Optimization
	09-3 Multi-Fidelity Optimization
	09-4 HPO in Practice

	A Probability Refresher
	B Vectors & Matrices

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	1:
	pbs@ARFix@1:

	2:
	pbs@ARFix@1:

	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	3:
	pbs@ARFix@1:

	4:
	pbs@ARFix@1:

