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Lessons learned

• Machine learning aims to learn from experience
▶ Applications everywhere, top IT skill

• Supervised methods take examples and correct answers as input
▶ Classification, regression, structured prediction

• Unsupervised methods use unlabeled examples
▶ Clustering, representation learning, network analysis, . . .

• Handling uncertainty is important

• Models can underfit or overfit → need for model selection

• No free lunch theorem implies that we need to study many
models
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Suggested reading

• Murphy, Ch. 1

Other:
• Mitchell, Ch. 1
• Goodfellow et al., Ch. 5.1–5.3
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What is machine learning?
Key question: How can we build computer systems that
automatically improve with experience, and what are the
fundamental laws that govern all learning processes?

• Easy to write good programs for certain tasks
(e.g., shortest path)

• Hard to write good programs for other tasks
(e.g., spam detection)

• Machine learning generally comprises
▶ A task T (e.g., playing Checkers)
▶ A performance metric P (e.g., percent of games won)
▶ Training experience E (e.g., playing games)
▶ Goal: machine learns to reliably improve performance P at task T ,

following experience E

2 / 11Mitchell, 2006

http://www-cgi.cs.cmu.edu/~tom/pubs/MachineLearningTR.pdf


In 2016, DeepMind’s AlphaGo beat Go master Lee Se-dol

3 / 11BBC News, 2016

https://www.bbc.com/news/technology-35785875


Let’s learn!

• Rainer distinguishes good and bad triples
• Here is a good triple

2 4 8

• Ask me about triples being good or bad; then tell the rule I use
to distinguish (you are allowed to guess only once!)

• Could you write a program that could guess such rules?

4 / 11NYT puzzle

http://www.nytimes.com/interactive/2015/07/03/upshot/a-quick-puzzle-to-test-your-problem-solving.html?_r=0


Training experience (1)

• Available experience can have a significant impact

• Consider task of playing Checkers

• Does experience provide direct or indirect feedback regarding
performance? E.g.,
▶ Direct: provide feedback on each move the system makes
▶ Indirect: move sequences and final outcomes
▶ Indirect typically harder due to credit assignment problem: How

much does each move deserve credit/blame for the final outcome?

• To which degree can the learner control the experience? E.g.,
▶ Informative examples are provided by a teacher

(e.g., a Checkers expert)
▶ Machine can propose board states and ask teacher for suitable

move
▶ No teacher present

5 / 11



Training experience (2)

• How representative is training experience for final system
performance?
▶ Learning is most reliable when training examples have similar

distribution as future test examples
▶ In practice, this must often be violated
▶ E.g., machine plays only against itself → potentially not

representative for a world-class tournament

• Example
▶ Task: playing Checkers
▶ Performance measure: percentage of games won in world

tournament
▶ Training experience: games played against itself
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Target function

• Which function(s) do we want to learn?
▶ ML task needs to be broken down into concrete target functions
▶ E.g., a function V : Board→ R to “score” a given board
▶ Score should be high when board is good and low otherwise
▶ Can use function to determine next move

• Ideally, function allows for optimal moves
▶ Assuming that the opponent plays optimally, score each board for

which learner wins with 1, draw with 0, looses with −1
▶ Not efficiently computable, so of little use in practice

• In machine learning, we search for an operational description of
the ideal target function
▶ I.e., an efficiently computable function that picks the next move
▶ Function V̂ : Board→ R, called model
▶ Learning task now reduced to finding a suitable approximation of

an ideal target function

7 / 11

https://science.sciencemag.org/content/317/5844/1518


Representation of the target function

• How do we represent the model?
▶ Highly expressive? E.g., a table with each possible board and its

score
▶ Very simple? E.g., linear combination of “features” (such as

number of black/white pieces/kings)
▶ Anything in between?

• Inherent trade-off: a more expressive representation. . .
▶ May allow better approximations of the target function
▶ Typically requires more training data (often also: more

computational resources) to learn a good approximation

• Candidate functions also called hypothesis

• Class of considered functions called model class or hypothesis
space
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Learning algorithm (1): Target values

• Sometimes values of target functions unknown: e.g., it’s easy to
score boards that define the end of a game, but not obvious how
to score intermediate boards
▶ Player may win even though an intermediate move was bad
▶ Player may loose even though an intermediate move was good

• One simple approach uses target values

Vtrain(board)← V̂ (successor(board))
▶ successor(board) = state of board after own and opponent’s move
▶ V̂ is current approximation
→ Current approximation used to determine estimation target

▶ Intuition: if V̂ tends to be accurate towards the end of the game,
learn to make it more accurate earlier

▶ Can be proven to converge to perfect scores under certain
conditions

9 / 11



Learning algorithm (2): Adjust model

• Given a new game, we want to improve our model V̂ such that
it fits the training examples { (board, Vtrain(board) } as good as
possible

• Need to define best fit; e.g. small error

E =
∑

(board,Vtrain(board))

(Vtrain(board)− V̂ (board))2︸ ︷︷ ︸
squared error loss function

• And improve the model; e.g., gradient descent
▶ Suppose V̂ is a linear combination of numerical board features
▶ Each feature j has an associated real weight wj

▶ Function V̂ can be represented by a weight vector w
▶ In each step, gradient descent slightly adjust the weights into a

direction that reduces E, e.g.,

w ← w − ϵ∇wE

• Note: actual objective is not to minimize error on training data,
but on future data (generalization)

10 / 11



Summary

• Well-defined learning problem needs well-specified task,
performance metric, and source of training experience

• Many design choices exist
▶ Type of training experience
▶ Target function(s) to be learned
▶ Representation of the target function
▶ Learning algorithm

• Learning involves searching through a space of possible
hypotheses

• Set of assumptions made by learner is known as inductive bias

11 / 11
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Main types of machine learning

X y
x1 2 4 8 Good y1
x2 4 8 16 Good y2
x3 1 2 1 Bad y3

• Supervised learning (predictive)
▶ Given inputs and right answers
▶ Learn mapping from inputs x to outputs y given a labeled set

D = { (xi, yi) }Ni=1 of input-output pairs
▶ Use mapping on new (unlabeled) inputs x

• Unsupervised learning (descriptive)
▶ Given only an unlabeled set D = {xi }Ni=1 of inputs
▶ Find interesting patterns in the data, learn useful properties or

representations, learn data distribution, . . .
• Reinforcement learning

▶ Learn how to act or behave when occasional reward or punishment
signals are given

2 / 20



Supervised learning
Learn mapping from inputs x to outputs y given a training set
D = { (xi, yi) }Ni=1 of training examples.

Common setting
• Each training input xi is a D-dimensional vector of numbers

(features, attributes, covariates)
▶ Often stored in a N ×D design matrix X
▶ Corresponding labels (targets) in N -dimensional vector y

• Each output (response variable) is
▶ Classification: yi is categorical

E.g., document classification, e-mail spam filtering, handwriting
recognition, face detection and recognition

▶ Regression: yi is real-valued
E.g., predict stock market price, predict age of person

▶ Structured prediction: yi is more complex
E.g., sequences, trees, graphs

3 / 20

https://www.how-old.net/


Classification

• Two classes → binary classification (aka concept learning)
• More than two classes → multiclass classification
• Example may belong to multiple classes → multi-label classification

4 / 20



Example: Learn to recognize hand-writing

MNIST

#M, #N in Hidden Layers Test error [%]

20M-60M 1.02

20M-60M-150N 0.55

20M-60M-100M-150N 0.38

20M-40M-60M-80M-100M-120M-150N 0.35

Flexible, High Performance Convolutional Neural Networks for Image Classification; D. Ciresan et al.

• Simard et al. (2003) – 0.40%, Ciresan et al. (2010) – 0.35% (big deep MLP)

• Big deep CNN – 0.35% (2011), far less weights than the MLP

• 30 out of 35 digits have a correct second prediction

Label

First 

prediction

Second 

prediction

35 errors

0.35% errors on validation
30 out of the 35 errors have correct second prediction

5 / 20Cireşan et al., 2011 + slides

http://people.idsia.ch/~juergen/ijcai2011.pdf
http://people.idsia.ch/~ciresan/data/SCRpresentation.pdf


Example: Learn to recognize objects

“I can see the cup on the table,” interrupted Diogenes, “but I can’t
see the ‘cupness’”.

“That’s because you have the eyes to see the cup,” said Plato,
“but”, tapping his head with his forefinger, “you don’t have the
intellect with which to comprehend ‘cupness’.”

Teachings of Diogenes

6 / 20Berkeley, - CV group

http://www.rebresearch.com/blog/diogenes-the-cynic/
https://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/


Semi-supervised learning
In semi-supervised learning (SSL), we are given a labeled
training set DL = { (xl, yl) }Ll=1 and an unlabeled training set
DU = {xu }Uu=1.

Supervised Semi-supervised

Variants:
• Transductive learning: infer labels of Du only
• Inductive learning: learn mapping from x to y

7 / 20Image from Wikipedia

https://en.wikipedia.org/wiki/Weak_supervision


Few-shot learning
k-shot learning means to learn from only k labeled examples per
category (= support set).

Special case: one-shot learning (k = 1)

8 / 20Kundu, 2022

https://blog.paperspace.com/few-shot-learning/


Zero-shot learning
Zero-shot learning means to learn without any labeled examples.
• How is this even possible?
• Generally, based on auxiliary information (e.g., descriptions)

• ChatGPT: “A new animal has been found in Mannheim. It’s very
social. Suggest a name.” → [...] Sociabilis mannheimensis [...]

• Cf. survey of Wang et al., 2019
9 / 20Sarojag, 2023

https://chat.openai.com/
https://dl.acm.org/doi/pdf/10.1145/3293318
https://www.analyticsvidhya.com/blog/2022/12/know-about-zero-shot-one-shot-and-few-shot-learning/
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Example: Learn to detect objects, too

11 / 20



Example: Learn to read and translate
These are examples of structured prediction in NLP.

12 / 20DeepL, Stanford CoreNLP

https://www.deepl.com/translator
https://stanfordnlp.github.io/CoreNLP/


Example: Learn to answer questions

13 / 20IBM Watson

http://www.ibm.com/smarterplanet/us/en/ibmwatson/


Unsupervised learning
Find “interesting patterns” in the data D = {xi }Ni=1.
• Density estimation: learn (properties of) data distribution
• Clustering: divide data into groups

▶ E.g., customer segmentation, community detection, sequence
analysis

• Unsupervised representation learning
▶ Learn “useful” representations or features of the data
▶ E.g., map (potentially complex) data points into a low-dimensional

latent space that retains (or reveals) the data’s main “structure”
▶ Goal: easier to work with than original data (e.g., facilite learning,

reduce cost, improve interpretability, ...)
▶ Examples: latent variable models, autoencoders, self-supervised

pretraining, graph embeddings

• Market basket analysis, sequential pattern mining, social
network analysis, ...

14 / 20



Clustering
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Example: Community detection

16 / 20Fortunato, 2010

https://doi.org/10.1016/j.physrep.2009.11.002


Dimensionality reduction
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Example: Collaborative filteringcover FE ATURE

computer	44

vector q
i
 ∈  f, and each user u is associ-

ated with a vector p
u
 ∈  f. For a given item 

i, the elements of q
i
 measure the extent to 

which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of p

u
 measure the extent of 

interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
q

i
T p

u
, captures the interaction between user 

u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
r

ui
, leading to the estimate 
 
r̂ui  

= q
i
T p

u
.	 (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
q

i
, p

u
 ∈  f. After the recommender system 

completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (p

u
 and q

i
), the system 

minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i ∈

∑
κ

(r
ui
 - q

i
Tp

u
)2 + λ(|| q

i
 ||2 + || p

u
 ||2) 	 (2) 

Here, κ is the set of the (u,i) pairs for which r
ui
 is known 

(the training set). 
The system learns the model by fitting the previously 

observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 

18 / 20Koren et al., 2009.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5197422


Example: Representing documents

adjusting the weights and biases to lower the

energy of that image and to raise the energy of

similar, Bconfabulated[ images that the network

would prefer to the real data. Given a training

image, the binary state h
j
of each feature de-

tector j is set to 1 with probability s(b
j
þP

i
v
i
w
ij
), where s(x) is the logistic function

1/E1 þ exp (–x)^, b
j
is the bias of j, v

i
is the

state of pixel i, and w
ij
is the weight between i

and j. Once binary states have been chosen for

the hidden units, a Bconfabulation[ is produced

by setting each v
i
to 1 with probability s(b

i
þP

j
h
j
w
ij
), where b

i
is the bias of i. The states of

the hidden units are then updated once more so

that they represent features of the confabula-

tion. The change in a weight is given by

Dwij 0 e
�
bvihjÀdata j bvihjÀrecon

�
ð2Þ

where e is a learning rate, bv
i
h
j
À
data

is the

fraction of times that the pixel i and feature

detector j are on together when the feature

detectors are being driven by data, and

bv
i
h
j
À
recon

is the corresponding fraction for

confabulations. A simplified version of the

same learning rule is used for the biases. The

learning works well even though it is not

exactly following the gradient of the log

probability of the training data (6).

A single layer of binary features is not the

best way to model the structure in a set of im-

ages. After learning one layer of feature de-

tectors, we can treat their activities—when they

are being driven by the data—as data for

learning a second layer of features. The first

layer of feature detectors then become the

visible units for learning the next RBM. This

layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

19 / 20Hinton and Salakhutdinov, 2006

https://www.cs.toronto.edu/~hinton/science.pdf


Example:
Learn to
paint

20 / 20Gatys et al., 2015; DeepArt

https://arxiv.org/abs/1508.06576
https://deepart.io/
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Parametric vs. non-parametric models

• Machine learning often uses models that are parameterized

• E.g., in supervised learning
▶ During training, we use examples and labels to learn parameter

values
▶ During prediction, we use those values to infer the label

• In a parametric model, the number of parameters is fixed
▶ Ranging from a few parameters (e.g., linear/logistic regression on

low-dimensional data) to billions of parameters (e.g., large
language models)

▶ Esp. when few: Can be faster to use, but may make stronger
assumptions about nature of data

• In a non-parametric model, the number of parameters grows
with the amount of training data
▶ E.g., k-nearest neighbor classifier
▶ More flexible, but can be computationally intractable

2 / 12



K-nearest neighbor classifier (KNN)

• Simple, non-parametric classifier
• Uses statistics about neighbors NK(x,D), i.e., the K training

points closest to classify test input x:

p(y = c|x,D ,K) =
1

K

∑
i∈NK(x,D)

I(yi = c),

where I(e) is the indicator function

I(e) =

{
1 if e is true
0 otherwise

• Discussion
▶ Makes probabilistic predictions
▶ Example of memory-based learning
▶ Key assumption: close points have similar labels
▶ Requires a suitable distance function and sufficient data

3 / 12



Example: KNN

4 / 12



Curse of dimensionality
Methods such as KNN may not work well with high-dimensional
inputs → curse of dimensionality

5 / 12



Linear regression

• Main way to combat curse of dimensionality is to make
assumptions, e.g., by using a parametric model

• Linear regression is a parametric regression model assuming
that

y(x) =

D∑
j=1

wjxj + ϵ,

where the {wj }Dj=1 are real-valued parameters and ϵ is the
residual error (on which further assumptions are being placed)

• We can also replace x by a set of features {ϕj(x) } and assume

y(x) =
D′∑
j=1

wjϕj(x) + ϵ

▶ Known as basis function expansion
▶ Example: polynomial regression ϕj(x) = xj−1 for j = 1, . . . , D′

6 / 12



Overfitting
If we use highly flexible models, we need to be careful that we do
not overfit the training data.

7 / 12



Model selection (1)
• Which model class? → representational capacity

▶ E.g., degree of polynomials for polynomial regression
▶ E.g., value of K for KNN classifiers

• Which learning algorithm? → effective capacity
• Model selection: How to find the most suitable model?
• Natural approach: minimize misclassification rate

err(f,D) =
1

N

N∑
i=1

I(f(xi) ̸= yi)

• Often does not work: e.g., KNN obtains best results with k = 1
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Model selection (2)
• We care about generalization error = expected

misclassification rate over future data
• Can be approximated by computing misclassification rate on a

sufficiently large, independent test set
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train
test

Overfitting Underfitting
• Problems

▶ Usually we do not have access to a test set
▶ Golden rule of machine learning: test set should not influence

the learning process in any way → cannot be used for model
selection
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Model selection (3)
• We have multiple goals

▶ Learn parameters
▶ Perform model selection
▶ Estimate generalization error

• Idea: partition the available data into
▶ A part used for training the model (training set, e.g., 70%)
▶ A part used for model selection (validation set, e.g., 20%)
▶ A part used for estimating generalization error (test set, e.g., 10%)

• Problematic if little data available
10 / 12



Model selection (4)

• Improvement: K-fold cross validation
▶ Split the training set into K folds
▶ Keep test set separate (test set not shown below)

• Use for model selection
▶ For k = 1 . . .K, train on all folds but kth, validate on kth
▶ Average error over all folds to estimate model performance; then

refit best model to entire data

• For K = N , called leave-one-out cross validation
• More in “IE500 Data Mining I”

11 / 12



No free lunch theorem
All models are wrong, but some models are useful.
— George Box

• There is no single best model that works optimally for all kinds
of datasets
▶ A set of assumptions suitable for one domain can be poor for

another

• Consequences
▶ Many different models
▶ Many different learning algorithms

• Machine learning studies combination of data, models, and
algorithms

12 / 12Wolpert, 1996

http://web.archive.org/web/20140111060917/http://engr.case.edu/ray_soumya/eecs440_fall13/lack_of_a_priori_distinctions_wolpert.pdf
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Outline (Inference and Decision)

1. Probability Refresher
2. Generative & Discriminative Models
3. Parameter Estimation
4. Decision

2 / 4



Lessons learned
• Probability refresher (in ILIAS)

▶ Events, random variables, discrete/continuous, sum rule, product
rule, conditional probability, Bayes’ theorem, independence,
expected values . . .

▶ Common distributions
▶ Use of shortcut notation in ML

• Three approaches: generative models, discriminative models,
discriminative functions

• Bayesian methods model degree of belief about parameter choices
▶ From prior belief to posterior belief through data and model
▶ Posterior ∝ likelihood × prior
▶ Predictions obtained by marginalizing out parameters

• Parameter estimation
▶ Empirical and regularized risk minimization
▶ Maximum likelihood estimation (MLE)
▶ Maximum a posteriori (MAP) estimation
▶ Bayesian inference via posterior predictive

• Bayes estimator for decisions 3 / 4



Suggested reading

• Murphy, Ch. 2.1–2.3
• Murphy, Ch. 4.1–4.3
• Murhpy, Ch. 5.1.1, 5.1.2, 5.1.5
• Goodfellow et al., Ch. 5.4–5.6

More in
• Remaining parts of Murphy, Ch. 2/4/5

4 / 4
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Probability Refresher

• Here we only refresh some important concepts; more details in
▶ Murphy, Ch. 2, Probability
▶ Goodfellow et al., Ch. 3: Probability and Information Theory
▶ Supplementary material “A - Probability Refresher” (on ILIAS)
▶ Supplementary Jupyter notebook “distributions” (on ILIAS)

• We will also introduce additional background throughout the
course

2 / 8



Notation
We will work with many random variables.
• We write X ∼ N (0, 1) to say that r.v. X has the specified distr.

• We write p(X = x) to refer to the pmf (when X discrete) or
pdf (continuous)

• We often drop the r.v. from our notation (when clear from text)
▶ Write p(x) instead of p(X = x) (marginal distribution)
▶ Write p(x, y) instead of p(X = x, Y = y) (joint distribution)
▶ Write p(x|y) instead of p(X = x|Y = y) (conditional distribution)

• p(x) can refer to a probability/density (x fixed) or a distribution
(x variable)

• We write X ⊥ Y if X and Y are independent

• We write X ⊥ Y |Z if X and Y are conditionally independent
given Z

3 / 8



Product rule

• Recall conditional probability

p(x|y) = p(x, y)

p(y)
if p(y) > 0

• Product rule is

p(x, y) = p(x|y)p(y)

• Relates joint distribution p(x, y), conditional distribution p(x|y)
and marginal distribution p(y)

• Generalizes to chain rule

p(x1:n) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1:n−1)
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Sum rule
• Sum rule (law of total probability)

p(x) =
∑
y

p(x, y) (y discrete r.v.)

p(x) =

∫
p(x, y) dy (y continuous r.v.)

▶ Determine the marginal distribution p(x) from the joint
distribution p(x, y)

▶ When we apply the sum rule in this way, we say that we
marginalize out y

Example (two dependent coins)

p(X,Y ) H T
X=H 0.1 0.2
X=T 0.3 0.4

p(X = H) = p(X = H, Y = H) + p(X = H, Y = T) = 0.3
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Bayes’ rule

• From the product rule, we can obtain Bayes’ rule (Bayes’
theorem)

p(y|x) = p(y)p(x|y)
p(x)

• Combined with the sum rule, we further obtain

p(y|x) = p(y)p(x|y)∑
y′ p(x, y

′)

• Many applications, foundation of Bayesian inference
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Example: Medical diagnosis

• A mammogram is a test for breast cancer
• Suppose you are a woman in your 40s
• If you have cancer, test positive (T = 1) with probability 80%
• If you don’t have cancer, test positive with prob. 10%
• About 0.4% of women in their 40s have breast cancer (B = 1)
• How likely is it that you have breast cancer if the test is positive?

p(B = 1|T = 1) =
p(B = 1)p(T = 1|B = 1)

p(T = 1)

=
0.004 · 0.8

0.004 · 0.8 + 0.996× 0.1

= 0.031
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Important properties

p(A ∪B) = p(A) + p(B)− p(A ∩B) (inclusion-exclusion)

p(Ā) = 1− p(A)

If B ⊇ A, p(B) = p(A) + p(B \A) ≥ p(A)

p(X,Y ) = p(Y |X)p(X) (product rule)

p(X) =
∑
y

p(X, y) (sum rule, y discrete)

p(X) =

∫
y
p(X, y) dy (sum rule, y continuous)

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes theorem)

E[aX + b] = aE[X] + b (linearity of expectation)

E[X + Y ] = E[X] + E[Y ]

EY [EX [X|Y ]] = E[X] (law of total expectation)
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Inference and decision

• In classification, we seek a classifier that outputs an estimate ŷ
of the true label y for input x

• Training = determine a suitable classifier
▶ E.g., in supervised learning, based on a training set

D = { (xi, yi) }Ni=1 of labeled examples
▶ Three main approaches: generative, discriminative, function

• Inference = given a new input xnew, reason about output ynew
▶ Often: determine posterior class probabilities p(ynew|xnew)
▶ Depending on model, can be trivial or very hard

• Decision = predict an output ŷnew
▶ E.g., Bayes classifier: ŷnew = argmaxc p(ynew = c|xnew)
▶ One may also refrain from a decision (reject option)
▶ Decision is not always needed/desired

(e.g., when composing multiple models)
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Approaches (1)

• Discriminative functions
▶ Find a discriminative function f(x) that maps each input x to a

class label ŷ
▶ Probabilities play no role
▶ Inference and decision merged
▶ E.g., k-Nearest Neighbor with majority, (certain) feedforward NNs

• Discriminative models
▶ Model the posterior class probabilities p(y|x) directly
▶ But: Inputs are not modeled
▶ E.g., logistic regression, k-Nearest Neighbor with probabilities,

(other) feedforward NNs
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Approaches (2)
Generative models
• Model joint distribution p(x, y) of inputs and outputs; often:

▶ Model class-conditional densities p(x|y) for each class y
individually

▶ Model prior class probabilities p(y)
▶ p(x, y) = p(x|y)p(y)

• For inference, use Bayes’ theorem:

p(y|x) = p(x|y)p(y)
p(x)

• Called generative models because we can use the model to
generate data
▶ E.g., given an output, we can “generate” suitable inputs

• Examples: Naive Bayes, LDA/QDA, RBMs, GANs
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Discussion (1)

• Summary
Model Generative Discriminative Function
Learns p(x, y) p(y|x) f(x)

• Discriminative functions
▶ Combine inference and decision
▶ No access to posterior class membership probabilities
▶ Easy to use
▶ But also risky to use since unsure how accurate result is
▶ Hard to combine models

• Discriminative models
▶ Avoids modeling the input, which can be complex
▶ Key advantage: often allows to use a richer feature set (because

we do not need to model their distribution) or less stringent
assumptions
→ May lead to better performance

▶ Addresses the above disadvantages of discriminative functions
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Discussion (2)

• Generative models
▶ Models inputs and outputs jointly → generally demanding
▶ Some models make strong assumptions on data distribution

▶ May need less training data / be more accurate than
discriminative models if assumptions indeed hold

▶ Probabilities p(y|x) may not be well-calibrated when assumptions
do not hold (e.g., Naive Bayes may be over-confident)

▶ Useful for unsupervised learning (then: p(x) only) or
semi-supervised learning

▶ Can handle missing data in a principled way
▶ Also helpful for generating complex data (e.g., text/images),

outlier detection, representation learning, . . .
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Parameter estimation

• Suppose we are given a model class with parameters θ
▶ Generative: p(x, y|θ)
▶ Discriminative: p(y|x,θ)
▶ Discriminative function: f(x,θ)

• And some training data D = { (xi, yi) }Ni=1

• Parameter estimation = estimate the value of θ using D
▶ Also called training or learning
▶ Should fit the training data well
▶ Should generalize well to new data (more importantly)
▶ Point estimate θ̂

• We may or may not be interested in θ̂ itself
▶ Our prime goal is to make predictions
▶ To do so, we need some information about θ, but not necessarily a

point estimate
▶ Instead, can use a posterior p(θ|D)
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What do probabilities mean?
• Frequentist interpretation

▶ Probability of an event = relative frequency when repeated often
▶ Coin, n trials, nH observed heads

lim
n→∞

nH

n
=

1

2
=⇒ p(H) =

1

2
▶ Frequentist statistics: unknown parameters often assumed to have

fixed but unknown value θ∗ → inappropriate to treat as random
variable under frequentist interpretation

▶ Estimators analyzed w.r.t. data distribution p∗, which is
determined by θ∗

• Bayesian interpretation
▶ Probability of an event = degree of belief that event holds
▶ Degree of belief depends on background knowledge and

assumptions and is influenced by seeing data
▶ Bayesian statistics: probability distributions associated with

unknown parameters
▶ Analysis w.r.t. posterior probabilities p(θ|D)

• Both interpretations rely on the rules of probability
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Properties of estimators (1)

• We first recap basic properties of (parameter) estimators
focusing on a single parameter θ ∈ R

• Consider a frequentist setting
▶ True parameter θ∗, corresponding data distribution p∗

▶ Training data D is given by N iid. samples from p∗

▶ Estimator θ̂, computes point estimate θ̂(D)
▶ E.g., sample mean θ̂(D) = 1

N

∑
xi for D = {xi }Ni=1

• Estimator θ̂ has bias

bias[θ̂]
def
= E[θ̂ − θ∗]

▶ Expectation is w.r.t. the N samples of the data distribution p∗:
i.e., ED∼p∗ [θ̂(D)− θ∗]

▶ If bias[θ̂] = 0, the estimator is unbiased (correct in expectation),
else it is biased
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Properties of estimators (2)

• Estimator θ̂ has variance

var[θ̂] = E[(θ̂ − E[θ̂])2]

• Estimator θ̂ has mean squared error (MSE)

mse[θ̂] = E[(θ̂ − θ∗)2]

• Bias-variance decomposition states that

mse[θ̂] = bias[θ̂]2 + var[θ̂]

• Gives rise to the bias-variance tradeoff, roughly:
▶ Simple models → high bias, low variance
▶ Complex models → low bias, high variance
▶ Variance reduces with amount of available data
▶ Bias may or may not reduce
▶ Less data, simpler model (since otherwise variance high)
▶ More data, more complex models (since otherwise bias high)
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Bias and variance (illustration)

Top left: underfitting; bottom right: overfitting

6 / 21Domingos, 2012
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Bias-variance tradeoff (example)
• Task: predict mean of Gaussian sampled from N (θ∗ = 1, σ2)

• Blue = sample mean: low bias, high variance
• Red = down-scaled sample mean (by N/(N + 1)):

larger bias, less variance, lower MSE
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Likelihood
• Recall: we assumed that data distribution is p∗(D) = p(D|θ∗)

▶ p determined by assumed model class
(e.g., independent coin flips with success probability θ∗)

▶ θ∗ fixed, D varies → p(·|θ∗) is probability distribution

• Likelihood of observed data

L(θ|D) def
=

{
p(D|θ) for generative models
p(y|X, θ) for discriminative models

▶ How likely is dataset D if θ were the true parameter?
▶ Intuitively: the larger the likelihood, the more “consistent” the

data is with parameter choice
▶ Now θ varies, D fixed → L(·|D) not a probability distribution

• Example: Coin, 4 iid trials, nH = 4 observed heads (= data D)
▶ Unknown parameter: θ∗ = true “probability” of heads
▶ L(θ = 0|nH = 4) = 0
▶ L(θ = 0.5|nH = 4) = 0.0625
▶ L(θ = 1|nH = 4) = 1
▶ 16:1 likelihood ratio in favor of θ = 1 vs. θ = 0.5
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Maximum likelihood estimation (MLE)

• Maximum likelihood estimation (MLE) chooses the value θ̂
that maximizes the (conditional) likelihood of the data

θ̂MLE = argmax
θ
L(θ|D)

▶ Probabilistic models only

• Good asymptotic properties (i.e., when N →∞); under mild
conditions:
▶ Consistent: converges to true value θ∗ (in probability)
▶ Efficient: no other estimator has lower asymptotic mean squared error
▶ Asymptotically normally distributed

• In practice, we do not have N =∞
▶ Tendency to overfit training data
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Empirical risk minimization (1)

• In supervised learning, we may not be interested in the
parameters itself, but rather in the corresponding predictions

• Suppose we are given a non-negative, real-valued loss function
L(ŷ, y) that measures how different prediction ŷ is from true
answer y
▶ E.g., the 0-1 loss L(ŷ, y) = I(y ̸= ŷ) for classification tasks
▶ E.g., the squared loss L(ŷ, y) = (ŷ − y)2 for regression tasks

• Assume that the data follows a distribution p∗(x, y)

• The risk R(h) associated with a hypothesis h is the expected
loss over the data distribution

R(h) = E(x,y)∼p∗ [L(h(x), y)] =

∫ ∫
L(h(x), y) p∗(x, y) dx dy

▶ Misclassification rate for 0-1 loss
▶ Mean squared error (MSE) for squared loss
▶ Ideally, we want to choose h such that risk is minimized
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Empirical risk minimization (2)

• But: risk cannot be computed since true data distribution p∗ is
unknown

• The empirical risk is the average loss on the training data
D = { (xi, yi) }Ni=1

Remp(h) =
1

N

N∑
i=1

L(h(xi), yi),

which we can compute
• Empirical risk minimization chooses the estimator that

minimizes Remp(h)

ĥ = argmin
h∈H

Remp(h)

▶ As we had discussed, typically results in overfitting
▶ Can be a difficult optimization problem
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Regularized risk minimization

• Regularized risk minimization tries to avoid overfitting to the
training data by adding a penalty term

R′
emp(h) = Remp(h) + λC(h)

▶ C(h) measures the complexity of the model
▶ λ controls strength of penalty
▶ Ideally, λC(h) close to generalization gap R(h)−Remp(h)
▶ Can be used for discriminative functions and probabilistic models

• Key issues
▶ How to measure model complexity?

▶ E.g., ℓ2 regularization
▶ How to pick λ?

▶ E.g., cross-validation

• We will revisit this during the course
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Excursion: Learning theory (1)

• Learning theory uses formal methods to study learning tasks
and learning algorithms

• E.g., consider a binary classification problem
▶ Data distribution p∗ such that each data point (x) is associated

with a single class (y)
▶ No noise
▶ Hypothesis space is finite (|H| <∞)
▶ H contains a true hypothesis h (s.t. R(h) = 0)

• Version space = set of hypotheses consistent with training data
▶ Consistent means here that all predictions are equal to true label
▶ Implies that empirical risk Remp is zero
▶ Can still make errors on unseen data
▶ In our example setting, version space always non-empty
▶ If only one hypothesis left in version space, it’s the right one
▶ But what if there are many? We do not know which one to pick...
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Excursion: Learning theory (2)

• Insight: with sufficient training data, version space unlikely to
contain bad hypotheses

• Can show that

N ≥ 1

ϵ

(
ln(|H|) + ln

1

δ

)
suffice to ensure that ERM achieves a low generalization error
(≤ ϵ) with high probability (1− δ)

• Generally, things are more complicated
▶ Noise
▶ Infinite hypothesis spaces (e.g., a single real parameter)
▶ Complex hypothesis spaces
▶ Potentially high computational cost (e.g., not polynomial)
▶ Key concepts: PAC learning, VC dimension
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Prior and posterior

• Now let’s look at Bayesian methods, using iid. coin flips as
example

• Prior belief: p(θ)
▶ Incorporates prior knowledge
▶ E.g., coin is likely to be fair, coin is likely to show heads, ...
▶ Different priors may lead to different results → subjective aspect,

controversial (but priors can be very useful)
▶ Can be uninformative (“nothing” is known, also controversial)

• Posterior belief: p(θ|D)
▶ “Updated” belief after seeing the data
▶ E.g., do you think the coin is fair after seeing 10 heads and 2 tails?
▶ Depends on prior and likelihood via Bayes’ theorem

p(θ|D) = p(D|θ)p(θ)
p(D) ∝ p(D|θ)p(θ)

▶ In words: posterior ∝ likelihood × prior
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Example: Bayesian concept learning

• Numbers game
▶ I envision a set A ⊆ { 1, . . . , 100 }
▶ I give you some numbers from A
▶ What is set A?

• Need further assumptions and
sufficient data

• Figure on the right shows
▶ A hypothesis space of “simple”

rules (θ = correct rule)
▶ A prior that gives more weight to

simpler explanations (Occam’s
razor)

▶ The likelihood of { 16 }, assuming
data is randomly sampled from A

▶ The posterior, after seeing { 16 }

3.2. Bayesian concept learning 69
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Figure 3.2 Prior, likelihood and posterior for D = {16}. Based on (Tenenbaum 1999). Figure generated
by numbersGame.

Note that the MAP estimate can be written as

ĥMAP = argmax
h

p(D|h)p(h) = argmax
h

[log p(D|h) + log p(h)] (3.6)

Since the likelihood term depends exponentially on N , and the prior stays constant, as we get
more and more data, the MAP estimate converges towards the maximum likelihood estimate
or MLE:

ĥmle � argmax
h

p(D|h) = argmax
h

log p(D|h) (3.7)

In other words, if we have enough data, we see that the data overwhelms the prior. In this
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Example: Bayesian concept learning

• Numbers game
▶ I envision a set A ⊆ { 1, . . . , 100 }
▶ I give you some numbers from A
▶ What is set A?

• Need further assumptions and
sufficient data

• Figure on the right shows
▶ A hypothesis space of “simple”

rules (θ = correct rule)
▶ A prior that gives more weight to

simpler explanations (Occam’s
razor)

▶ The likelihood of { 16, 8, 2, 64 },
assuming data is randomly
sampled from A

▶ The posterior, after seeing
{ 16, 8, 2, 64 }

70 Chapter 3. Generative models for discrete data
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Figure 3.3 Prior, likelihood and posterior for D = {16, 8, 2, 64}. Based on (Tenenbaum 1999). Figure
generated by numbersGame.

case, the MAP estimate converges towards the MLE.
If the true hypothesis is in the hypothesis space, then the MAP/ ML estimate will converge

upon this hypothesis. Thus we say that Bayesian inference (and ML estimation) are consistent
estimators (see Section 6.4.1 for details). We also say that the hypothesis space is identifiable in
the limit, meaning we can recover the truth in the limit of infinite data. If our hypothesis class
is not rich enough to represent the “truth” (which will usually be the case), we will converge
on the hypothesis that is as close as possible to the truth. However, formalizing this notion of
“closeness” is beyond the scope of this chapter.
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Maximum a posteriori estimation (MAP)

• The maximum a posteriori (MAP) estimate θ̂MAP is the
point estimate that maximizes the posterior

θ̂MAP = argmax
θ

p(θ|D) = argmax
θ
L(θ|D)p(θ)

• Think: most probable parameter choice given data and prior

• Prior can help to avoid overfitting (see example of slide 16)

• We will see: MLE / MAP estimates sometimes correspond to
certain empirical / regularized risk minimization formulations
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Example: n iid coin flips, nH heads
Priors n = 10, nH = 5→ θ̂MLE = 0.5
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Bayesian inference

• The fully Bayesian approach is to avoid parameter estimation all
together

• Use posterior predictive distribution

p(Dnew|D) =
∫
p(Dnew|θ)p(θ|D) dθ

▶ E.g., prediction of outcome of nnew additional trials
▶ Intuitively, combines predictions of every hypothesis (θ) weighted

by its posterior probability (= marginalize out θ)
▶ posterior predictive =

∫
θ

new-data likelihood × posterior dθ

• Likewise, for discriminative models

p(ynew|D,Xnew) =

∫
p(ynew|θ,Xnew)p(θ|D) dθ
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Example: Bayesian linear regression
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Discussion

• Empirical risk minimization, regularized risk minimization, MLE,
and MAP all obtain point estimates
▶ Empirical risk minimization and MLE prone to overfitting
▶ Regularized risk minimization uses a model complexity penalty to

avoid overfitting with too-complex models
▶ MAP estimation uses prior to steer away from unlikely models

(e.g., a prior may have low density for complex models)
▶ Estimates obtained by solving an optimization problem

• A fully Bayesian approach weights every hypothesis by its
posterior probability
▶ Uncertainty in parameter estimates taken into account
▶ Estimates obtained by performing probabilistic inference
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Bayesian decision theory

• Modeling decisions
▶ Known data: x ∈ X
▶ Unknown data: y ∈ Y
▶ A set A of actions
▶ Goal: pick a suitable action a ∈ A

• Example: classification
▶ x: training set + new example
▶ y: label of new example
▶ Action a: predict class ŷ = a

• We aim to derive a policy δ : X → A to make a decision

• What is the optimal policy?
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Bayes estimator
• Consider an arbitrary but fixed x

• Loss function
▶ Suppose that we can quantify how good an action a is if we know y
▶ Via a loss function L(a, y)
▶ Example: classification, L(a, y) = I(a ̸= y) (0-1 loss)

• Since we do not know y, we consider the expected loss

E[L(y, a)] =
∑
y

L(y, a)p(y|x),

▶ Bayesian approach: expectation w.r.t. data seen so far
▶ I.e., p(y|x) is the posterior predictive

• The optimal policy minimizes the expected loss

δ(x) = argmin
a∈A

E[L(y, a)]

▶ Called the Bayes estimator
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Examples

• Classification with misclassification rate (0-1 loss)
▶ Bayes estimator: pick most probable class

ŷ = argmax
y

p(y|x)

▶ Called Bayes optimal classifier

• Regression with MSE (ℓ2 loss)
▶ Bayes estimator: pick posterior mean

ŷ = E[y|x] =
∫

yp(y|x) dy

• Regression with mean absolute error (ℓ1 loss)
▶ Bayes estimator: pick posterior median
▶ I.e,. pick ŷ such that p(y < ŷ|x) = p(y ≥ ŷ|x) = 0.5
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Recap: Generative models

• Model joint distribution p(x, y) of inputs and outputs; often:
▶ Model class-conditional densities p(x|y) for each class y

individually
▶ Model prior class probabilities p(y)
▶ p(x, y) = p(x|y)p(y)

• For inference, use Bayes’ theorem:

p(y|x) = p(x|y)p(y)
p(x)

• Called generative models because we can use the model to
generate data
▶ E.g., given an output, we can “generate” suitable inputs

• Examples: Naive Bayes, LDA/QDA, RBMs, GANs
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Let’s count
Here is some data (D):

Age Position State
young student poor
old student poor
old CEO rich

• Generative models estimate p(y) and p(x|y)
• A simple way: count to obtain relative frequencies (=MLE)

State p(State)
poor 2/3
rich 1/3

p(x|poor) young old
student 1/2 1/2
CEO 0 0

p(x|rich) young old
student 0 0
CEO 0 1

3 / 8



Let’s generate

• The joint distribution is estimated as
p(x, poor) young old
student 1/3 1/3
CEO 0 0

p(x, rich) young old
student 0 0
CEO 0 1/3

• Sample from the various estimated distributions

From p(x|poor) From p(x|rich) From p(x, y)

young student
young student
old student
old student

. . .

old CEO
old CEO
old CEO
old CEO

. . .

old student poor
old CEO rich

young student poor
young student poor

. . .

• Sampling is sometimes useful (e.g., to understand or debug a
model)

4 / 8



Let’s predict
Using Bayes theorem, we obtain estimates

p(poor|x) young old
student 1 1
CEO ? 0

p(rich|x) young old
student 0 0
CEO ? 1

Problems
• Overfitting: students can’t be rich
• Zero-count problem: cannot predict for a young CEO since we

have never seen one
• Complexity of model

▶ D binary features, C classes
→ O(C2D) non-redundant parameters (probability table)

▶ Infeasible to even store for moderately large D

• Possible solutions: use more data, use a prior, make additional
assumptions, use unlabeled data (semi-supervised learning), . . .
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Outline (Generative Models for Discrete Data)

1. The Beta-Binomial Model
2. The Dirichlet-Multinomial Model
3. Naive Bayes

Also: worked out frequentist/Bayesian approaches to parameter
estimation and prediction

6 / 8



Lessons learned

• Beta-binomial model for independent coin flips

• Dirichlet-multinomial model is generalization of Beta-binomial
model to K > 2 categories

• In generative models, it is typically infeasible to model p(x|y)
without additional assumptions

• Naive Bayes assumption: features cond. independent given y
▶ Naive Bayes classifiers exploit this assumption
▶ Prior class distribution: model fitting = compute histograms

(or background knowledge)
▶ Categorical features: model fitting = compute histograms

• Overfitting/zero-count problem may arise
▶ Can be addressed by adding a prior
▶ For categorical distributions, Dirichlet-multinomial model suitable

(e.g., add-one smoothing)
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Suggested reading

• Murphy, Ch. 4.6, Bayesian Statistics
• Murphy, Ch. 9.3, Naive Bayes Classifiers
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Beta-binomial model

• Coin flips
▶ Assume we flip a coin n times and observe the outcome
▶ What can you say about the coin?
▶ E.g., is it fair? (parameter estimation/inference)
▶ E.g., what will the next coin flip(s) show? (prediction)

• Beta-binomal model is a simple generative model for coin flips
▶ Coin flips assumed i.i.d. with (unknown) success probability θ
▶ Then suffices to record number nH of heads and nT = n− nH tails

(sufficient statistics)
▶ Beta prior

• Why study this model?
▶ Fully worked out example of Bayesian inference

→ reinforce what we just learned
▶ Forms basis of other probabilistic models
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Recap: The binomial distribution (1)

• Pick a coin with probability of heads θ, toss it n times
▶ Let {x1, . . . , xn } be the outcome (0=tail, 1=head)
▶ Let nH =

∑
i xi ∈ { 0, . . . , n } be number of heads (random variable)

• nH follows binomial distribution Bin(n, θ) with probability
mass function

Bin(nH|n, θ) =
(

n

nH

)
θnH(1− θ)n−nH

• Expected value: θn

• nH is a sufficient statistics, i.e., there is
no additional information about the value
of θ in the data (order does not matter)
▶ Observed data is {x1, . . . , xn }
▶ But we use D = nH in what follows
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Recap: The binomial distribution (2)
θ = 0.5 θ = 0.8

n = 10
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Likelihood and posterior
• Recall:

p(θ|D)︸ ︷︷ ︸
posterior

∝ p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

▶ For the beta-binomal model: D = nH and θ ∈ [0, 1] is the success
probability

• Likelihood of seeing nH heads (= the data) and nT tails after n
i.i.d. trials (= the model)

p(nH|θ) = Bin(nH|n, θ) =
(

n

nH

)
θnH(1− θ)nT

• Posterior: If we saw nH heads, what is our belief about θ?

p(θ|nH) =
p(nH|θ)p(θ)

p(nH)
∝ p(nH|θ)p(θ)

▶ p(nH) =
∫ 1

0
p(nH|θ)p(θ) dθ is a normalizing constant

• Posterior depends on prior p(θ); how do we express our prior
belief?
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Beta distribution (prior)

• Let’s pick the Beta(α, β) distr. with hyperparameters α, β

p(θ) = Beta(θ|α, β) = θα−1(1− θ)β−1/B(α, β)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

θ

p(
θ)

a=1, b=1
a=0.5, b=0.5
a=10, b=10
a=5, b=1
a=2, b=5

• We will see: α− 1 and β − 1 can be interpreted as number of
“prior” successes and failures (pseudo-counts)
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Beta distribution (properties)

• Notation: X ∼ Beta(α, β)

• Parameters
▶ Shape α ∈ R > 0 (prior successes)
▶ Shape β ∈ R > 0 (prior failures)

• Support: X ∈ [0, 1]

• Mean

E[X] =
α

α+ β

• Mode

α− 1

α+ β − 2
for α, β > 1 (then unimodal)
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Beta function

• The Beta function B(x, y) arises as the normalizing constant
of the Beta distribution

• Selected properties for real x, y > 0

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt

B(x, y) = B(y, x)

B(x+ 1, y) = B(x, y)
x

x+ y

B(x, y + 1) = B(x, y)
y

x+ y

B(x, y) =
(x− 1)!(y − 1)!

(x+ y − 1)!
for integers x, y ≥ 1(

n

k

)
=

1

(n+ 1)B(n− k + 1, k + 1)
for integers n ≥ k ≥ 0
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Beta distribution (posterior)
• The posterior distribution is another Beta distribution

p(θ|nH) ∝ θnH+α−1(1− θ)nT+β−1

p(θ|nH) = Beta(θ|nH + α, nT + β)

After 10 flips with 5 heads
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a=5, b=1
a=2, b=5
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Examples n = 0 n = 10, nH = 5
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Discussion

• Prior and the posterior were from same family of distributions
▶ Such priors are called conjugate priors for the likelihood
▶ Convenient to use, often “natural” interpretation

• We made independence assumptions
▶ E.g., all coin flips conditionally independent given θ
▶ Can be represented using graphical models

α β

θ

X1 X2 · · · Xn

α β

θ

Xi

i = 1..n

Standard notation Plate notation
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Posterior predictive distribution (1)

• Suppose we do another coin flip xn+1. How likely is it to show
heads based on what we learned?
▶ More than one flip → exercise

• Recall:

p(Dnew|D)︸ ︷︷ ︸
posterior predictive

=

∫
p(Dnew|θ)︸ ︷︷ ︸

new-data likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ,

where D = nH and Dnew = xn+1

• I.e., we seek posterior predictive

p(xn+1 | nH) =

∫
θ
p(xn+1|θ)p(θ|nH) dθ

▶ We know the likelihood p(xn+1 = 1|θ) = θ, but we don’t know θ
▶ We know the posterior p(θ|nH) = Beta(θ|nH + α, nT + β)

• To put things together, we start with the joint distribution
p(xn+1 = H, θ|nH) and then marginalize out θ
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Posterior predictive distribution (2)

• Observe that xn+1 ⊥ nH | θ under the independent coin flips
assumption

• Implies: p(xn+1 = 1|θ, nH) = p(xn+1 = 1|θ) = θ

• Using the product rule, we obtain

p(xn+1 = 1, θ|nH)

= p(xn+1 = 1|θ, nH)p(θ|nH)

= p(xn+1 = 1|θ)p(θ|nH)

= θBeta(θ|nH + α, nT + β)

=
θnH+α(1− θ)nT+β−1

B(nH + α, nT + β)

• This has a similar form as the posterior, where we “see” one
head more
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Posterior predictive distribution (2)

• Joint distribution: p(xn+1 = 1, θ|nH) = θBeta(θ|nH + α, nT + β)

• To obtain the posterior predictive p(xn+1 = 1|nH), we
marginalize out θ via sum rule

p(xn+1 = 1|nH) =

∫ 1

0
p(xn+1 = 1, θ|nH) dθ

=

∫ 1

0
θnH+α(1− θ)nT+β−1 dθ/B(nH + α, nT + β)

=
B(nH + α+ 1, nT + β)

B(nH + α, nT + β)

=
B(nH + α, nT + β)

B(nH + α, nT + β)

nH + α

n+ α+ β

=
nH + α

n+ α+ β

• Here we used the fact that B(x+ 1, y) = B(x, y)x/(x+ y)
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Posterior predictive distribution (3)

• Let’s recap
▶ We started with a prior and likelihood to obtain the posterior
▶ We then determined the distribution of new data given the

parameters (= likelihood)
▶ We put all together to obtain the posterior predictive

distribution

p(xn+1|nH) = Ber
(
xn+1

∣∣ nH + α

n+ α+ β

)
▶ Simple form (here), interpretable

• posterior predictive =
∫
θ new-data likelihood × posterior dθ

▶ Assumes: new data conditionally independent of old data given
parameters

• In ML, we use the posterior predictive to
▶ Perform predictions
▶ Evaluate models
▶ Find outliers
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Recall: Let’s predict
Using Bayes theorem, we obtain estimates

p(poor|x) young old
student 1 1
CEO ? 0

p(rich|x) young old
student 0 0
CEO ? 1

Problems
• Overfitting: students can’t be rich
• Zero-count problem: cannot predict for a young CEO since we

have never seen one
• . . .

Coming up
Adress these problems using a suitable prior
→ the Dirichlet distribution (=conjugate prior)
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The categorical distribution

• Consider a random variable X ∼ Cat(θ) over { 1, . . . ,K }
▶ K possible values
▶ Probabilities of categories given by θ =

(
θ1 θ2 · · · θK

)T
▶ θ is probability vector (non-negative, sums to one)
▶ I.e., Cat(k|θ) = θk

Patients arrive in

Spring Summer Autumn Winter

x

θ x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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The multinomial distribution (1)

• Consider a random variable X ∼ Cat(θ) over { 1, . . . ,K }
• How to estimate θ from n observations of X?

▶ Independent observations x1, . . . , xn

▶ Suppose we see nk instances of category k
▶ I.e., nk =

∑
i I(xi = k)

xi
Spring

Autumn
Winter
Winter
Autumn

k nk

Spring 1
Summer 0
Autumn 2
Winter 2
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The multinomial distribution (2)

• Let n =
(
n1 n2 · · · nK

)T , where
∑

k nk = n
▶ As before: n is sufficient statistics for θ and we set D = n

• Given θ, n follows the multinomial distribution Mu(n,θ)

p(D|θ)︸ ︷︷ ︸
likelihood

= Mu(n|n,θ) =
(

n

n1 · · ·nK

) K∏
k=1

θnk
k

• Here we use the multinomial coefficient(
n

n1 · · ·nK

)
=

n!

n1!n2! · · ·nK !

• Multinomial distribution is a generalization of the binomial
distribution to K > 2 categories
▶

∏K
k=1 θ

nk

k is probability of sequence (Xi)i=1..n, in this order
▶ Multinomial coefficient is number of distinct ways to reorder the

sequence
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The multinomial distribution (3)
• Suppose θ =

(
0.2 0.1 0.3 0.4

)T
• Suppose n =

(
1 0 2 2

)T
• Then

Mu(n|θ, n) =
(

5

1, 0, 2, 2

)
0.210.100.320.42

= 30 · 0.0028 = 0.0864

Patients arrive in

Spring Summer Autumn Winter

x

θ x
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k nk

Spring 1
Summer 0
Autumn 2
Winter 2
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Maximum likelihood estimation (MLE)
• Let SK =

{
θ ∈ RK : 0 ≤ θk ≤ 1,

∑
k θk = 1

}
be the

probability simplex
▶ Set of all possible categorical distributions over K values

• One way to estimate θ is to use maximum likelihood estimation

θ̂MLE = argmax
θ∈SK

Mu(n|θ, n) = argmax
θ∈SK

(
n

n1 · · ·nK

) K∏
k=1

θnk
k

= argmax
θ∈SK

K∏
k=1

θnk
k (take logs)

= argmax
θ∈SK

K∑
k=1

nk log θk = . . . (exercise)

=
n

n
=

(
n1
n

n2
n · · · nK

n

)T
• MLE estimate = relative frequencies of the categories
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MLE on our example

• For n =
(
1 0 2 2

)T , we obtain θ̂MLE =
(
0.2 0 0.4 0.4

)T
• In introductory example, we used MLE for p(y) and p(x|y)

▶ For p(y), we have two values { poor, rich } → parameter π
▶ For p(x|y), we have four “values” {(young, student),

(young,CEO), (old, student), (old,CEO) } → parameter θy

Age Position State
young student poor
old student poor
old CEO rich

State π̂

poor 2/3
rich 1/3

(Age, Position) θ̂poor

(young, student) 1/2
(young, CEO) 0
(old, student) 1/2
(old, CEO) 0

(Age, Position) θ̂rich
(young, student) 0
(young, CEO) 0
(old, student) 0
(old, CEO) 1
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The Dirichlet distribution (1)
• One way to address overfitting/zero-count problem is to add

prior on θ
• The conjugate prior of the multinomial is the Dirichlet

distribution Dir(α)
▶ Distribution over probability vectors θ ∈ SK

▶ Elements of θ are probabilities of categories (as before)

θ2 − θ3

θ 1
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0

● ●
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●

●

C3 only C2 only

C1 only

C1/C2/C3 (unif.)

C1/C3 (uniform)
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Dirichlet distribution (2)
• Parameterized by vector α ∈ RK

+ with αk > 0 (concentration
parameters)

• Dir(θ|α) = 1
B(α)

∏K
k=1 θ

αk−1
k

• Special case: symmetric Dirichlet distribution
▶ Single concentration parameter α; set αk = α
▶ α ≪ 1: multinomials concentrate around single category (sparse)
▶ α ≫ 1: multinomials spread uniformly over categories (dense)
▶ α = 1: uniform distribution over multinomials

−1.0 −0.5 0.0 0.5 1.0

θ2 − θ3

θ 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−1.0 −0.5 0.0 0.5 1.0

θ2 − θ3

θ 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−1.0 −0.5 0.0 0.5 1.0

θ2 − θ3

θ 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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Dirichlet distribution (properties)

• Notation: θ ∼ Dir(α)

• Parameters
▶ Number of categories K ∈ N
▶ Concentration parameters α ∈ RK > 0

• Support: θ ∈ SK

• Mean

E[θk] =
αk∑
k′ αk′

• For α > 1 (then unimodal), mode is θmode with

θmode
k =

αk − 1∑
k′ αk′ −K
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Maximum a posteriori estimation (MAP)
• Recall: posterior ∝ likelihood × prior
• Can show: posterior p(θ|n) = Dir(θ|n1 + α1, . . . , nK + αK)

▶ Thus the αk can be interpreted as pseudo-counts (as in the
beta-binomial model)

• The maximum a posteriori estimate is the categorical
distribution (θ) that maximizes the posterior

• We have

θ̂MAP = argmax
θ∈SK

p(θ|n) = argmax
θ∈SK

Mu(n|n,θ) Dir(θ|α)

= argmax
θ∈SK

Dir(θ|n1 + α1, . . . , nK + αK)

= argmax
θ∈SK

K∏
k=1

θnk+αk−1
k

=

(
n1 + α1 − 1 n2 + α2 − 1 · · · nK + αK − 1

)T
n+ α0 −K

,

where α0 =
∑K

k=1 αk
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MAP on our example (with sym. Dirichlet)

• With α = 1, we obtain the MLE estimate
• With α = 2, we obtain add-one smoothing; let’s fix α = 2

• For n =
(
1 0 2 2

)T , we obtain θ̂MAP =
(
2/9 1/9 3/9 3/9

)T
• And for our introductory example

Age Position State
young student poor
old student poor
old CEO rich

State π̂

poor 3/5
rich 2/5

(Age, Position) θ̂poor

(young, student) 2/6
(young, CEO) 1/6
(old, student) 2/6
(old, CEO) 1/6

(Age, Position) θ̂rich
(young, student) 1/5
(young, CEO) 1/5
(old, student) 1/5
(old, CEO) 2/5
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Let’s predict with add-one smoothing
Using Bayes theorem, we obtain

p(poor|x,θ) young old
student 5/7 5/7
CEO 5/9 5/13

p(rich|x,θ) young old
student 2/7 2/7
CEO 4/9 8/13

Discussion
• For α > 1, we reduce overfitting and avoid the zero-count problem

▶ There can be rich students
▶ Can predict for a young CEO, even though we have never seen one

• Complexity of model still present
▶ D binary features, C classes

→ O(C2D) non-redundant parameters (probability table)
▶ Infeasible to even store for moderately large D

• To combat complexity, let’s look at Naive Bayes, the perhaps
simplest possible model
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Naive Bayes in a nutshell

• C discrete class labels
▶ Prior class distribution p(y) is a categorical distribution
▶ O(C) parameters for prior
▶ Can often be accurately estimated from sample or domain

knowledge

• The Naive Bayes assumption: features are conditionally
independent given the class label

p(x|y) =
D∏
j=1

p(xj |y)

• If used to model p(x|y), we obtain a Naive Bayes classifier
• Called “naive” because features are usually not conditionally

independent
▶ But may nevertheless “work well”
▶ Usually O(CD) parameters for class-conditional densities
▶ Relatively immune to overfitting
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Naive Bayes classifiers

• Naive Bayes is not “one classifier,” but a family of classifiers

• How to model p(xj |y)?
▶ Depends on type of feature
▶ E.g., Bernoulli distribution for binary features
▶ E.g., categorical distribution for categorical features
▶ E.g., Gaussian distribution for real-valued features

• Which priors to use (if any)?

• How to train and predict?
▶ Point estimates: MLE, MAP
▶ Bayesian inference
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Naive Bayes for categorical data

• For the prior class distribution, we use a categorical distribution
with parameter vector π ∈ SC (as before)

p(yi|π) = Cat(yi|π)

• Let’s assume all features are discrete-valued, xij ∈ { 1, . . . ,K }
• Since features are independent under the naive Bayes

assumption, each feature follows a (class-conditional)
categorical distribution as well
▶ Consider feature j and class c
▶ Class-conditional distribution p(Xj |y = c) is categorical
▶ With parameter vector θcj ∈ SK , we have

p(xj |y = c,θcj) = Cat(xj |θcj)
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MLE for Naive Bayes for categorical data (1)

• Denote by θ both π and all θcj ’s
• Using the naive Bayes assumption, we obtain likelihood

p(xi, yi|θ) = Cat(yi|π)
D∏
j=1

Cat(xij |yi,θyij)

• Using the i.i.d. assumption, the likelihood of the training data
D = { (xi, yi) } is given by

L(θ|D) =
∏
i

p(xi, yi|θ) =
∏
i

Cat(yi|π)
D∏
j=1

Cat(xij |yi,θyij)

• To obtain the MLE estimate, we can alternatively maximize the
log-likelihood

ℓ(θ|D)
def
= logL(θ|D) =

C∑
c=1

∑
i:yi=c

log πc+

D∑
j=1

C∑
c=1

∑
i:yi=c

log [θcj ]xij ,
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MLE for Naive Bayes for categorical data (2)

• Log-likelihood (rewritten)

ℓ(θ|D)
def
= logL(θ|D) =

C∑
c=1

nc log πc+

D∑
j=1

C∑
c=1

K∑
k=1

ncjk log [θcj ]k,

▶ nc = |{ i : yi = c }| is the number of examples for class c
▶ ncjk = |{ i : yi = c, xj = k }| is the number of examples of class c

for which feature j takes value k

• The log-likelihood decomposes into a part that depends on π
and a part that depends on the θcj ’s

• We can maximize each part separately and obtain the MLE
estimates

π̂c =
nc

n
and [θ̂cj ]k =

ncjk

nc
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Naive Bayes on our example, MLE

Age Position State
young student poor
old student poor
old CEO rich

State π̂

poor 2/3
rich 1/3

Age θ̂poor,Age
young 1/2
old 1/2

Age θ̂rich,Age
young 0
old 1

Position θ̂poor,Pos
student 1
CEO 0

Position θ̂rich,Pos
student 0
CEO 1

7 / 13



Let’s predict: MLE and Naive Bayes
Using Bayes theorem, we obtain

p(poor|x, θ̂) young old
student 1 1
CEO ? 0

p(rich|x, θ̂) young old
student 0 0
CEO ? 1

Discussion
• Same result as original approach (coincidentally)
• Overfitting is and zero-count problem still persists

▶ Both problems are mildened: e.g., if we see each value at least
once for every feature j and for every class, then the zero-count
problem does not occur

• Simple model
▶ D features, each with K possible values, C classes

→ O(CDK) space
▶ Training is simple and linear in data size: compute histograms
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Naive Bayes on our example, MAP
• As before, we can put a Dirichlet prior on the parameters of

each multinomial to avoid the zero-count problem
• As before, for MAP estimation this means adding pseudo-counts
• E.g., with α = 2 for all multinomials and MAP estimates:

Age Position State
young student poor
old student poor
old CEO rich

State π̂

poor 3/5
rich 2/5

Age θ̂poor,Age
young 2/4
old 2/4

Age θ̂rich,Age
young 1/3
old 2/3

Position θ̂poor,Pos
student 3/4
CEO 1/4

Position θ̂rich,Pos
student 1/3
CEO 2/3
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Let’s predict: MAP and Naive Bayes
Using Bayes theorem, we obtain

p(poor|x, θ̂) young old
student 81/97 81/113
CEO 27/59 27/91

p(rich|x, θ̂) young old
student 16/97 32/113
CEO 32/59 64/91

Discussion
• For α > 1, we reduce overfitting and avoid the zero-count

problem
• Simple model
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Bayesian Naive Bayes
• The fully Bayesian approach to prediction is to marginalize out

all parameters
• Posterior predictive is

p(y,x|D) =

(∫
Cat(y|π)p(π|D) dπ

)
D∏
j=1

(∫
Cat(xj |y,θyj)p(θyj |D) dθyj

)
• Suppose we use a Dirichlet prior. We obtain posterior means

π̄c =
nc + αc

n+
∑

c αc
and [θ̄cj ]k =

ncjk + αcjk

nc +
∑

k αcjk

and posterior predictive cond. on new example x

p(y = c|x,D) ∝ π̄c

D∏
j=1

[θ̄cj ]xj

11 / 13



Naive Bayes on our example, Bayesian

• E.g., with α = 2 on all multinomials:

Age Position State
young student poor
old student poor
old CEO rich

State π̄

poor 4/7
rich 3/7

Age θ̄poor,Age
young 3/6
old 3/6

Age θ̄rich,Age
young 2/5
old 3/5

Position θ̄poor,Pos
student 4/6
CEO 2/6

Position θ̄rich,Pos
student 2/5
CEO 3/5
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Let’s predict: Bayesian Naive Bayes
Using Bayes theorem, we obtain

p(poor|x,D) young old
student 25/34 50/77
CEO 25/52 50/131

p(rich|x,D) young old
student 9/34 27/77
CEO 27/52 81/131

Discussion
• Hyperparameters can be estimated as part of model selection
• Add-one smoothing is also commonly used

▶ Can be interpreted as MAP estimate with Dirichlet prior, α = 2
▶ Can be interpreted as fully Bayesian inference with uniform

prior (= Dirichlet prior, α = 1)

• Simple model, cheap to compute, reduced overfitting, no
zero-count problem

• But beware: Naive Bayes assumption is a strong assumption

13 / 13
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Outline (Classifiers for Continuous Data)

1. Logistic Regression
2. Softmax regression
3. Gaussian Naive Bayes
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Lessons learned

• Logistic regression is a simple discriminative binary classifier
▶ Assumes that log odds is linear function of input features
▶ A generalized linear model
▶ Efficient to train, interpretable

• Softmax regression (multinomal logistic regression) is a
generalization for multiclass classification

• Gaussian Naive Bayers is a simple generative classifier for
continuous data
▶ Naive Bayes assumption
▶ Class-conditional densities p(xj |y) assumed Gaussian
▶ Model fitting = estimate means and variances
▶ Related to logistic regression

• Naive Bayes or logistic regression?
▶ It depends...
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Suggested readings

• Murphy, Ch. 10, Logistic Regression

• Tom Mitchell, Generative and Discriminative Classifiers: Naive
Bayes and Logistic Regression (draft), 2016

4 / 4
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Logistic regression

• Logistic regression (also: logit regression, logit model) is a
discriminative classifier
▶ Given: D = { (xi, yi) }Ni=1
▶ Sought: p(y|x)
▶ Dependent variable y is discrete

• Binary classifier, i.e., y ∈ { 0, 1 } is binary

• In a nutshell
▶ Assume y generated from a coin flip
▶ Log odds of success are linear in x
▶ A generalized linear model

• Variants
▶ Softmax regression (multinomial logistic regression):

y categorical (with more than two classes)
▶ Ordinal logistic regression: y ordered (not covered here)
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Bernoulli model and odds

• Recall the Bernoulli model Ber(θ) for a single coin filp
▶ I.e., Y ∼ Ber(θ)
▶ θ ∈ [0, 1] is success probability

▶ p(y|θ) = Ber(y|θ) =

{
θ y = 1

1− θ y = 0
▶ E[Y ] = θ, var[Y ] = θ(1− θ)

• What are the odds of success?
▶ For success probability θ, define the odds on

odds(θ) =
θ

1− θ

▶ Example: θ = 0.1, odds(θ) = 1/9 (also written 1:9)

• odds(1− θ) is called odds against
▶ 9:1 odds against = 1:9 odds on

• When odds(θ) = 1, we say odds even
3 / 21



Odds decision function

• Suppose you are asked whether you expect success
▶ Say yes, when odds(θ) > 1 (i.e., θ > 0.5)
▶ Say no, when odds(θ) ≤ 1 (i.e., θ ≤ 0.5)
▶ Here we used decision threshold 1 (i.e., 0.5 on θ)
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Note: odds(θ) ∈ [0,∞]
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Logit
• log odds(θ) is referred to as the log odds or logit function

• We have logit(θ)
def
= log odds(θ) = log θ − log(1− θ)

• The decision function then becomes
▶ Yes, when logit(θ) > 0
▶ No, when logit(θ) ≤ 0
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Note: logit(θ) ∈ [−∞,∞]
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The logistic function
• Given a logit of η, what is the success probability θ?

logit(θ) = η ⇐⇒ θ = σ(η)
def
=

1

1 + exp(−η)

• Here σ(η) denotes the logistic function
▶ Inverse of logit function: σ(logit(θ)) = θ
▶ We also write σ−1(θ) for logit(θ)
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Important properties

σ(η) =
1

1 + exp(−η)
=

exp(η)

1 + exp(η)

∂

∂η
σ(η) = σ(η)(1− σ(η))

1− σ(η) = σ(−η)

σ−1(θ) = log

(
θ

1− θ

)
= logit(θ)

7 / 21

Probability Logit
(θ) scores (η)

0.0001 -9.21
0.001 -6.90
0.01 -4.59
0.05 -2.94
0.1 -2.19
0.5 0.00
0.9 2.19
0.95 2.94
0.99 4.59
0.999 6.90
0.9999 9.21



Logistic regression
• Let x ∈ RD be an input
• Logistic reggression then assumes that

log odds on y = linear function of x

• Linear function can be described by parameters w0, . . . , wD

η = w0 + w1x1 + w2x2 + · · ·+ wDxD

• We have

p(y = 1|x, {w}j) = σ
(
w0 +

∑
j

wjxj

)
=

1

1 + exp(−(w0 +
∑

j wjxj))

p(y = 0|x, {w}j) = 1− σ
(
w0 +

∑
j

wjxj

)
=

1

1 + exp(w0 +
∑

j wjxj)
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Notation

• We collect the parameters into a weight vector

w =
(
w1 w2 · · · wD

)⊤
and a bias term w0

• We can then use inner products

η = w0 +

D∑
j=1

wjxj = w0 +w⊤x = w0 + ⟨w,x⟩

• and obtain

p(y = 1|x, w0,w) = σ(w0 + ⟨w,x⟩)
p(y = 0|x, w0,w) = σ(−(w0 + ⟨w,x⟩))

p(y|x, w0,w) = Ber(y|σ(w0 + ⟨w,x⟩))
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Example (1D)
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Example (2D)

Data Prediction
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Bias feature

• To simplify implementation or notation, we may omit the
explicit bias term of logistic regression by adding a special bias
feature x0 = 1 to inputs

x =
(
1 x1 x2 · · · xD

)⊤
w =

(
w0 w1 w2 · · · wD

)⊤
η = ⟨w,x⟩

• Then

p(y = 1|x,w) = σ(⟨w,x⟩)
p(y = 0|x,w) = σ(−⟨w,x⟩)

p(y|x,w) = Ber(y|σ(⟨w,x⟩))

• We will mostly focus on the case without a bias term for
simplicity
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Perceptron and decision boundary

• Let w ∈ RD. The perceptron is a classifier with decision rule

ŷ =

{
0 ⟨w,x⟩ < 0

1 ⟨w,x⟩ > 0

• If we use logistic regression and predict the most likely class, we
obtain the same decision rule

• The decision boundary of a classifier is the set of data points
for which the classifier is unsure in that multiple classes achieve
the highest possible probability or score

• I.e., x is on the decision boundary if there exist c1 ̸= c2 s.t.

p(y = c1|x) = p(y = c2|x) = max
c

p(y = c|x)

• For logistic regression/the perceptron, the decision boundary is

{x : ⟨w,x⟩ = 0 }

• What does this mean?
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Inner product (geometric interpretation)
The geometric interpretation of the inner product of two vectors
u,v ∈ Rn is given by

⟨u,v⟩ = ∥u∥ ∥v∥ cos θ,
where −π ≤ θ ≤ π denotes the angle between u and v.
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Understanding perceptrons (1)

• Consider the classification rule

ŷ =

{
0 ⟨w,x⟩ < 0

1 ⟨w,x⟩ > 0
=

{
0 ∥w∥ ∥x∥ cos∠(w,x) < 0

1 ∥w∥ ∥x∥ cos∠(w,x) > 0

• Observe
▶ Negative instances have angle |∠(w,x)| > 90◦

▶ The decision boundary has angle |∠(w,x)| = 90◦ (includes origin)
▶ Positive instances have angle |∠(w,x)| < 90◦

• Decision boundary defines a hyperplane with normal vector w
▶ = set of points orthogonal to w (a D − 1 dimensional subspace of RD)
▶ E.g., for two dimensions we have the line w1x1 + w2x2 = 0

(and consequently x2 = −w1

w2
x1)

• If we add a bias term b ̸= 0, we obtain an affine hyperplane
▶ I.e., does not go through origin
▶ For two dimensions, intercept is −b/w2

• A classifier for which the decision boundary is (always) a
hyperplane is called a linear classifier
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Understanding perceptrons (2)
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What can perceptrons learn?

• Perceptrons (with bias) can classify perfectly if there exists an
affine hyperplane that separates the classes
▶ We then say the data is linearly separable

• Otherwise, the perceptron must make errors on some inputs
• This is quite limited; e.g., perceptrons cannot learn the XOR

function

17 / 21Image source

http://www.cs.ru.nl/~ths/rt2/col/h10/10neurENG.html


Discussion (1)

• Logistic regression is one of the most popular classifiers

• Provides probabilities

• Easy to fit (more later)

• Easy to interpret
▶ Suppose we want to predict probability of getting lung cancer
▶ Features: number of cigarettes per day (x1), minutes of exercise

per day (x2)
▶ Estimated weights: ŵ =

(
1.3 −1.1

)⊤
▶ Means: for every cigarette, odds on getting cancer increased by

factor exp(1.3) ≈ 3.7

• Is a binary classifier, but can be extended to more than two
classes (coming up next)

• Is a linear classifier, but can be extended to handle non-linear
decision boundaries (kernel logistic regression, more later)
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Discussion (2)

• Virtually any feature function can be used

• For categorical features, use one-hot encoding
▶ Encode with binary vector with one element per possible value of

the feature → one weight per possible value
▶ Entry that corresponds to actual value set to 1; rest 0
▶ Example: X ∈ { red, green, blue }
▶ Then x = green becomes x =

(
0 1 0

)⊤
• If features are linearly dependent, MLE weights underdetermined

▶ Perform feature selection
▶ Use a prior / regularization

• When examples are linearly separable, MLE weights “infinite”
▶ Use a prior / regularization

• Under mild conditions, can handle imbalanced classes in the
data to some extent
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Graphical models
Here without explicitly showing priors.

xi

µi

yi

w

i = 1..n

xi1 xi2 · · · xiD

θ1∗ θ2∗ · · · θD∗

yi

π

i = 1..n

Logistic regression Naive Bayes
(training) (training)
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Excursion: Generalized linear models

• Logistic regression, where p(y|x,w) = Ber(y|σ(w⊤x)), is an
example of a generalized linear model

• Generally, three components
▶ An exponential family of probability distributions: Bernoulli
▶ A linear predictor: η = w⊤x
▶ A link function g that connects the mean µ of the

cond. distribution of y with the linear predictor: η = g(µ)
▶ Here: µ = θ and η = g(µ) = σ−1(µ) = logit(µ)

• We can pick other distributions and link functions
▶ E.g., normal distribution + identity link → linear regression
▶ E.g., Poisson distribution + log link → Poisson regression
▶ See Wikipedia or lecture Cross Sectional Data Analysis (SoWi)

• More on exponential family in exercise
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Softmax regression

• Recall logistic regression
▶ Log odds modeled as a linear function of the features
▶ Technically, first compute logit score η = ⟨w,x⟩
▶ Then apply the logistic function to obtain success probability

p(y = 1|x,w) = σ(η)

• Softmax regression (or multinomial logistic regression)
generalizes logistic regression to multiple classes

• Consider a multiclass problem with C classes
▶ Instead of one linear function, use C linear functions

η1 = ⟨w1,x⟩, . . . , ηC = ⟨wC ,x⟩ (one per class)
▶ Can also be interpreted as log odds under certain conditions

(exercise)
▶ Instead of the logistic function, use the softmax function to obtain

p(Y |x,w1, . . . ,wC)

2 / 6



The softmax function (1)
• The softmax function S(η)

▶ Takes a real vector η = (η1, . . . , ηC)
⊤ ∈ RC

▶ And transforms it into an C-dimensional probability vector S(η)

S(η)c =
exp(ηc)∑C

c′=1 exp(ηc′)

▶ Called this way because it exaggerates differences and acts
somewhat like the max function (approximates indicator function
of largest coefficient)

4.2. Gaussian discriminant analysis 103
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Figure 4.3 Quadratic decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.
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Figure 4.4 Softmax distribution S(η/T ), where η = (3, 0, 1), at different temperatures T . When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

4.2.2 Linear discriminant analysis (LDA)

We now consider a special case in which the covariance matrices are tied or shared across
classes, Σc = Σ. In this case, we can simplify Equation 4.33 as follows:

p(y = c|x,θ) ∝ πc exp

[
μT

c Σ
−1x− 1

2
xTΣ−1x− 1

2
μT

c Σ
−1μc

]
(4.34)

= exp

[
μT

c Σ
−1x− 1

2
μT

c Σ
−1μc + log πc

]
exp[−1

2
xTΣ−1x] (4.35)

Since the quadratic term xTΣ−1x is independent of c, it will cancel out in the numerator and
denominator. If we define

γc = −1

2
μT

c Σ
−1μc + log πc (4.36)

βc = Σ−1μc (4.37)

3 / 6Murphy, 2012



The softmax function (2)
Here is a plot of S(3, x2, 1)2.
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• When we fix all but one argument and look at the corresponding
output, we obtain a shifted logistic function
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Logistic regression and softmax

• Recall logistic regression model

p(y = 0|x,w) =
1

1 + exp(⟨w,x⟩)

p(y = 1|x,w) =
1

1 + exp(−⟨w,x⟩) =
exp(⟨w,x⟩)

1 + exp(⟨w,x⟩)

• We can express this with the softmax function

p(y = 0|x,w) = S(0, ⟨w,x⟩)1
p(y = 1|x,w) = S(0, ⟨w,x⟩)2

→ Can be seen as a generalization of the logistic function
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Softmax regression

• Let W =
(
w1 w2 · · · wC

)

• For C classes, softmax regression uses the model

p(y = c|x,W ) = S(⟨w1,x⟩, . . . , ⟨wC ,x⟩)c = S(W⊤x)c

• The weight vectors are redundant (exercise)
▶ We get non-redundant parameters if we set wC = 0

• Maximum likelihood estimation
▶ Let pi = S(W⊤xi) ∈ SC be the predicted probabilities for example i
▶ Likelihood is given by

L(W |X,y) =

N∏

i=1

p(yi|xi,W ) =

N∏

i=1

S(W⊤xi)yi =
N∏

i=1

piyi

▶ Gradient of neg. log-likelihood (lecture 05)

∇w⊤
c
− ℓ(W |X,y) =

∑

i

(pic − I(yi = c))x⊤i
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Recall: Naive Bayes

• C discrete class labels
▶ Prior class distribution p(y) is a categorical distribution
▶ O(C) parameters for prior
▶ Can often be accurately estimated from sample or domain

knowledge

• The Naive Bayes assumption: features are conditionally
independent given the class label

p(x|y) =
D∏
j=1

p(xj |y)

• If used to model p(x|y), we obtain a Naive Bayes classifier
• Called “naive” because features are usually not conditionally

independent
▶ But may nevertheless “work well”
▶ Usually O(CD) parameters for class-conditional densities
▶ Relatively immune to overfitting

2 / 15



Gaussian Naive Bayes classifier

• When features are continuous, p(xj |y) is continuous
▶ I.e., feature distriubtions are modeled with a continuous

distribution

• Gaussian Naive Bayes (GNB): use Gaussian distribution
▶ p(xj |y = c) ∼ N (µjc, σ

2
jc)

▶ µjc is mean parameter of feature j in class c
▶ σ2

jc is variance parameter of feature j in class c
▶ Prior class probabilities as before
▶ Total number of parameters: O(DC)

• Maximum likelihood estimate

µ̂jc =

∑
i:yi=c xij

nc
and σ̂2

jc =

∑
i:yi=c(xij − µ̂jc)

2

nc
,

where nC refers to number of training examples of class c

3 / 15



Example (GNB assumptions hold)
1000 red points, 250 green points

Data and MLE fit Posterior class probabilities
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Example (GNB assumptions do not hold)
1000 red points, 250 green points

Data and MLE fit Posterior class probabilities
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Excursion: Quadratic Discriminant Analysis (QDA)
QDA models class-conditional density p(x|y) via multivariate Gaussian
• I.e., p(x|y = c) = N (x|µc,Σc)
• Parameters can be fit separately per class
• Generative, but not Naive Bayes classifier

Data and MLE fit Posterior class probabilities
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Excursion: Linear Discriminant Analysis (LDA)
LDA is a variant of QDA that additionally assumes homoscedasticity.
• Means that covariances among classes are equal
• I.e., p(x|y = c) = N (x|µc,Σ) (note: Σ, not Σc)
• Gives a linear classifier

Data and MLE fit Posterior class probabilities
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Gaussian Naive Bayes and logistic regression (1)

• We can also make the homoscedasticity assumption for Gaussian
Naive Bayes
▶ Then, p(xj |y) = N (xj |µjy, σj)
▶ Let’s call this classifier GNB=

• For binary classification, we will now show:
▶ For every GNB= classifier, there is an equivalent logistic regression

classifier
▶ But not the other way around
▶ Consequently, GNB= is a linear classifier
▶ Consequently, logistic regression is “more powerful” than GNB=

• For multi-class classification
▶ GNB= and softmax regression each contain unique classifiers
▶ GNB= still linear
▶ More in exercise

8 / 15



Gaussian Naive Bayes and logistic regression (2)
Let’s look at the parametric form of p(y = 1|x).

p(y = 1|x) = p(y = 1)p(x|y = 1)∑1
y′=0 p(y

′)p(x|y′)
= . . .

=
1

1 + exp

(
ln 1−π

π +
∑

j

[
µj0−µj1

σ2
j

xj +
µ2
j1−µ2

j0

2σ2
j

])
=

1

1 + exp(−(w0 +w⊤x))
,

where

− w0 = ln
1− π

π
+
∑
j

µ2
j1 − µ2

j0

2σ2
j

− wj =
µj0 − µj1

σ2
j

Thus, under our assumptions, we can express p(y|x) in the
parametric form of logistic regression.
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Example (GNB assumptions hold)
1000 red points, 250 green points

Data & MLE fit Posterior class prob. (GNB)
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Same example with GNB=
1000 red points, 250 green points

Data & MLE fit Posterior class prob. (GNB=)
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Example (GNB assumptions do not hold)
1000 red points, 250 green points

Data & MLE fit Posterior class prob. (GNB)
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Same example with GNB=
1000 red points, 250 green points

Data & MLE fit Posterior class prob. (GNB=)
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Gaussian Naive Bayes and logistic regression (3)

• GNB is generative, LR is discriminative

• For binary classification
▶ When GNB= assumptions hold, GNB, GNB= and logistic

regression asymptotically give identical classifiers
▶ Otherwise, LR asymptotically often better than GNB=
▶ Reason: LR consistent with but not rigidly tied to GNB=

assumptions (and parameter estimates)

• Generally though, GNB and LR typically learn different classifiers

• Rates of convergence differ
▶ O(logD) examples for GNB to “converge”
▶ O(D) examples for LR to “converge”

• Gaussian Naive Bayes most suitable if
▶ GNB assumptions reasonable
▶ As fallback when few examples available

14 / 15
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Generalization error vs. number of examples (real data)
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Figure 1: Results of 15 experiments on datasets from the VCI Machine Learning 
repository. Plots are of generalization error vs. m (averaged over 1000 random 
train/test splits). Dashed line is logistic regression; solid line is naive Bayes. 
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Outline (Point Estimation)

1. Maximum Likelihod Estimation &
Empirical Risk Minimization

2. Gradient-Based Optimization
3. MAP Estimation & Regularized Risk Minimization
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Lessons learned
• Point estimation often involves solving an optimization problem

▶ Minimize a (non-linear) cost function
▶ For differentiable cost functions, gradient-based learning dominant

• Gradient-based learning
▶ First-order methods compute (GD) or estimate (SGD) gradient,

move small step into opposite direction
▶ Second-order methods also use (approximate) Hessian and can be

superior when applicable
▶ GD/SGD/variants (currently) often best choice for large data /

many parameters / continuous cost functions

• MLE related to empirical risk minimization
▶ Same cost functions for matching likelihood / loss
▶ E.g., for discriminative classifiers: log loss, cross entropy loss, KL

divergence loss

• MAP related to regularized risk minimization
▶ Same cost function when priors / penalty additionally match
▶ E.g., spherical Gaussian prior and ℓ2 regularization
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Suggested readings

• Murphy, Ch. 8, Optimization

• Also: Murphy, Ch. 10, Logistic Regression
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Recap: Maximum likelihood estimation (MLE)

• Maximum likelihood estimation (MLE) chooses the value θ̂
that maximizes the likelihood of the data

θ̂MLE = argmax
θ

L(θ|D) =

{
p(D|θ) for generative models
p(y|X,θ) for discriminative models

▶ Probabilistic models only

• Good properties when N → ∞ (iid) samples; under mild conditions
▶ Consistent: converges to true value θ∗ (in probability)
▶ Efficient: no other estimator has lower asymptotic mean squared error
▶ Asymptotically normally distributed

• In practice, we do not have N = ∞
▶ Tendency to overfit training data
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Log-likelihood (1)
Instead of maximizing the likelihood, we can

• Maximize the log-likelihood ℓ(θ|D)
def
= logL(θ|D) or

• Minimize the negative log-likelihood −ℓ(θ|D)
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Log-likelihood (2)

• If training examples are iid, then (for discriminative models)

L(θ|X,y) =

N∏
i=1

p(yi|xi,θ)

ℓ(θ|X,y) =

N∑
i=1

log p(yi|xi,θ)

▶ “Summation form” of log-likelihood faciliates gradient-based
parameter estimation (more later)

• For binary classification (yi ∈ { 0, 1 }), we sometimes write

ℓ(θ|X,y) =
N∑
i=1

(yi log pi1 + (1− yi) log pi0),

where pic = p(yi = c | xi,θ) refers to the predicted class
probabilities
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Recap: Empirical risk minimization (ERM)

• Empirical risk minimization chooses the estimator that
minimizes Remp(h)

ĥ = argmin
h∈H

Remp(h) =
1

N

N∑
i=1

L(h(xi), yi),

▶ h is hypothesis (corresponds to a choice of θ)
▶ L(ŷ, y) is loss function that measures how different prediction ŷ

is from true answer y
▶ Focus on prediction error, not parameters
▶ Also applicable to non-probabilistic models

• Is there any relationship between MLE and ERM?
▶ We will show: for discriminative models, MLE and ERM with

certain choices of loss functions produce equivalent classifiers
→ ERM is more general

▶ These loss functions include: log loss, cross entropy loss, KL
divergence loss
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Log loss
For probabilistic classifiers, the log loss is given by

Llog(p(y|x), y∗) = − log p(y∗|x),
where y∗ is the true label and p(y|x) is the probability distribution
that the classifier outputs
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Empirical risk minimization with log loss

• Empirical risk with log loss

Remp(θ) =
1

N

N∑
i=1

− log p(yi|xi,θ) ∝ −ℓ(θ|X,y)

• For discriminative classifiers, MLE and empirical risk
minimization with log loss
▶ Use the same objective function (up to constants)
▶ An MLE estimate also minimizes the empircal risk
▶ A minimizer of empirical risk is also an MLE estimate

• No closed form solution
▶ Numerical optimization often used

• Next: cross entropy loss and KL divergence loss
▶ Close relationship to log loss
▶ More general than log loss
▶ Founded in information theory, with which we start
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Background: Variable-Length Codes

• Consider a categorical distr. p(x) = Cat(x|θ) over { 1, . . . ,K }
• Anna samples a value X and wants to tell Bob the outcome

▶ Anna and Bob can agree upfront on a codeword (bitstring) c(x)
for each category x

▶ On average, how many bits does Anna have to send to Bob so
that he can determine the value of X?

• Answer: depends on code! Expected codeword length is

Ep[|c(x)|] =
∑
x

p(x) |c(x)|

x p(x) c(x) |c(x)|
1 50% 00 2
2 25% 01 2
3 12.5% 10 2
4 12.5% 11 2

Expected length: 2

x p(x) c(x) |c(x)|
1 50% 0 1
2 25% 10 2
3 12.5% 110 3
4 12.5% 111 3
Expected length: 1.75
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Entropy
• How small can the expected codeword length be?

▶ Information theory (e.g., see here) tells us that optimal code c∗

satisfies:

H(p) ≤ E[|c∗(x)|] < H(p) + 1

• H(p) is the Shannon entropy of p (above result: with base 2)

H(p) =
∑
x

p(x) log
1

p(x)︸ ︷︷ ︸
I(x)

▶ p(x) = probability that Anna selects category x
▶ Information content I(x) = optimal length of codeword for x
▶ Note: I(x) = log 1

p(x) = − log p(x)

• Entropy is a measure of uncertainty
▶ Ranges from 0 (no uncertainty, achieved by constant)
▶ To logK (maximum uncertainty, achieved by uniform distribution)
▶ Unit is bits with log2 / nats with ln

(1 nat = 1/ ln 2 bits ≈ 1.44 bits)
9 / 15
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Entropy (example)
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Cross entropy

• Let’s modify the game a bit
▶ Anna cheats and gives Bob the wrong distribution q
▶ They use an optimal code for q, i.e., codeword for x has log 1

q(x) bits
▶ But Anna later selects values according to p, not q
▶ How many bits are sent on average?

• Answer: cross entropy of q relative to p

H(p, q) =
∑
x

p(x) log
1

q(x)

▶ p(x) = probability that Anna selects category x according to p
▶ log 1

q(x) = optimal size of codeword for x according to q
▶ H(p, q) ≥ H(p)
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Kullback-Leibler divergence
• On average, how many additional bits are now sent?

• Answer: Kullback-Leibler divergence of q w.r.t. p

DKL(p∥q)
def
= H(p, q)−H(p) =

∑
x

p(x) log
p(x)

q(x)

• KL divergence is a measure of difference between distributions
▶ Interpretation: expected number of extra bits for encoding a value

drawn from “true” distribution p using an optimum code for
“estimated” distribution q

▶ Aka relative entropy of q w.r.t. p

• Properties
▶ DKL(p∥q) ≥ 0
▶ DKL(p∥q) = 0 iff q = p (almost everywhere)
▶ In general, DKL(p∥q) ̸= DKL(q∥p)

• Concepts generalize to other (i.e., non-categorical) distributions:

H(p) = Ep[− log p(x)] H(p, q) = Ep[− log q(x)]
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Cross entropy loss
• Fix an example (x, y∗)
• The empirical distribution p̃(y) of y (for this example) is

p̃(y) = I[y = y∗],

i.e., it puts all its mass on the correct label y∗

• Now consider the model distribution q(y) of some classifier q
(applied to this example; i.e., q(y) = p(y|x))

• The cross entropy loss w.r.t. the empirical distribution is

LCE(q(y), y
∗)

def
= H(p̃, q) =

∑
y

p̃(y)(− log q(y))

=
∑
y

I[y = y∗](− log q(y))

= − log q(y∗) = Llog(q(y), y
∗)

▶ For this reason, log loss is sometimes called cross entropy loss
▶ But cross entropy loss is more general (we may pick other

distributions than p̃, e.g., to model noisy labels)
13 / 15



KL divergence loss

• We can also use KL divergence since:

argmin
q

H(p̃, q) = argmin
q

[H(p̃, q) −H(p̃)︸ ︷︷ ︸
indep. of q

] = argmin
q

DKL(p̃∥q)

▶ Generally, KL divergence loss differs from cross entropy loss by a
model-independent constant

▶ For empirical distribution (as above), H(p̃) = 0

• Interpretation: we aim to minimize the (KL) divergence of the
model distribution w.r.t. empirical distribution

• In summary, for classification, the following approaches are
equivalent in that they share the same solutions
▶ Maximum likelihood estimation
▶ Empirical risk minimization with log loss
▶ Empirical risk minimization with cross entropy loss
▶ Empirical risk minimization with KL divergence loss
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Direction of KL divergence

• Think: p = data (blue); q∗ = fitted model (green)
• Note: we used DKL(p̃∥q) (left)
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Parameter estimation and optimization

• Often, parameter estimation requires the solution of a nonlinear
optimization problem of form:

θ∗ = argmin
θ

f(θ).

▶ θ corresponds to the model parameters
▶ f called cost function
▶ For MLE, f is the neg. log likelihood of the training data: −ℓ(θ|D)
▶ For ERM, f is the empirical risk: Remp(θ)
▶ For MAP, f is the neg. log posterior: − log p(θ|D)
▶ For RRM, f is the regularized risk: R′

emp(θ)

• Coming up: common optimization methods used in ML

• Note: In ML, generalization error matters. The optimal solution
(e.g., the ML estimate) may overfit.
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Gradient-based methods

• We often (are forced to) use iterative methods
▶ Pick a starting point
▶ Repeatedly update the current point until some stopping criterion

is met
▶ Output the current point

• First-order methods use first-order partial derivatives
▶ E.g.: gradient descent, stochastic gradient descent
▶ Typically used for large datasets and/or models with many

parameters

• Second-order methods use second-order information
▶ Newton method or quasi-Newton methods (BFGS, L-BFGS)
▶ Take curvature into account
▶ Typically used for smaller datasets and/or models with few

parameters
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Outline

1. Gradient Descent

2. Stochastic Gradient Descent

3. Second-Order Methods
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Continuous gradient descent

• Find minimum x∗ of function f

• Pick a starting point x0

• Compute gradient ∇f(x0)

• Walk downhill
• Differential equation

∂x(t)

∂t
= −∇f(x(t))

with boundary cond. x(0) = x0

• Under certain conditions

x(t)→ x∗
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Gradient descent

• Find minimum x∗ of function f

• Pick a starting point x0

• Compute gradient ∇f(x0)

• Jump downhill
• Difference equation

xn+1 = xn − ϵn∇f(xn)

• Under certain conditions,
approximates CGD in that

xn(t) = xn + “steps of size t”

satisfies the PDE as n→∞
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Derivatives for logistic regression

∂

∂wj
−ℓ(w|X,y) =

N∑
i=1

−xij [yi − pi1]

• Recall that pi1 = σ(w⊤xi) increases when we increase w⊤xi

• Consider the contribution of any example i with yi = 1 to the
partial derivative w.r.t. wj

▶ Zero feature values xij = 0 do not contribute
▶ Otherwise, contribution has opposite sign as feature xij

→ Contribution to gradient descent step towards increase of pi1
▶ More when difference between true label (yi = 1) and prediction

(pi1) larger
▶ More when feature xij larger (i.e., its absolute value)

• Similar arguments for yi = 0 (consider the alternative
formulation

∑N
i=1 xij [(1− yi)− pi0])
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Gradient

• For functions with multiple inputs, there are multiple partial
derivatives; e.g.,

f = x21 + x22
∂

∂x1
f = 2x1

∂

∂x2
f = 2x2

• We can gather them all in a single row vector (numerator
layout), the gradient of f

∇x⊤f
def
=

(
∂

∂x1
f ∂

∂x2
f · · · ∂

∂xn
f
)

• For the example above, we obtain

∇x⊤f = 2x⊤
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Excursion: Matrix calculus

• Gradients can be computed element-by-element or directly using
matrix calculus
▶ Gives vectorized gradients (good for efficient gradient computation

in software)

• For x ∈ Rn, the following rules hold

∇x⊤ c = 0⊤n
∇x⊤ c⊤x = c⊤

∇x⊤ x⊤c = c⊤

∇x⊤ x⊤x = 2x⊤

∇x⊤ x⊤Ax = x⊤(A+A⊤),

where constants c ∈ R, c ∈ Rn, and A ∈ Rn×n do not depend
on x

• Also: multiplicative rule, product rule, chain rule, . . .
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Gradient of logistic regression

∂

∂wj
− ℓ(w|X,y) = −

N∑
i=1

xij [yi − pi1]

• Define the error on example i as ei = yi − pi1 (a function of w)

• Define the error vector e =
(
e1 e2 · · · eN

)⊤
• Then

∂

∂wj
− ℓ(w|X,y) = −

N∑
i=1

eixij = −e⊤xj

• And therefore

∇w⊤ − ℓ(w|X,y) = −e⊤X
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Gradient descent summary

• We aim to minimize an objective function such as the negative
log-likelihood

• A single gradient computation and subsequent parameter
update is called an epoch

• In the n-th epoch, we use learning rule

θn+1 ← θn − ϵn∇f(θ)

for some learning rate ϵn > 0

• For NLL and logistic regression
▶ Update rule is w⊤

n+1 ← w⊤
n + ϵne

⊤
nX

▶ Negative log-likelihood of logistic regression is convex; i.e., each
local optimum is a global optimum

▶ Under mild conditions on the step size sequence, GD converges to
ML estimate ŵMLE
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Outline

1. Gradient Descent

2. Stochastic Gradient Descent

3. Second-Order Methods
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Stochastic gradient descent

• Find minimum x∗ of function f

• Pick a starting point x0

• Approximate gradient ∇̂f(x0)

• Jump “approximately” downhill
• Stochastic difference equation

xn+1 = xn − ϵn∇̂f(xn)

• Under certain conditions,
asymptotically approximates
(continuous) gradient descent
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SGD for logistic regression

• We use

∇w⊤−ℓ(w|X,y) = −e⊤X = −
N∑
i=1

eix
⊤
i

∇̂w⊤−ℓ(w|X,y) = −NeZx
⊤
Z ,

where Z ∈ { 1, 2, . . . , N } is a single training example chosen
uniformly and at random from the N examples in the training
set.

• SGD epoch (with or without replacement)
1. Pick a random example z (with or without replacement)
2. Compute approximate gradient ∇̂w⊤ − ℓ(w|X,y)
3. Update parameters

wn+1 = wn + ϵn∇̂ℓ(w|X,y)

4. Repeat N times

• Observe: only weights for non-zero features updated in each step
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Comparison

• Per epoch, assuming O(D) gradient computation per example

GD SGD

Algorithm Deterministic Randomized
Gradient computations 1 N
Gradient types Exact Approximate
Parameter updates 1 N
Time O(DN) O(DN)
Space O(D) O(D)

• Why stochastic? Empirically, for large datasets:
▶ Fast convergence to vicinity of optimum
▶ Randomization may help escape local minima
▶ Exploitation of “repeated structure”
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GD/SGD in practice (1)
Step size (or learning rate) sequence { ϵn } needs to be chosen
carefully; widely studied, many options:
• Large → good initially (move quickly), bad later on (juggle

around optimum)
• Keep step size throughout or reduce it gradually

▶ E.g., constant (useful for online learning)
▶ E.g., ϵn = a/(b+ n) for some constants a, b
▶ E.g., pick ϵn ≤ 1/L(∇f) if f has bounded gradient

• Bold driver heuristic: After every epoch
▶ Increase step size slightly when objective decreased (by, say, 5%)
▶ Decrease step size sharply when objective increased (by, say, 50%)
▶ May (or should) use validation error, grace period, no increase, . . .

• The above choices (most notably, the initial learning rate) are
often treated as hyperparameters in machine learning

• See pytorch’s learning rate schedulers for examples
• Line search: optimize the step size directly

ϵn = argmin
ϵ

f(θn − ϵ∇f(θn))
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GD/SGD in practice (2)

• SGD is a common learning algorithm
▶ E.g., training neural networks
▶ Related to incremental gradient descent and online learning

• Many variants exist; e.g.,
▶ Use more than one example per step (mini-batch GD)
▶ Polyak averaging
▶ Momentum
▶ Adaptive, per-parameter step sizes (AdaGrad, RMSprop,

AdaDelta, Adam)
▶ More in Deep Learning lecture (spring term)

• And it can (often) be parallelized; e.g.,
▶ Parallelizing mini-batch gradient computations
▶ Hogwild
▶ Vowpal Wabbit
▶ DSGD++ (for latent factor models)
▶ . . .
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Excursion: Coordinate-Wise Gradient Descent
• Goal find min x∗ of function f

• Pick starting point x0

• Choose a coordinate j ∈ {1, . . . D}
• Compute gradient for coordinate ∂

∂xj
f

• Jump downhill along this coordinate

• Sometimes gradients simplify / can
reuse computations

• Variants
▶ Coordinate-wise SGD
▶ Block-coordinate (S)GD (choose

more than one coordinate)

 0.5 

 1 

 1.5 

 2 

 2.5 

 3 
 3.5 

 4 

 4  4.5  4.5 

 4.5 

 5  5 

 5 

 5.5 

 5.5 

 6 

 6 

 6.5 

 6.5 

 7 

 7 

 7.5 

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

stepfun(px, py)

t

θ(
t)

−
θ*

●

●

●

●
●

●
●

●
●

● ●
● ●

● ●
●●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

18 / 27



Outline

1. Gradient Descent

2. Stochastic Gradient Descent

3. Second-Order Methods
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First-order Taylor polynomial

• Taylor’s theorem tells us that if f is differentiable at some point
a, then there exists function h1 such that

f(x) = f(a) + f ′(a)(x− a)︸ ︷︷ ︸
P1(x)

+h1(x)(x− a)︸ ︷︷ ︸
error

and limx→a h1(x) = 0

• P1(x) is the first-order
Taylor polynomial of f at
point a and the
(asymptotically) best linear
approximation of f at
point a
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Second-order Taylor polynomial

• Taylor’s theorem tells us that if f is twice differentiable at some
point a, then there exists function h2 such that

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2︸ ︷︷ ︸

P2(x)

+h2(x)(x− a)2︸ ︷︷ ︸
error

and limx→a h2(x) = 0

• P2(x) is the second-order
Taylor polynomial of f at
point a and the
(asymptotically) best
quadratic approximation
of f at point a
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Newton’s method

• If f is strictly convex (i.e., f ′′(x) > 0), then we can minimize f
using Newton’s method

xn+1 ← xn −
f ′(xn)

f ′′(xn)

▶ rhs is stationary point of the 2nd-order Taylor polynomial of f at xn

▶ If f is strictly convex, this stationary point is the minimum of P2

→ Quadratic approximation of f is minimized in each step

• Discussion
▶ Can converge in significantly less steps than gradient descent; e.g.,

if f is quadratic, only needs one step
▶ Need to compute second derivative
▶ If f is not strictly convex, may converge to any stationary point

(including a local maximum!) or even diverge
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Example
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Second-order Taylor polynomial (multivariate)

• If f : RD → R and twice differentiable at xn ∈ RD, then the
second-order Taylor polynomial at xn is

P2(x) = fn + g⊤
n (x− xn) +

1

2
(x− xn)

⊤Hn(x− xn),

where
▶ fn = f(xn) denotes the function value,
▶ g⊤

n = (∇x⊤f)(xn) denotes the gradient, and
▶ Hn = (∇x⊤∇xf)(xn) denotes the Hessian matrix at xn.

• Hessian is D ×D matrix of second-order partial derivatives

H =


∂2

∂x2
1
f ∂2

∂x1∂x2
f · · · ∂2

∂x1∂xD
f

∂2

∂x2∂x1
f ∂2

∂x2
2
f · · · ∂2

∂x2∂xD
f

...
...

. . .
...

∂2

∂xD∂x1
f ∂2

∂xD∂x2
f · · · ∂2

∂x2
D
f


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Newton’s method (multivariate)

• Newton’s method then becomes

xn+1 ← xn −H−1
n gn

• Discussion
▶ Newton’s method is basic second-order method
▶ Can converge in significantly less steps than GD

(quadratic convergence vs. linear convergence)
▶ Expensive for large D; Hessian takes O(D2) space and its

inversion O(D3) time
▶ Harder to make stochastic
▶ If f is strictly convex (i.e., H positive definite; exercise), also

converges to unique minimum
▶ Otherwise, dn = −H−1

n gn may not be a descent direction
▶ More sophisticated methods can avoid this problem (e.g., use

gradient descent step if dn is not a descent direction)
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Example
Example function is quadratic → one step
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Newton’s method for logistic regression
• Newton’s method for MLE estimate of logistic regression

▶ Hessian has simple form (exercise)
▶ Newton’s method known as iteratively reweighted least squares

(IRLS)
▶ IRLS very good optimization algorithm if D is not too large

• For large D, Newton’s method becomes to costly
▶ E.g., simple bag-of-words models in natural language processing

tasks may have 10s of thousands of features (and thus parameters
in logistic regression)

▶ More complex models may have millions of parameters

• Alternatives include
▶ Quasi-Newton methods such as BFGS or L-BFGS, which use

gradient information only to build approximation of the (inverse)
Hessian

▶ Stochastic gradient descent

• More in MAC 507 Nonlinear Optimization and in Optimization
in Machine Learning
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Potential problems with MLE
We use logistic regression as an example throughout, but the
discussion applies generally. Potential problems with MLE:
1. Risk to overfit

▶ E.g., when too many features (and thus weights)

2. Weights may be non-unique or unstable
▶ E.g., when training data linearly separable
▶ E.g., when features (in training data) are linearly dependent

3. Does not optimize for classification error
▶ Fit with lower likelihood may actually produce less errors

(even on training data)
▶ Likelihood ̸= error

• We now look closer at these problems
• Using a prior is one option to mitigate 1 and 2
• 3 corresponds to (empirical) risk minimization with 0-1 loss

(NP hard, more in DL course)
2 / 12



Example: Weights not unique

• Consider the following training data
x1 x2 y

1 1 0
1 1 1

• Observe: Features are linearly dependent
• All these weight vectors are MLE estimates

▶ w1 =
(
1 −1

)⊤
▶ w2 =

(
0 0

)⊤
▶ w3 =

(
−1 1

)⊤
• But they give different estimates for new data

▶ xnew =
(
1 0

)⊤
▶ σ(w⊤

1 xnew) ≈ 0.73
▶ σ(w⊤

2 xnew) = 0.5
▶ σ(w⊤

3 xnew) ≈ 0.27

• Which weight vector is the “right” one?
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Example: Weights unstable

• Recall: training data is linearly separable if there exists a
weight vector w such that for all i

ηi = w⊤xi

{
> 0 if yi = 1

< 0 if yi = 0

• Implies correct decisions for all training examples
• If w separates the training data, so does w′ = cw for some

constant c > 1; i.e., for all x ∈ D
▶ We have η = w⊤x and η′ = (w′)⊤x = cw⊤x = cη
▶ η and η′ have same sign → same decision
▶ |η′| > |η| → higher confidence in decision
▶ Putting both together, we conclude that w′ corresponds to higher

training-data likelihood

• We can repeat this process ad infinitum
→ weights increase without bounds
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Adding a prior

• To mitigate these problems, we can make use of a prior
▶ Recall: posterior ∝ likelihood × prior
▶ Recall: prior = apriori belief over distribution of parameters
▶ Prior also allows to incorporate expert knowledge

• Which prior?
▶ Beta-binomial model not applicable (why?)
▶ Prior should not contradict available expert knowledge
▶ Prior should not unduly “overrule” data (=too strong)

• We discuss: spherical Gaussian prior
▶ Common, simple choice
▶ See Stan’s recommendations for discussion

5 / 12
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Refresher: Gaussian distribution
• Mean µ ∈ R, variance σ2 ∈ R+ (or precision λ = 1/σ2)
• Denoted N (µ, σ2)
• N (x|µ, σ2) = 1√

2πσ2
exp

[
− 1

2σ2 (x− µ)2
]
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Multivariate Gaussian distribution
• Mean µ ∈ RD, covariance Σ ∈ RD×D (or precision Λ = Σ−1)
• Denoted N (µ,Σ)
• Let |Σ| be the determinant of Σ. If Σ is positive definite:

N (x|µ,Σ) =
1√

(2π)D |Σ|
exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
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Spherical Gaussian prior

• w ∼ N (0, σ2I) for some variance hyperparameter σ2 > 0

• Equivalently, wj ∼ N (0, σ2) and weights independent
▶ Prior gives highest density to zero weights
▶ Prior density of nonzero weights decreases with distance to zero
▶ σ2 controls how fast
▶ Intuitively: posterior keeps weights close to zero unless data

suggests otherwise

• Posterior

p(w|X,y, σ2) ∝ L(w|X,y)N (w|0, σ2I)

▶ Gaussian is not a conjugate prior, posterior not Gaussian
▶ No closed-form solution
▶ Bayesian inference often via approximate methods

• This is for logistic regression
▶ Generally, replace w by θ
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Maximum a posteriori estimation

• Recall: The maximum a posteriori (MAP) estimate ŵMAP is
the point estimate that maximizes the posterior

ŵMAP = argmax
w

L(w|X,y)N (w|0, σ2I)

▶ Think: most likely weight vector given data and prior

• Taking logs, we obtain

ŵMAP = argmax
w

[
ℓ(w|X,y) + log

∏
j

N (wj |0, σ2)
]

= argmax
w

[
ℓ(w|X,y)−

∑
j

1

2σ2
w2
j

]
= argmax

w

[
ℓ(w|X,y)− λ

2
∥w∥2

]
,

where λ = 1/σ2
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Discussion

• Recall our example
x1 x2 y

1 1 0
1 1 1

▶ When λ > 0, w2 =
(
0 0

)⊤ is unique MAP estimate
▶ New-data predictions do not depend on arbitrary choices anymore

• When data is linearly separable and λ > 0, weights remain
bounded (why?)

• With λ = 0, prior has no effect and we retain MLE
• Data scale matters

▶ With MLE (and a bias term), shifting or changing the scale of
parameters does not affect predicted probabilities (assignment 2)

▶ E.g., when we scale a parameter by factor 10 and its weight by
factor 1/10, we obtain the same predictions

▶ With MAP, this does not hold: rescaled weight vector has higher
prior density (and thus a lower “penalty” for MAP objective)

▶ Scale needs to be taken into account (e.g., use z-scores)
10 / 12



Regularized risk minimization (1)

• Recall that for iid data, MLE estimates for classifiers can be
viewed as empirical risk minimization with log loss in that

ŵMLE = argmin
w

1

N

N∑
i=1

− log p(yi|xi,θ)︸ ︷︷ ︸
Remp(θ)

• MAP estimation with spherical Gaussian priors can be viewed as
regularized risk minimization with ℓ2 regularization

ŵMAP = argmin
w

[ 1

N

N∑
i=1

− log p(yi|xi,θ)+
λ′

2
∥θ∥2

]
▶ Spherical Gaussian parameterized by variance hyperparameter σ2

▶ L2 regularization parameterized by regularization coefficient
hyperparameter λ′ = λ/N = 1/(Nσ2)

▶ “Large” weight vectors penalized by their squared L2 norm
11 / 12



Regularized risk minimization (2)

• ℓ2 regularization leads to GD learning rules with weight decay

θn+1 ← θn − ϵn∇Remp(θn)− ϵnλ
′θn

= (1− ϵnλ
′)θn − ϵn∇Remp(θn)

• Likewise for SGD; with loss L and example z, we obtain

θn+1 ← θn − ϵn∇L(p(Y |xz,θn), yz)− ϵnλ
′θn

▶ E.g., for penalized logistic reg.: wn+1 ← wn + ϵnezxz − ϵnλ
′wn

• Notes
▶ ℓ2 regularization / weight decay generally applicable (model does

not need to be probabilistic)
▶ For iid data, MAP estimation with diagonal Gaussian prior can be

expressed as regularized risk minimization with weighted ℓ2
regularization (different weight for each parameter)

▶ And with a general Gaussian prior as RRM with Tikhonov
regularization (penalty is

∥∥Λ′θ
∥∥2)

12 / 12



Machine Learning
06 – Dimensionality Reduction

Part 0: Overview

Prof. Dr. Rainer Gemulla

Universität Mannheim

Version: 2023-1



Overview

• So far we have looked at basic generative and discriminative
models for supervised learning

• Coming up: dimensionality reduction (unsupervised learning)

• Focus: the singular value decomposition (SVD)
▶ A basic unsupervised model
▶ Useful for dimensionality reduction, data compression, and

denoising data
▶ Best “low rank” approximation to the data

• By studying the SVD, we also learn about key approaches in ML
▶ SVD is a matrix factorization model
▶ SVD is closely related to the principal component analysis (PCA)
▶ SVD is a latent linear model
▶ SVD is a linear autoencoder
▶ SVD is important workhorse of linear algebra
▶ . . .
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Outline (Dimensionality Reduction)

1. Matrix Decompositions
2. Singular Value Decomposition
3. Interpreting the SVD
4. Using the SVD
5. Latent Linear Models
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Lessons learned

• SVD is the Swiss Army knife of (numerical) linear algebra
→ Ranks, kernels, norms, inverses, ... . . .

• SVD is also very useful in data analysis
→ Dimensionality reduction, noise removal, visualization, . . .

• Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

• Selecting the right size for truncated SVD can be difficult

• Interpretation of results can be challenging

• Close relationship to
▶ PCA (center data)
▶ Probabilistic PCA (generative model)
▶ Latent linear models as a general framework
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Suggested reading

• Murphy, Ch. 20: Dimensionality Reduction

• David Skillicorn. Understanding Complex Datasets:
Data Mining with Matrix Decompositions
Ch. 3: Singular Value Decomposition
Chapman and Hall, 2007

• Carl Meyer. Matrix Analysis and Applied Linear Algebra
Ch. 5.12: Singular Value Decomposition
Society for Industrial and Applied Mathematics, 2000
http://www.matrixanalysis.com

• Bishop, Ch. 12: Continuous Latent Variables

• Gene H. Golub & Charles F. Van Loan: Matrix Computations,
3rd ed. Johns Hopkins University Press, 1996
▶ Excellent source for the algorithms and theory, but very dense
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Matrix decompositions
A matrix decomposition of a data matrix X is given by three
matrices L, M , R such that

X = LMR,

where
• X is an m× n data matrix,
• L is an m× r1 matrix,
• M is an r1 × r2 matrix,
• R is an r2 × n matrix, and
• r1 and r2 are integers ≥ 1.
• Often r1 = r2 = r ≥ 1
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Matrix decompositions and constraints

• Decompositions as just defined are not really helpful
▶ Suppose we set r = r1 = r2 = n, L = X, M = R = In (the

n× n identity matrix)
▶ Then X = LMR = XInIn = X

• To make decompositions useful, they need to satisfy certain
(carefully chosen) properties or constraints

• For example: small r
▶ Each example is represented by n numbers in X
▶ Each example is represented by r numbers in L
▶ If r < n, we performed some form of compression

• For example: constraints on factor matrices
▶ Compare: integer factorization
▶ 391 = 17 · 13
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Approximate matrix decompositions
An approximate matrix decomposition of data matrix X is
given by three matrices L, M , R such that

X ≈ LMR = X̂,

where each matrix has conforming dimensions (as before).
• Approximation is important because

▶ Approximate decompositions can be much smaller than exact
decompositions (small r)

▶ Reconstruction X̂ can be viewed as a denoised version of X
▶ Can lead to more insightful/interpretable decompositions
▶ More efficient to compute
▶ Generally, trade-off between approximation error and “usefulness”

• ≈ can be defined via a reconstruction error E(X, X̂)
▶ E is an error function; e.g., root mean squared error (RMSE)
▶ Low means good approximation, high means bad
▶ Finding the best approximation (smallest error) can be hard

• Often: “matrix decomposition” said instead “approximate matrix
decomposition”
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Factor interpretation of matrix decompositions
Assume that M is r × r and diagonal. Consider example i.
• Row of R = part (or piece), called latent factor (“latent object”)
• Entry of M = weight of corresponding part
• Row of MR = weighted part
• Row of L = representation of object via weighted parts,

called embedding, code, scores,
distributed representation, . . .

• Size r controls “compactness” (often r < n)
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Each object can be viewed as a combination
of r (weighted) “latent objects” (or “proto-
typical objects”). Similarly, each feature can
be viewed as a combination of r (weighted)
“latent features.”

(e.g., latent feature = “body size”; latent object
relates body size to real features such as “height”,
“weight”, “shoe size”)
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Example: Weather data (r = 1)
1.00 -2.55

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

9.05 16.55 26.73 18.75 17.81

Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharest 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

X
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Example: Weather data (r = 1), reconstruction
1.00 -2.55

0.62
0.69
0.83
0.90
0.88
0.98
1.09
1.14
1.16
1.24
1.21
1.27

9.05 16.55 26.73 18.75 17.81

Jan Apr Jul Oct Year
Stockholm 5.65 10.33 16.68 11.70 11.11

Minsk 6.21 11.36 18.35 12.87 12.23
London 7.55 13.80 22.28 15.63 14.85

Budapest 8.11 14.83 23.94 16.80 15.96
Paris 7.96 14.56 23.52 16.50 15.67

Bucharest 8.91 16.30 26.32 18.47 17.54
Barcelona 9.88 18.06 29.17 20.46 19.44

Rome 10.28 18.80 30.35 21.30 20.23
Lisbon 10.47 19.15 30.92 21.70 20.61
Athens 11.21 20.50 33.11 23.23 22.07

Valencia 10.92 19.96 32.24 22.62 21.48
Malta 11.47 20.98 33.88 23.77 22.58

X̂
(RMSE: 2.66) 7 / 13



Example: Weather data (r = 2), reconstruction
1.00

1.00

0.62 1.69
0.69 2.11
0.83 0.00
0.90 1.52
0.88 0.30
0.98 1.59
1.09 -0.66
1.14 -0.31
1.16 -1.09
1.24 -0.35
1.21 -1.26
1.27 -1.12

9.05 16.55 26.73 18.75 17.81
-4.14 0.27 2.32 -0.89 -0.69

Jan Apr Jul Oct Year
Stockholm -1.34 10.79 20.59 10.20 9.95

Minsk -2.52 11.94 23.23 10.99 10.77
London 7.54 13.80 22.28 15.63 14.85

Budapest 1.82 15.24 27.46 15.45 14.91
Paris 6.71 14.65 24.22 16.23 15.46

Bucharest 2.31 16.74 30.02 17.05 16.44
Barcelona 12.61 17.88 27.64 21.05 19.90

Rome 11.55 18.71 29.64 21.57 20.44
Lisbon 15.00 18.85 28.39 22.67 21.36
Athens 12.65 20.41 32.31 23.54 22.31

Valencia 16.14 19.62 29.31 23.74 22.36
Malta 16.10 20.67 31.29 24.76 23.35

X̂
(RMSE: 0.60) 8 / 13



Example: Weather data (r = 2), plot
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Example: Netflix prize data
(≈ 500k users, ≈ 17k movies, ≈ 100M ratings)

47AUGUST 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing r

ui
 is denoted as 

c
ui
, then the model enhances the cost 

function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i ∈
∑

κ

c
ui
(r

ui
 - µ - b

u
 - b

i
 

- p
u

Tq
i
)2 + λ (|| p

u
 ||2 + || q

i
 ||2  

	 + b
u

2 + b
i
2) 	 (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

NETFLIX PRIZE 
COMPETITION 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean-square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.

–1.5 –1.0 –0.5 0.0 0.5 1.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Factor vector 1 

Fa
cto

r v
ec

to
r 2

 Freddy Got Fingered

Freddy vs. J
ason

Half B
aked

Road Trip

The Sound of M
usic

Sophie’s C
hoice

Moonstru
ck

Maid in Manhatta
n

The Way We Were

Runaway Bride

Coyote Ugly

The Royal Tenenbaums

Punch-Drunk Love

I Heart H
uckabees

Arm
ageddon

Citiz
en Kane

The Waltons: S
eason 1 

Stepmom

Julien Donkey-Boy

Siste
r A

ct

The Fast a
nd the Furious

The Wiza
rd of Oz

Kill B
ill: 

Vol. 1
 

Scarfa
ceNatural Born Kille

rs

Annie Hall

Belle de Jour
Lost i

n Transla
tion

The Longest Y
ard

Being John Malkovich

Catwoman

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize 
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ
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NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

x̂⊤
i = l⊤i R

k-means factors correspond to prototypical faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

x⊤
i (original)



Example: Non-negative matrix factorization

x̂⊤
i = l⊤i R

NMF factors correspond to parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ
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NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

x⊤
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Lee and Seung, 1999.
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Example: Latent Dirichlet allocation
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Blei et al. Latent dirichlet allocation. JMLR, 2003.
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Definition

Theorem
For each A ∈ Rm×n, there are orthogonal matrices Um×m, V n×n,
and a diagonal matrix Σm×n with values
σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0 on the main diagonal such that
A = UΣV ⊤.

• UΣV ⊤ is called the singular value decomposition (SVD) of A
• Values σi are the singular values of A
• Columns of U are the left singular vectors of A
• Columns of V are the right singular vectors of A

A

=

U Σ

V ⊤
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Characterization of the four fundamental subspaces
The fundamental theorem of linear algebra states that every
matrix A ∈ Rm×n induces four fundamental subspaces:
• The column space (range, image) of dimension rank (A) = r

▶ All x ∈ Rm that are linear combinations of columns of A
• The left nullspace (cokernel) of dimension m− r

▶ Left null space is orthogonal to column space
▶ Set of all vectors x ∈ Rm for which x⊤A = 0⊤

• The row space (coimage) of dimension r

• The nullspace (kernel) of dimension n− r

Explicit bases for these subspaces can be obtained from the SVD:
• Column space: the first r columns of U
• Left null space: the last (m− r) columns of U
• Row space: the first r columns of V
• Null space: the last (n− r) columns of V
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The four fundamental subspaces

Figure 1. The action of A: Row space to column space, nulispace to zero. 

Other writers made a further suggestion. They proposed a lower level textbook, 
recognizing that the range of students who need linear algebra (and the variety of 
preparation) is enormous. That new book contains Figures 1 and 2-also Figure 0, 
to show the dimensions first. The explanation is much more gradual than in this 
paper-but every course has to study subspaces! We should teach the important 
ones. 

The Second Figure: Least Squares Equations 
If b is not in the column space, Ax = b cannot be solved. In practice we still 

have to come up with a "solution." It is extremely common to have more equations 
than unknowns-more output data than input controls, more measurements than 
parameters to describe them. The data may lie close to a straight line b = C + Dt. 
A parabola C + Dt + Et2 would come closer. Whether we use polynomials or 
sines and cosines or exponentials, the problem is still linear in the coefficients 
C, D, E: 

C +Dt=bX CA + Dt+Et=bb 

*'or 
C+ Dtm = bm C+Dtm+Et X= bm 

There are n = 2 or n = 3 unknowns, and m is larger. There is no x = (C, D) or 
x = (C, D, E) that satisfies all m equations. Ax = b has a solution only when the 
points lie exactly on a line or a parabola-then b is in the column space of the m 
by 2 or m by 3 matrix A. 

The solution is to make the error b - Ax as small as possible. Since Ax can 
never leave the column space, choose the closest point to b in that subspace. This 
point is the projection p. Then the error vector e = b - p has minimal length. 

To repeat: The best combination p = AX is the projection of b onto the column 
space. The error e is perpendicular to that subspace. Therefore e = b - AX is in 
the left nullspace: 

AT(bI Ac,) =O or AT4 b=ATb. 

Calculus reaches the same linear equations by minimizing the quadratic llb - Axt2. 
The chain rule just multiplies both sides of Ax = b by AT. 

850 THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA [November 
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Pseudo-inverse

Problem (least squares, linear regression).

Given A ∈ Rm×n and b ∈ Rm, find x ∈ Rn minimizing ∥Ax− b∥2.

• If A is invertible, the solution is A−1Ax = A−1b ⇔ x = A−1b

• A pseudo-inverse A+ captures some properties of inverse A−1

• The Moore–Penrose pseudo-inverse of A is a matrix
A+ ∈ Rn×m satisfying the following criteria
▶ AA+A = A (but it is possible that AA+ ̸= I)
▶ A+AA+ = A+ (cf. above)
▶ (AA+)⊤ = AA+ (AA+ is symmetric)
▶ (A+A)⊤ = A+A (as is A+A)

• If A = UΣV ⊤ is the SVD of A, then A+ = V Σ+U⊤

▶ Σ+ replaces each σi > 0 by 1/σi and transposes

Theorem.
An optimum solution for the above problem is x = A+b.
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Pseudo inverse (illustration)

The SVD expresses A as a combination of r rank-one matrices: 

A = UYVT = UiT+ +UOTVrT (here A- [[1 2]) 

The Fourth Figure: The Pseudoinverse 
The SVD leads directly to the "pseudoinverse" of A. This is needed, just as the 

least squares solution x was needed, to invert A and solve Ax = b when those 
steps are strictly speaking impossible. The pseudoinverse A+ agrees, with A1 
when A is invertible. The least squares solution of minimum length (having no 
nullspace component) is x + =A +b. It coincides with X when A has full column 
rank r = n-then ATA is invertible and Figure 4 becomes Figure 2. 

A + takes the column space back to the row space [4]. On these spaces of equal 
dimension r, the matrix A is invertible and A + inverts it. On the left nullspace, 
A+ is zero. I hope you will feel, after looking at Figure 4, that this is the one 
natural best definition of an inverse. Despite those good adjectives, the SVD and 
A+ is too much for an introductory linear algebra course. It belongs in a second 
course. Still the picture with the four subspaces is absolutely intuitive. 

/rw \ /olumn \ 
/ space \A+ p - x + 5\space 

X 
7 

+ 

nnullspace 
spa 

Figure 4. The inverse of A (where possible) is the pseudoinverse A +. 

The SVD gives an easy formula for A +, because it chooses the right bases. Since 
Avi = ului, the inverse has to be A+ui = vi/oi. Thus the pseudoinverse of l 
contains the reciprocals 1/1oi. The orthogonal matrices U and VT are inverted by 
UT and V. All together, the pseudoinverse of A = UYIVT isA+= VI + UT. 

Example (continued) 

A+= -[2 l] [1/ ?] [o -3 l] = 1 3] 
d5 O O 4/ 50 2 6. 

Always A+A is the identity matrix on the row space, and zero on the nullspace: 

A +A= [ 10 20 =projection onto the line through i. 320 40T [2L 
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Truncated SVD
• The rank of a matrix is number of its non-zero singular values

▶ Easy to see by writing A =
∑min{n,m}

j=1 σjujv
⊤
j

• A truncated SVD only takes the first k columns of U and V
and the main k × k submatrix of Σ, where k called size
▶ Ak =

∑k
j=1 σjujv

⊤
j = UkΣkV

⊤
k

▶ rank(Ak) = k (if σk > 0)
▶ Uk and V k are not orthogonal anymore, but they are

column-orthogonal
• If k = min{m,n}, then Ak = A; called thin SVD (economy-sized)
• If k = rank(A), then Ak = A; called compact SVD
• If k < rank(A), then Ak is low-rank approximation of A

Ak

=

Uk

Σk V ⊤
k

7 / 9



SVD is best low-rank approximation
Let A = UΣV ⊤ be the SVD of A. Then
• ∥A∥2F =

∑min{n,m}
i=1 σ2

i

• ∥A∥2 = σ1
▶ Remember: σ1 ≥ σ2 ≥ · · · ≥ σmin{n,m} ≥ 0

• Therefore ∥A∥2 ≤ ∥A∥F ≤
√
n ∥A∥2

• Sq. Frobenius norm of truncated SVD is ∥Ak∥2F =
∑k

i=1 σ
2
i

▶ And of the approximation error ∥A−Ak∥2F =
∑min{n,m}

i=k+1 σ2
i

The Eckart–Young theorem

Let Ak = UkΣkV
⊤
k be the size-k truncated SVD of A with

k ≤ rank (A). Then Ak is best rank-k approximation to A in
terms of Frobenius norm. That is

∥A−Ak∥F ≤ ∥A−B∥F for all rank-k matrices B.

8 / 9



Relationships to eigendecomposition

• An eigenvector of a square matrix A is a vector v such that A
only changes the magnitude of v
▶ I.e. Av = λv for some λ ∈ R
▶ Such λ is an eigenvalue of A
▶ Try it!

• An eigendecomposition of A is A = Q∆Q−1

▶ The columns of Q are the eigenvectors of A
▶ Matrix ∆ is a diagonal matrix with the eigenvalues

• Not every (square) matrix has eigendecomposition
▶ If A is of form BB⊤, it always has eigendecomposition

• The SVD of A is closely related to the eigendecompositions of
AA⊤ and A⊤A
▶ The left singular vectors are the eigenvectors of AA⊤

▶ The right singular vectors are the eigenvectors of A⊤A
▶ The singular values are the square roots of the eigenvalues of both

AA⊤ and A⊤A

9 / 9
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Factor interpretation
• The most common way to interpret the SVD is to consider the

columns of U (or V )
▶ Let X be examples-by-features and UΣV ⊤ its SVD
▶ If two rows have similar values in a column of U , these examples

are somehow similar
▶ If two columns have similar values in a row of V ⊤, these

attributes are somehow similar
▶ In both cases, first entries often matter most → truncated SVD

3.2. Interpreting an SVD 55

−0.25−0.2−0.15−0.1−0.0500.050.10.150.20.25

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

U1

U
2

Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,

© 2007 by Taylor and Francis Group, LLC

• Example: people’s ratings
of different wines

• Scatterplot of first and
second column of U
▶ left: likes wine
▶ right: doesn’t like
▶ up: prefers red wine
▶ bottom: prefers white vine

• Conclusion: winelovers like
red and white, others care
more

2 / 17Skillicorn, p. 55



Example: Weather data (k = 2)
1.00

1.00

0.62 1.69
0.69 2.11
0.83 0.00
0.90 1.52
0.88 0.30
0.98 1.59
1.09 -0.66
1.14 -0.31
1.16 -1.09
1.24 -0.35
1.21 -1.26
1.27 -1.12

9.05 16.55 26.73 18.75 17.81
-4.14 0.27 2.32 -0.89 -0.69

Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharest 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

X
(RMSE: 0.60) 3 / 17



Example: Weather data (k = 2), truncated SVD
147.54

20.09

0.18 0.41
0.19 0.51
0.24 0.00
0.25 0.37
0.25 0.07
0.28 0.39
0.31 -0.16
0.32 -0.07
0.33 -0.27
0.35 -0.08
0.34 -0.31
0.36 -0.27

0.22 0.40 0.64 0.45 0.43
-0.85 0.06 0.47 -0.18 -0.14

Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharest 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20

X
(RMSE: 0.60) 4 / 17



Thin SVD of Weather data (U )

U5 =



1 2 3 4 5

Stockholm 0.18 0.41 0.61 0.28 −0.32
Minsk 0.19 0.51 0.08 −0.54 0.40
London 0.24 0.00 0.20 −0.15 0.04
Budapest 0.25 0.37 −0.39 0.18 −0.10
Paris 0.25 0.07 0.05 −0.25 −0.22

Bucharest 0.28 0.39 −0.49 0.30 0.08
Barcelona 0.31 −0.16 −0.01 0.33 −0.26

Rome 0.32 −0.07 0.30 0.10 0.07
Lisbon 0.33 −0.27 −0.23 −0.27 −0.46
Athens 0.35 −0.08 0.10 −0.23 −0.09
V alencia 0.34 −0.31 −0.12 −0.21 0.17
Malta 0.36 −0.27 0.12 0.37 0.59



5 / 17



Thin SVD of Weather data (Σ)

Σ5 =


1 2 3 4 5

1 147.55 0.00 0.00 0.00 0.00
2 0.00 20.09 0.00 0.00 0.00
3 0.00 0.00 4.25 0.00 0.00
4 0.00 0.00 0.00 1.77 0.00
5 0.00 0.00 0.00 0.00 0.32


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Thin SVD of Weather data (V )

V 5 =


1 2 3 4 5

Jan 0.22 −0.85 0.31 −0.30 0.21
Apr 0.40 0.06 −0.74 −0.52 0.17
Jul 0.64 0.47 0.54 −0.16 0.21
Oct 0.45 −0.18 −0.25 0.78 0.30
Y ear 0.43 −0.14 −0.03 0.05 −0.8



7 / 17



Example: Weather data (r = 2), SVD plot

0.20 0.25 0.30 0.35

−
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0
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2
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u
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Athens
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Malta
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Orthogonal matrices and rotations

• Orthogonal matrices are rotation matrices
• Consider orthogonal matrix Q

• Inner products are retained: (Qx)⊤(Qy) = x⊤Q⊤Qy = x⊤y

• Thus Euclidean norms also retained: ∥Qx∥ = ∥x∥
• Implies that all angles are retained

• In 2D: Qθ =

(
cos θ − sin θ
sin θ cos θ

)
▶ Consider vector(

x
y

)
= xe1 + ye2

▶ Qθ

(
x
y

)
= x[Qθ]:1 + y[Qθ]:2

• Thus: the columns of Q form “new axes” for rotation Qv
(and also v⊤Q⊤)

• Similarly: rows of Q form “new axes” for rotation Q⊤v
(and also v⊤Q; rotates backwards)

9 / 17
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Geometric interpretation (1)

X50×2
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Geometric interpretation (2)

• Let UΣV ⊤ be the SVD of
M

• SVD shows that every
linear mapping y = Mx
can be considered as a
series of rotation,
stretching, and rotation
operations
▶ Matrix V ⊤ performs the

first rotation y1 = V ⊤x
▶ Matrix Σ performs the

stretching y2 = Σy1
▶ Matrix U performs the

second rotation y = Uy2

11 / 17Wikipedia user Georg-Johann
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Direction of largest variation (1)

IR&DM, WS'11/12 IX.1&2-17 January 2012

Example

34

CHAPTER 8. DIMENSIONALITY REDUCTION 180

variance uTΣΣΣu. Since we know that u1, the dominant eigenvector of ΣΣΣ maximizes the
projected variance, we have

MSE(u1) = var(D)− uT
1 ΣΣΣu1 = var(D)− uT

1 λ1u1 = var(D)− λ1

Thus, the principal component u1 which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

X1

X2

X3

u1

Figure 8.2: Best 1D or Line Approximation

Example 8.3: Figure 8.2 shows the first principal component, i.e., the best one di-
mensional approximation, for the three dimensional Iris dataset shown in Figure 8.1a.
The covariance matrix for this dataset is given as

ΣΣΣ =




0.681 −0.039 1.265

−0.039 0.187 −0.320
1.265 −0.320 3.092




The largest eigenvalue is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390, 0.089,−0.916)T . The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 8.2 plots the principal
component u1. It also shows the error vectors εi , as thin gray line segments.

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

• The right singular vectors give the
directions of the variation in the data
▶ The first right singular vector is the

direction of the largest variation

12 / 17Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013



Direction of largest variation (2)

IR&DM, WS'11/12 IX.1&2-17 January 2012

Example

34

CHAPTER 8. DIMENSIONALITY REDUCTION 184

X1

X2

X3

u1

u2

(a) Optimal 2D Basis

X1

X2

X3

(b) Non-Optimal 2D Basis

Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =



−0.390
0.089

−0.916


 u2 =



−0.639
−0.742
0.200




The projection matrix is given as

P2 = U2U
T
2 =



| |
u1 u2
| |



(

— uT1 —
— uT2 —

)
= u1u

T
1 + u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082
0.357 −0.082 0.839


+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04




=



0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879




DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

• The right singular vectors give the
directions of the variation in the data
▶ The first right singular vector is the

direction of the largest variation
▶ The second right singular vector is

orthogonal to the first one and gives
the direction of the second-largest
variation

▶ First two directions span a
hyperplane

• From Eckart–Young we know that if
we project the data to the spanned
hyperplanes, the (sq.) distance of the
projection is minimized

13 / 17Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013



SVD and linear regression (1)
Consider the 1-dimensional case.
• Recall: linear regression models response y ∈ R as a linear

function of input x ∈ R
• Parameterized by a weight vector w =

(
w0 w1

)⊤ ∈ R2,
consisting of bias w0 and slope w1

• Prediction is ŷ = w ·
(
1 x

)⊤,
the error is (y − ŷ)2

(least squares)
• Goal is to minimize

this error, i.e., ∥y − ŷ∥2
• Generally,

set X1 =
(
1 X

)
,

then w = X+
1 y

14 / 17
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SVD and linear regression (2)

• Contrast this to the size-1 truncated SVD of X =
(
x y

)
• We obtain a vector u1, a scaling coefficient σ1, and a vector v1

• Let’s look at the line described by v1 (roughly corresponds to w)
• Reconstructed data is X1 = u1σ1v

⊤
1 ; all points lie on the line

• There is no distinguished response variable;
we minimize (sq.) distance to line instead;
i.e., ∥X −X1∥F .

• This is different from regression

15 / 17

●

●

● ●

●

●
●

●

●
●



SVD and linear regression (3)
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Component interpretation

• Recall that we can write

X = UΣV ⊤ =

r∑
i=1

σiuiv
⊤
i =

r∑
i=1

X(i),

where X(i) = σiuiv
⊤
i

• This explains the data as a sums of (rank-1) layers
▶ The first layer explains the most
▶ The second corrects that by adding and removing smaller values
▶ The third corrects that by adding and removing even smaller values
▶ . . .

• The layers don’t have to be very intuitive

17 / 17
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Outline

1. How many factors?

2. Data preprocessing and PCA

3. Other Uses

4. Computing the SVD
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Problem

• Most applications do not use full SVD, but truncated SVD
▶ To concentrate on “the most important parts”

• But how to select the size k of the truncated SVD?
▶ What is important, what is unimportant?
▶ What is structure, what is noise?
▶ Too small: all subtlety is lost
▶ Too big: all smoothing is lost

• Typical methods rely on singular values in a way or another
▶ Neither of these methods is fully convincing
▶ Problem addressed by factor analysis (discussed later)

3 / 18



Guttman–Kaiser criterion and captured energy

• Perhaps the oldest method is the Guttman–Kaiser criterion:
▶ Select k so that for all i > k, σi < 1
▶ Motivation: all components with singular value less than unit are

uninteresting
• Another common method is to select enough singular values

such that the sum of their squares is 90% of the total sum of
the squared singular values
▶ The exact percentage can be different (80%, 95%)
▶ Motivation: The resulting matrix “explains” 90% of the (sq.)

Frobenius norm of the matrix

• Problem: Both of these methods are based on arbitrary
thresholds and do not consider the “shape” of the data

4 / 18



Cattell’s Scree test
• Scree plot shows squared singular values in decreasing order

▶ The plot (hopefully) looks like debris in front of a hill, hence the
name

• The scree test is a subjective decision on the size based on the
shape of the scree plot

• The size should be set to a point where
▶ there is a clear drop in the magnitudes of the values; or
▶ the values start to even out

• Problem: Scree test is subjective, and many data don’t have
any clear shapes to use (or have many)
▶ Automated methods have been developed to detect the shapes

from the scree plot
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Entropy-based method

• Consider the relative contribution of each singular value to the
overall (sq.) Frobenius norm
▶ Relative contribution of σk is fk = σ2

k/
∑

i σ
2
i

• We can treat these as probabilities and define the (normalized)
entropy of the singular values as

E = − 1

log
(
min{n,m}

) min{n,m}∑
i=1

fi log fi

▶ The basis of the logarithm doesn’t matter
▶ We assume that 0 · ∞ = 0
▶ Low entropy (close to 0): the first singular value has almost all

mass
▶ High entropy (close to 1): the singular values are almost equal

• The size is selected to be the smallest k such that
∑k

i=1 fi ≥ E

• Problem: Why entropy?
6 / 18



Random flip of signs

• Multiply every element of the matrix A randomly with either 1
or −1 to get Ã
▶ The Frobenius norm doesn’t change (∥A∥F = ∥Ã∥F )
▶ The spectral norm does change (∥A∥2 ̸= ∥Ã∥2)
▶ The change is the larger the more “structure” A has

• Idea: select k such that the residual matrix contains only noise
▶ X−k = X −Xk is the residual matrix after size-k truncated SVD
▶ X−k is based on the last m− k columns of U , min{n,m} − k

singular values, and last n− k rows of V ⊤

▶ Construct X̃−k from X−k by randomly flipping signs
▶ Select size k to be such that

∥X−k∥2 − ∥X̃−k∥2
∥X−k∥F

is small

• Problem: How small is small?
7 / 18Achlioptas and Mcsherry, 2007
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Normalization

• Consider data normalization before SVD is applied
▶ SVD is sensitive to data scaling
▶ If one attribute is height in meters and another weights in grams,

weight seems to carry much more importance
▶ If data is all positive, the first singular vector just explains where in

the positive quadrant the data is

• The z-scores are attributes whose values are transformed by
▶ Center each attribute (subtract mean)
▶ Normalize each attributes to unit variance (divide by standard

deviation)
▶ Implicit assumption: attributes normally distributed (so that

centering and rescaling to unit variance is meaningful)
▶ Implicit assumption: attributes have equal importance

• Values that have larger magnitude than importance can also be
normalized by first taking logarithms (from positive values) or
cubic roots or . . .

9 / 18



Relationship to PCA (1)

• Truncated SVD can also be used to battle the curse of
dimensionality
▶ All points are far from each other in very high dimensional spaces
▶ High dimensionality slows down data mining algorithms
▶ If we use the truncated SVD, every example is represented by its

row in Uk (k values instead of n)
▶ If k ≪ n, we performed dimensionality reduction

• SVD is closely related to principal components analysis (PCA)
▶ Technically, PCA works as follows:

1. Center each attribute of X to obtain M
2. Compute the sample covariance matrix S = M⊤M/(m− 1)
3. Compute the eigendecomposition S = QΛQ⊤ s.t. Q orthogonal
▶ The columns of Q are called principal components
▶ The corresponding eigenvalues in Λ are the component weights
▶ Try it!
▶ We now show: PCA ≈ SVD on centered data

10 / 18
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Relationship to PCA (2)
• Relationship between SVD and PCA

▶ M : centered data, S = M⊤M/(m− 1): sample covariance
▶ S = QΛQ⊤: eigendecomposition of S (computed by PCA)
▶ M = UΣV ⊤: SVD of M
▶ Observe: SVD of M/

√
m− 1 is then U(Σ/

√
m− 1)V ⊤

▶ From slide 06-2/9, we know that Q = V
→ Principal components = right singular vectors of M

▶ From slide 06-2/9, we know that Σ2/(m− 1) = Λ
→ Components weights = scaled roots of singular values of M

• PCA associates each data example with a set of scores
▶ One per principal component
▶ m× n “score matrix” given by Z = MQ
▶ We have: Z = MQ = (UΣV ⊤)V = UΣ
▶ Known as the Karhunen–Loève transform (KLT) of rows of M
▶ For dimensionality reduction, we only take the first k components:

Zk = MQk = UkΣk

• More later when we talk about latent linear models
11 / 18



Relationship to PCA (3)

M50×2 = U2 Σ2 V ⊤
2 = Q⊤
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Outline

1. How many factors?

2. Data preprocessing and PCA

3. Other Uses

4. Computing the SVD
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Denoising data
• Common application of SVD is to remove noise from data

▶ Perturbations with random noise do not significantly affect good
low-rank approximations (see, e.g., Achlioptas and Mcsherry, 2007)

▶ Assume X = A+E, where A is low-rank data and E is noise
▶ If noise is iid (mean 0) and not too large, we can approximately

recover A by taking the truncated SVD of X
▶ As before, key problem is to select k

• Example
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• Original data
▶ Looks like 1-dimensional with some noise

• The right singular vectors show the directions
▶ The first looks like the data direction
▶ The second looks like the noise direction

• The singular values confirm this (large drop)
▶ σ1 = 11.64
▶ σ2 = 1.69
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Visualization

• Truncated SVD with k = 2, 3 allows us to visualize the data
▶ We can plot the projected data points after 2D or 3D PCA
▶ Or we can scatter plot the entries of two or three singular vectors
▶ Or we color data points based on their entries in a singular vector
▶ ...

3.2. Interpreting an SVD 55
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,

© 2007 by Taylor and Francis Group, LLC

IR&DM, WS'11/12 IX.1&2-17 January 2012
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X1

X2

X3

u1

u2

(a) Optimal 2D Basis

X1

X2

X3

(b) Non-Optimal 2D Basis

Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =



−0.390
0.089

−0.916


 u2 =



−0.639
−0.742
0.200




The projection matrix is given as

P2 = U2U
T
2 =



| |
u1 u2
| |



(

— uT1 —
— uT2 —

)
= u1u

T
1 + u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082
0.357 −0.082 0.839


+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04




=



0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879




DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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Latent semantic analysis

• The latent semantic analysis (LSA) is an information retrieval
method that uses SVD

• The data: a document-term matrix X
▶ Values are (weighted) term frequencies
▶ Typically tf-idf values (the frequency of the term in the document

divided by the global frequency of the term)

• The truncated SVD Xk = UkΣkV
⊤
k of X is computed

▶ Matrix Uk associates documents to “topics”
▶ Matrix V k associates “topics” to terms
▶ If two rows of Uk are similar, the corresponding documents talk

about the “same topics”

• A query q can be answered by considering its term vector q
▶ q is projected to qk = (q⊤V kΣ

+
k )

⊤ (called: fold in)
▶ qk is compared to rows of Uk and most similar rows are returned

16 / 18Landauer & Dumais, 1997
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Outline

1. How many factors?

2. Data preprocessing and PCA

3. Other Uses

4. Computing the SVD
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Algorithms for SVD

• In principle, the SVD of X can be computed by computing the
eigendecomposition of X⊤X
▶ This gives us right singular vectors and squares of singular values
▶ Left singular vectors can be solved: U = XV Σ+

▶ Bad for numerical stability

• Full SVD can be computed in time O
(
nmmin{n,m}

)
▶ Matrix X is first reduced to a bidiagonal matrix
▶ The SVD of the bidiagonal matrix is computed using iterative

methods (similar to eigendecompositions)

• Methods that are fast in practice exist
▶ Especially for truncated SVD

• Efficient implementation of an SVD algorithm requires
considerable work and knowledge
▶ Luckily (almost) all numerical computation packages and programs

implement SVD
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Latent variable models

• Latent variable models (LVM) are models that assume that
the data is explained by a set of unobserved latent variables

• Example: Weather data of Slide 06-1/6
▶ One latent variable z1 may correspond to mean temperature

(cold or warm?)
▶ Another latent variable z2 may correspond to temperature variance

(balanced or hot summers/icy winters)
▶ LVMs then assume that a city’s temperature data (xi) can be

explained by its values of the latent variables (zi =
(
zi1 zi2

)⊤)

• LVMs are conceptually very general
▶ Latent variables can be used to model dependencies (cf. graphical

models)
▶ E.g., dependencies between features
▶ E.g., dependencies between examples (non-iid data)
▶ More in IE678 Deep Learning course
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Latent linear models

• In latent linear models (LLM) the relationship between the
example x and the respective latent variables z is linear

x = Wz + µ+ ϵ

▶ x ∈ RD refers to data point
▶ z ∈ RL to refers latent variables for this data point
▶ Parameter µ ∈ RD is a bias term
▶ Parameter W ∈ RD×L describes how to “transform” z

(factor loading matrix)
▶ ϵ ∈ RD is a noise term (independent, mean 0)

• We can interpret SVD and PCA as LLMs
▶ SVD: µ = 0, W = V , zi = ΣTui (where ui = U⊤

i: )
▶ PCA: µ = 1

m

∑
i xi, W = Q, zi = QT (xi − µ)

▶ For dimensionality reduction, we only keep the first L < D
components (then generally not exact, ϵi ̸= 0)

▶ Neither model is generative
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Factor analysis

• Factor analysis is an LLM where both latent variables and
noise is assumed to be Gaussian

• We obtain the generative model

z ∼ N (0, I)

x|z,θ ∼ N (Wz + µ,Ψ)

▶ Ψ ∈ RD×D is a diagonal covariance matrix of the noise
▶ Diagonal since zi should explain the correlation in the data, not

the noise term
▶ Parameters are θ = {W ,µ,Ψ }

• One can show that the marginal distribution is Gaussian, too

p(x|θ) = N (x|µ,WW⊤ +Ψ)
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Probabilistic PCA

• When Ψ = σ2I (isotropic Gaussian noise), the resulting model
is called probabilistic PCA (PPCA)

• In PPCA, data is generated by transforming a standard
multivariate Gaussian r.v. (z) into data (x)
1. Map point to mean Wz + µ
2. Add Gaussian N (0,Ψ) noise

Example: 2D data (D = 2), 1D latent variable (L = 1)
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Why factor analysis?

• If data is assumed multi-variate Gaussian (MVN) in factor
analysis, why not directly estimate the mean vector and
covariance matrix?

• Reason 1: PPCA defines a density on x with less parameters
▶ PPCA: D for mean, DL for W
▶ MVN: D for mean, D2 for Σ

• Reason 2: Hope that z reveal interesting properties / are useful
▶ Posterior of latent variables

p(z|x,θ) = N (z|m,Σ)

Σ = (I +W⊤Ψ−1W )−1

m = ΣW⊤Ψ−1(x− µ)

▶ m are called scores (= cond. expectation of latent variable)
▶ Dimensionality reduction when L < D: z,m ∈ RL

▶ Latent variables then serve as a bottleneck, i.e., a small,
compressed representation of the data
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Reconstruction of PCA vs. PPCA
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Unidentifiability

• Parameters of FA are unidentifiable, i.e., multiple different
parameter choices correspond to the same data distribution
▶ E.g., if we rotate W via an orthogonal matrix R, we obtain an

equivalent marginal distribution (cf. slide 4), but different scores
(rotated too)

• Unidentifiability implies that “true” parameters cannot be found
▶ Even with infinite data
▶ Does not affect predictive performance of the model

(we can find an equivalent parameterization)
▶ Does affect interpretation of the factors

• Common solutions
▶ Force W ’s columns to be orthogonal, order by norm (as in PCA)
▶ Force W to be lower triangular
▶ Use a (sparsity-promoting) prior on weights
▶ Use a non-Gaussian prior on the latent factors (e.g., ICA)
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Discussion (1)

• Parameters of FA models can be fit using the EM algorithm
(more later)

• For PPCA, MLE estimate (assuming centered data) is

ŴMLE = QL(ΛL − σ2I)1/2

σ̂2
MLE =

1

D − L

D∑
j=L+1

λj

▶ QL are first L eigenvectors of data covariance matrix (as in PCA)
▶ ΛL contains the corresponding eigenvalues (as in PCA); they are

subsequently “reduced” by σ2 (towards 0)
▶ When noise variance σ2 → 0 (no noise) in PPCA, we obtain PCA
▶ MLE σ̂2

MLE of noise (or error) is average variance of discarded
dimensions
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Discussion (2)

• Choosing number of latent dimensions
▶ Since PPCA is probabilistic, model selection is more principled

(e.g., use L that maximizes the likelihood of validation data)
▶ PCA can reconstruct the better the more components
▶ PPCA model gets punished if it uses too many components (and

thus puts probability mass on regions with little data)

• Can be extended in multiple ways; e.g.,
▶ In supervised PCA (Bayesian factor regression), additionally

model target y|z,θ ∼ N (w⊤
t z + µt, σ

2
t )

▶ Also possible for other label distributions (e.g., classification)
▶ In independent component analysis (ICA), use a non-Gaussian

prior distribution on the z, which can give more interpretable (and
unique) results

10 / 12



Reconstruction error of PCA vs. PPCA
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Example: ICA vs. PCA
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Overview

• So far we assumed that all relevant variables are observed
▶ In supervised learning: { (xi,yi) } during training

(and xtest during prediction)
▶ In unsupervised learning: {xi }

• Coming up: How can we fit parameters if data is missing?
▶ Training data is incomplete
▶ Model contains latent variables (such as PPCA)

• In this lecture
▶ The EM algorithm for ML/MAP parameter estimation
▶ Mixture models, a powerful and useful class of models that can be

fit with EM
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Outline (The EM Algorithm)

1. Introduction
2. The EM Algorithm
3. Mixture Models
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Summary

• EM algorithm
▶ Framework for ML or MAP parameter estimation with missing data
▶ E.g., partially observed data or LVMs
▶ Iterates E(xpectation) and M(aximization) steps
▶ E step infers missing-data distribution using current parameters
▶ M step updates parameters using current missing-data distribution

• Mixture models
▶ LVM with categorical latent variable
▶ Density modeling, clustering, mixture of experts
▶ For clustering, provides soft clustering (cluster membership

probabilities instead for hard assignment)
▶ In GMMs, each component distribution is a multivariate Gaussian
▶ Parameter estimation via EM
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Literature

• Murphy, Ch. 8.7 Bound Optimization, Ch. 3.5 Mixture Models,
Ch. 21.4 Clustering using mixture models

• Mohammed J. Zaki, Wagner Meira Jr
Data Mining and Analysis: Fundamental Concepts and
Algorithms (Chapter 13.3)
2nd edition, Cambridge University Press, 2020

• Geoffrey McLachlan, Thriyambakam Krishnan
The EM Algorithm and Extensions
2nd edition, Wiley-Interscience, 2008
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The EM Algorithm

• The EM algorithm is a framework to estimate model
parameters with missing data
▶ Due to Dempster, Laird, Rubin (1977)
▶ Rather a framework than an algorithm
▶ Entire books can be written about it

• Useful when
▶ Observed data and missing data jointly modeled
▶ MLE or MAP estimation desired, but direct methods are involved
▶ But: parameter estimation would be “easy”, when all data were

known (M step)
▶ But: handling of missing values would be “easy”, when all

parameters were known (E step)

• Key idea
▶ Iterative method
▶ Alternate between E step (using current parameter estimates) and

M step (using “filled in” data)

2 / 12
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Recall: Multivariate Gaussian distribution
• Mean µ ∈ RD, covariance Σ ∈ RD×D (or precision Λ = Σ−1)
• Denoted N (µ,Σ)
• Let |Σ| be the determinant of Σ. If Σ is positive definite:

N (x|µ,Σ) =
1√

(2π)D |Σ|
exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
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MLE for Multivariate Gaussian
• Generative model: x ∼ N (µ,Σ)
• With N iid. observations, x1, . . . ,xN , ML estimate is given by

sample mean and (uncorrected) sample covariance:

µ̂MLE =
1

N

∑
i

xi Σ̂MLE =
1

N

∑
i

(xi−µ̂)(xi−µ̂)⊤
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Missing data mechanisms (1)

• Some reasons for missing data
▶ High cost of (complete) data aquisition
▶ Errors in data aquisition
▶ Non-response in surveys
▶ Latent variable models

• Missing data mechanism is important for data analysis
▶ Relationship between the complete data and the event that a data

item is missing

• Missing Completely At Random (MCAR)
▶ Event that data item is missing is independent of observed and

missing data, i.e., occurs completely at random
▶ No systematic reason for why data is missing
▶ Rare in practice
▶ Example: some questions only asked to random subset of persons

in a survey
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Missing data mechanisms (2)

• Missing At Random (MAR)
▶ Event that data item is missing depends on observed data but not

on missing data
▶ Reason for missing data is systematic, but can be explained by

observed data
▶ Example: students write 4 assignments (4 observed variables per

student), only the ones who passed 3 assignments write the exam
(1 variable per student)

• Missing Not At Random (MNAR) (non-ignorable)
▶ Event that data item is missing can depend on observed and

missing data
▶ Example: persons with high-income may respond to questions

about income with lower probability

• Mechanism often cannot be determined
▶ Here we are mainly interested in latent variable models (= MCAR)
▶ Generally, we subsequently assume: MCAR oder MAR
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Example: Multivariate Gaussian with missing values

• Generative model: x ∼ N (µ,Σ), 2D
• MAR mechanism: in each example (x1, x2), x2 is likely to be

missing when x1 > 1 (otherwise observed)
• Each data point with missing data lies on a line (given by x1),

but we do not know where
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Complete case analysis

• Complete case analysis (listwise deletion) is simplest method
▶ Ignores all data points with missing data
▶ Can lead to biased estimates when mechanism is not MCAR
▶ Does not use all available data
▶ Not useful for LVMs
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Marginals and conditionals of Gaussian models

Theorem
Suppose x = (x1,x2) is jointly Gaussian with parameters

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
.

Then the marginals are given by

p(x1) = N (x1|µ1,Σ11), p(x2) = N (x2|µ2,Σ22),

and the conditional distribution by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

= µ1 −Λ−1
11 Λ12(x2 − µ2)

= Σ1|2(Λ11µ1 −Λ12(x2 − µ2))

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 = Λ−1

11
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Missing-data distribution
If we know the model parameters, we can use this result to
determine the distribution of missing data. E.g., for our 2D

example with µ =

(
µ1

µ2

)
and Σ =

(
σ11 σ12
σ21 σ22

)
, we obtain

p(x2|x1) = N (x2|µ2 + σ21σ
−1
11 (x1 − µ1), σ22 − σ21σ

−1
11 σ12).
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Intuition of EM algorithm

• Given the model parameters, we can determine the distribution
of missing data
▶ But we do not know the model parameters

• Given the distribution of missing data, we can determine the
model parameters
▶ But we do not know the distribution of missing data

• The EM algorithm exploits these observations
1. Start with initial parameter estimate (e.g., random)
2. Determine distribution of missing data based on current parameter

estimate → E step
3. Estimate parameters based on this distribution of missing data

→ M step
4. Iterate steps 2 and 3 until a stopping criterion is satisfied
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Terminology
• We split all available data into

▶ x = observed data
▶ z = missing data
▶ d = (x, z) = complete data
▶ Generally, x, z, and d are sets of variables

• E.g., for iid data with missing values for each data point
▶ x = {xi }Ni=1 = observed values for each example
▶ z = { zi }Ni=1 = missing values for each example
▶ d = {di }Ni=1 with di = (xi, zi)
▶ Set of observed and missing values may be differ for each example

• Our focus
▶ Given a generative model class p(x, z|θ),
▶ Determine the observed-data ML estimate θ̂MLE = argmaxθ p(x|θ)

• EM also applicable (but not discussed here) for
▶ MAP estimation θ̂MAP = argmaxθ p(x|θ)p(θ)
▶ Discriminative models of form p(y, z|x) when explanatory

variables x fully observed
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Observed-data log-likelihood

• Complete-data log-likelihood

ℓc(θ)
def
= log p(x, z|θ)

cannot be determined (and thus maximized), since z unknown

• Instead, we maximize the observed-data log-likelihood

ℓo(θ)
def
= log p(x|θ) = log

∫
z
p(x, z|θ) dz

• But how? E.g., may use a gradient-based optimizer
▶ Enforcing constraints on θ can be tricky
▶ Integral can be tricky to evaluate; e.g., θ influences both

distribution of missing values and likelihood of observed values

ℓo(θ) = log

∫
z

p(x|z,θ)p(z|θ) dz

• EM is often much simpler (but not always faster)
3 / 9



Missing-data distribution
Given a parameter estimate θ(t), we can determine the distribution
of the missing data z

p(z|x,θ(t)) =
p(x, z|θ(t))

p(x|θ(t))
.

In the examples so far, we visualized p(z|x,θ(t)).
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E step

• In the E step, the EM algorithm “computes” the Q function
(auxiliary function)

Q(θ|θ(t))
def
= Ez|x,θ(t) [ ℓc(θ) ]

=

∫
z
p(z|x,θ(t))︸ ︷︷ ︸
depends on θ(t)

log p(x, z|θ)︸ ︷︷ ︸
depends on θ

dz

▶ θ(t) determines missing-data distribution (old parameters, fixed)
▶ θ determines complete-data log-likelihood (new parameters)
▶ Q function corresponds to expected complete-data

log-likelihood for a fixed missing-data distribution

• “Compute” means to determine quantities that can be used to
evaluate Q(θ|θ(t)) efficiently (with θ(t) fixed)
▶ E.g., determine missing-data distribution p(z|x,θ(t))
▶ E.g., express Q function in closed form
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M step
In the M step, the EM algorithm computes new parameter values
by maximizing the Q function

θ(t+1) ← argmax
θ

Q(θ|θ(t))

After the M-step, the estimated missing-data distribution of z
changes since the parameter changed. This is not accounted for in
the Q function, thus: E step, M step, E step, M step, ...

Theorem
The EM algorithm monotonically increases the observed-data
log-likelihood in that

ℓo(θ
(t+1)) ≥ ℓo(θ

(t))

and

ℓo(θ
(t+1)) > ℓo(θ

(t)) if θ(t) is not a stationary point of ℓo.
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Proof ≥ (1)

1. Rewrite the observed data log-likelihood as

ℓo(θ) = log p(x|θ) = log p(x, z|θ)− log p(z|x,θ)

2. Take conditional expectations on both sides

ℓo(θ) = Ez|x,θ(t) [log p(x, z|θ)]− Ez|x,θ(t) [log p(z|x,θ)]

= Q(θ|θ(t)) +H(θ|θ(t))

▶ H(θ|θ(t))
def
= Ez|x,θ(t) [− log p(z|x,θ)] is cross entropy1 of

p(z|x,θ) (new parameters) relative to p(z|x,θ(t)) (old
parameters, used in Q function)

▶ Observed-data log-likelihood = Q function + cross entropy

1Note: We write H(q|p) = Ep[− log q] in this lecture for consistency with
the Q function. In lecture 05-1, we wrote H(p, q) instead.
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Proof ≥ (2)
3. Express improvement in terms of Q and H

ℓo(θ
(t+1))− ℓo(θ

(t))

= Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t))︸ ︷︷ ︸
≥ 0 (M step)

+H(θ(t+1)|θ(t))−H(θ(t)|θ(t))︸ ︷︷ ︸
≥ 0 (see below)

4. Q function non-decreasing since that is the objective of M step

5. Cross entropy also non-decreasing since H(q|p) ≥ H(p|p)
(Gibbs’ inequality). Step by step:

H(q|p)−H(p|p) = Ep[− log q/p] (Jensen’s inequality)
≥ − logEp[q/p] (def. expectation)

= − log

∫
p(z)

q(z)

p(z)
dz

= − log 1 = 0,

where p = p(z|x,θ(t)) and q = p(z|x,θ(t+1))
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Discussion
• Convergence to local maximum or stationary point of ℓo(θ)

▶ May not find global maximum
▶ May run multiple times with different initializations

(e.g., random restarts)

• In practice, use stopping criterion
▶ E.g., small improvement in observed-data log-likelihood or Q function
▶ E.g., small change of parameters
▶ E.g., limit of total number of iterations or time budget

• Depending on model, E and M steps may still be complicated

• Many variants
▶ Goals include better convergence, support for complex models,

parallelizability
▶ Generalized EM (don’t maximize but improve Q)
▶ Stochastic or batch EM (use subset of examples)
▶ Monte-Carlo EM (approximate E step)
▶ Hard EM (impute missing values)
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Mixture models
• A mixture model (MM) is a latent variable model with a single

categorical latent variable z per example x

z ∼ Cat(π)

x ∼ some distribution p(x|z,θ)
• Equivalently,

p(x|θ) =
K∑
k=1

πkpk(x|θ) 0 ≤ πk ≤ 1,
∑
k

πk = 1

▶ Data modeled as a mixture of K base distributions pk (mixture
components), where pk(x|θ)

def
= p(x|z = k,θ)

▶ Mixing weights πk, where πk = p(z = k|θ)
▶ Convex combination (π ∈ SK)

• Interpretation: each data point generated from one base
distribution → latent variable z

• Main applications: density modeling, clustering
2 / 16



K-means clustering
• K-means is perhaps most popular clustering objective
• Given a distance function, partition examples into K clusters
• Each cluster represented by a centroid (= cluster mean)
• Goal is to minimize sum of sq. distances between each data

point and its closest centroid
• Space partitioned by Voronoi diagram of centroids
• We will see: closely related to (Gaussian) mixture models
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Assumptions of K-means clustering
K-means clustering inherently assumes that
1. Clusters are spherical,
2. Clusters are non-overlapping,
3. Clusters have similar sizes.
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Gaussian mixture models (GMM)
Gaussian mixture models (GMMs) are MMs in which the base
distributions are multivariate Gaussians.

p(x|θ) =
∑
k

πkN (x|µk,Σk)

• Generative model

• Note: p(x|θ) is not Gaussian (e.g., may have multiple modes)

• Can be viewed as soft clustering variant of K-means
▶ z corresponds to cluster identifier (as in K-means)
▶ Data points within cluster k assumed to be Gaussian with

“centroid” µk and covariance Σk

▶ πk models size of cluster (since πk = p(z = k|π))
▶ Determine cluster membership probabilities p(z = k|x,θ) to

obtain soft clustering
▶ Any MM can be interpreted as a soft clustering
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Example: Shape of clusters

• In K-means, shape of a cluster (ultimately) determined by
centroids of other clusters

• In GMMs, shape of clusters is modeled explicitly
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Example: Soft clustering

• In K-means, each data point is assigned to exactly one cluster
(hard clustering)
▶ Overlapping clusters cannot be handled appropriately

• In GMMs, cluster membership probabilities are explicitly
modeled
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Example: Cluster sizes
• In K-means, cluster sizes are not modeled

▶ Large clusters contribute many “distances” to the objective, but
small clusters just a few

▶ This penalizes small clusters
• GMMs model cluster sizes explicitly
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EM for GMMs: Likelihood, responsibility

• N independent data points {x1, . . . ,xN }
• Model parameters θ = ∪k {µk,Σk, πk }
• Likelihood of xi in k-th cluster:

fk(xi)
def
= p(xi|zi = k,θ) = N (xi|µk,Σk)

• Complete-data likelihood of (xi, zi)

p(xi, zi = k|θ) = p(zi = k|θ)p(xi|zi = k,θ)

= πkfk(xi)

• Cluster membership probabilities of xi in k-th cluster

wik
def
= p(zi = k|xi,θ) =

p(xi, zi = k|θ)
p(xi|θ)

=
πkfk(xi)∑
k′ πk′fk′(xi)

▶ Also referred to as responsibility of the k-th mixture component
for data point xi
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EM for GMMs: E step

• Compute cluster membership probabilities {w(t)
ik } based on

current parameters θ(t)

w
(t)
ik ← p(zi = k|xi,θ

(t))

• Let z =
(
z1 · · · zN

)⊤. Q function is

Q(θ|θ(t)) = Ez|x,θ(t) [ log p(X, z|θ) ]

=
∑
i

∑
k

w
(t)
ik log[πkfk(xi) ]

=
∑
i

∑
k

w
(t)
ik log πk +

∑
i

∑
k

w
(t)
ik log fk(xi)

• Q function uses “old” cluster memberships probabilities
→ That’s what we compute in the E step
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EM for GMMs: M step

• M step now sets

θ(t+1) ← argmax
θ

Q(θ|θ(t))

• One can show that

π
(t+1)
k ← 1

N

∑
i

w
(t)
ik

µ
(t+1)
k ← 1∑

iw
(t)
ik

∑
i

w
(t)
ik xi

Σ
(t+1)
k ← 1∑

iw
(t)
ik

∑
i

w
(t)
ik (xi − µ

(t+1)
k )(xi − µ

(t+1)
k )⊤

• Observe: Similar to ML estimates for MVNs (07-1- slide 4), but
data points are now weighted by cluster membership
probabilities
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Example run of EM algorithm
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Example run of EM algorithm
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Example run of EM algorithm
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Example run of EM algorithm
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GMMs and K-means

• Lloyd’s algorithm is popular method for K-means clustering
1. Start with initial centroids

(e.g., random, farthest point clustering / K-means++)
2. Assign each data point to its closest centroid
3. Set each centroid to the mean of the data points assigned to it
4. Repeat steps 2+3 until some stopping criterion is met

• Equivalent to certain GMM with hard EM; i.e.,
▶ Use (a priori) equally-likely clusters (πk = 1

K )
▶ Use spherical Gaussians (Σk = I)
▶ Use hard cluster assignments in E step

(wik = 1 for most likely cluster; zero for all other clusters)
▶ Only centroids µk need to be computed in M step
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Discussion

• EM for GMMs determines cluster membership probabilities, but
no hard clustering
▶ At the very end, may assign each point to its most likely cluster

• Large number of parameters when data high-dimensional
▶ Covariance matrices have O(D2) parameters
→ O(KD2) parameters in total

▶ Can be reduced, for example, by using diagonal covariances
matrices or by combination with factor analysis

▶ Overfitting (e.g., singularities) may arise → use MAP estimation

• Discriminative variant of MMs called mixture of experts

p(y|x,θ) =
∑
k

p(z = k|x,θ)p(y|x, z = k,θ)

▶ Each component model considered an expert
▶ Gating function p(zi = k|xi,θ) decides which expert to use
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Example: Mixture of experts
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Some other LVMs
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Overview

• So far: inputs represented by a fixed-size feature vector xi P RD

• For some inputs, not clear how to do this
§ E.g., sequences of variable length

(such as text documents or protein sequences)
§ E.g., graphs (such as molecular structure)

• Kernel approach: from features to similarity
§ Kernel approaches make use of a kernel function κpx,x1q that

can be interpreted as “similarity” between objects x and x1

§ Supervised learning: model output based on similar inputs
§ Unsupervised learning: use custom notions of similarity

(e.g., for clustering)
§ Also useful when data represented as fixed-size feature vectors

• Kernel trick = modify learning algorithms to work solely with
kernel functions Ñ can use arbitrary inputs

§ E.g., linear regression, logistic regression, support vector machines,
KNN, K-medoids, PCA, . . .
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Example: Logistic regression
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Example: Logistic regression (Gaussian kernel)
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Example: Support vector machine (Gaussian kernel)
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Outline (Kernels and Vector Machines)

1. Kernels
2. Kernel Machines and Vector Machines
3. The Kernel Trick
4. Sparse Vector Machines
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Summary

• Kernel approaches make use of a kernel function κpx,x1q

§ Can be interpreted as “similarity” between objects x and x1

§ Allows to use structured objects
§ Can help to prevent underfitting (e.g., of a linear model)

• Kernel machines use similarity to K prototypes as features

• Vector machines use similarity to other data points as features

• Kernel trick: directly work in kernel’s feature space
§ Mercer kernels ” inner product in kernel feature space
§ Modify learning algorithms to work solely with kernel function calls
§ Many methods have been be kernelized: e.g., linear regression,

logistic regression, SVM, KNN, K-Means, PCA, . . .

• Sparsity via prior/regularization (L1VM) or objective (SVM)
§ Reduces prediction costs and (hopefully) generalization error

8 / 9



Literature

• Murphy, Ch. 17, Kernel Methods

• John Shawe-Taylor, Nello Cristianini
Kernel Methods for Pattern Analysis
Cambridge University Press, 2004
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Kernel functions

• A kernel function is a real-valued function κpx,x1q P R
§ Inputs x,x1 P X from some (arbitrary) input space
§ Typically symmetric: κpx,x1q “ κpx1,xq

§ Sometimes non-negative: κpx,x1q ě 0
§ Then: may be interpreted as measure of similarity

• Sometimes: term kernel used to refer to Mercer kernels
§ Positive semi-definite kernels
§ Can be expressed using an inner product on “transformed” inputs
§ Kernelization of learning algorithms using the kernel trick requires

kernel function to be a Mercer kernels

• Examples: Gaussian kernel, linear kernel, polynomial kernel,
cosine similarity kernel, string kernels, graph kernels, Laplacian
kernel, probability product kernel, Fisher kernel, . . .
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Gaussian kernel (1)

• Gaussian kernel given by

κpx,x1q “ exp

ˆ

´
1

2
px ´ x1qJΣ´1px ´ x1q

˙

§ Takes values in r0, 1s; in particular, κpx,xq “ 1
§ Decreases exponentially in sq. Mahalanobis distance

• Special case: diagonal covariance

κpx,x1q “ exp

ˆ

´
1

2

D
ÿ

j“1

1

σ2
j

pxj ´ x1
jq

2

˙

§ σj can be interpreted as length scale of dimension j
§ When σj Ñ 8, dimension j is ignored
§ Known as ARD kernel or squared exponential kernel
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Gaussian kernel (2)
• Special case: isotropic Gaussian kernel

κpx,x1q “ exp

ˆ

´
1

2σ2

∥∥x ´ x1
∥∥2
2

˙

§ σ2 known as bandwidth
§ Example of an radial basis function (RBF) kernel: only a

function of ∥x ´ x1∥
§ Rough interpretation: objects with ∥x ´ x1∥2 ě 3σ are dissimilar
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Gaussian kernel (3)
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Some other kernels

• Linear kernel: κpx,x1q “ xJx1

• Linear kernel with basis function expansion: κpx,x1q “ ϕpxqJϕpx1q

• Polynomial kernel: κpx,x1q “ pγxJx1 ` rqM with γ, r ě 0
§ Corresponds to (certain) basis function expansion with all

interaction terms up to degree M (when γ, r ‰ 0; see slide 8)

• Cosine similarity kernel: κpx,x1q “ xJx1{p∥x∥ ∥x1∥q

§ E.g., useful for comparing documents (x is TF-IDF representation)

• String kernel: κpx,x1q “
ř

sPA˚ wsnspxqnspx1q

§ x and x1 are strings over alphabet A
§ nspxq is number of times substring s occurs in x
§ E.g., large when many common substring (of high weight)
§ E.g., zero when no common substring (of nonzero weight)
§ Special cases: bag-of-characters kernel (ws “ 0 when |s| ‰ 1),

k-spectrum kernel (ws “ 0 when |s| ‰ k), bag-of-words kernel
(ws “ 0 if s not bordered by word boundaries)
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Mercer kernel

• A kernel is a Mercer kernel if the Gram matrix (kernel matrix)

K “

¨

˚

˝

κpx1,x1q ¨ ¨ ¨ κpx1,xN q
... ¨ ¨ ¨

...
κpxN ,x1q ¨ ¨ ¨ κpxN ,xN q

˛

‹

‚

is positive semi-definite (psd) for all inputs txi u
N
i“1

• Recall: A P Rnˆn is psd iff symmetric and vJAv ě 0 for all v P Rn

• Implies that eigendecomposition exists and all λi ě 0:

K “ QΛQJ “ pQΛ1{2qpQΛ1{2qJ

§ Set ϕpxiq “ rQΛ1{2
sJ
i:

§ Then κij “ κpxi,xjq “ ϕpxiq
Jϕpxjq

• Mercer’s theorem: κ is psd iff. there exists a “feature map”
ϕκ : X Ñ RD s.t. κpx,x1q “ ϕκpxqJϕκpx1q for all x,x1 P X

§ D may be a finite (e.g., polynomial kernel) or infinite (e.g.,
Gaussian kernel)
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Example: Polynomial kernel
• Consider the polynomial kernel κpx,x1q “ p1 ` xJx1q2

• For each x,x1 P R2, we have

p1 ` xJx1q2

“ p1 ` x1x
1
1 ` x2x

1
2q2

“ 1 ` 2x1x
1
1 ` 2x2x

1
2 ` px1x

1
1q2 ` px2x

1
2q2 ` 2x1x

1
1x2x

1
2

• Can be written as ϕκpxqJϕκpx1q with

ϕκpxq “
`

1
?
2x1

?
2x2 x21 x22

?
2x1x2

˘J
P RD

for D “ 6

• Generally, feature map of polynomial kernel contains all
interaction terms up to degree M

• We will see: using this kernel is equivalent to working in the
above 6-dimensional feature space

§ With kernel trick, only the kernel function is evaluated, however
§ For this reason, we can handle infinite-dimensional features spaces

(such as the one of the Gaussian kernel)
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Discussion

• Mercer kernels determine an implicit feature map
§ κpx,x1q “ ϕpxqJϕpx1q for some ϕ
§ Thus: κ computes inner product of mapped features
§ But: κ is not an inner product on X

(e.g., κpax,x1q may not be equal to aκpx,x1q)

• Showing that a kernel function is Mercer can be complicated
§ If κpx,x1q “ ϕpxqJϕpx1q for some ϕ, then κ is Mercer
§ κpx,x1q “ c is a Mercer kernel for any c P Rě0

§ Sums and products of Mercer kernels are Mercer kernels, as is
multiplication by non-negative scalar and exponentiation of a
Mercer kernel

§ Non-Mercer kernels can also be useful (e.g., in kernel machines)

• Kernel matrix can be large: N2 entries
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Kernel machines

• A kernel machine is a generalized linear model which uses a
kernelized feature vector for its inputs:

ϕkmpxq “
`

κpx,µ1q κpx,µ2q . . . κpx,µKq
˘J

§ The µk P X are a set of K centroids (or prototypes)
§ If κ is an RBF kernel, called RBF network

• Linear predictor specified by weight vector w P RK predictor

ηpxq “ wJϕkmpxq “
ÿ

k

wkκpx,µkq

§ Consider a centroid µk and suppose κ measures similarity
§ Contribution the larger the more similar x is to µk
§ Contribution the larger the higher the centroid’s weight |wk|
§ Contribution can be positive (wk ą 0) or negative (wk ă 0)

• Examples
§ Linear regression: ppy|x,wq “ N pwJϕkmpxq, σ2q

§ Logistic regression: ppy|x,wq “ Berpy|σpwJϕkmpxqqq
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Example: Linear regression, RBF centroids
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Example: Logistic regression, RBF centroids (1)
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Example: Logistic regression, RBF centroids (2)
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Which centroids?

• On low-dimensional inputs, may use a grid
§ But: breaks down on high dimensionality (curse of dimensionality)

• If µk P RD, may use numerical optimization
§ But: kernels are most useful for structured input spaces

• Cluster the data and use cluster centers?
§ Cluster centers are generally dense regions in input space, but may

not be most useful for predicting outputs
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Vector machines

• Vector machines use the data points as centroids

ηpxq “ αJϕvmpxq “
ÿ

i

αiκpxi,xq

• Model is parameterized by a weight αi for each data point
§ To predict, need access to all data points xi (assuming all αi ‰ 0)
§ N weights, N data points, OpNq cost to predict
§ Expensive for large datasets

• Various approaches exist to select a subset of the data points
§ These methods “encourage” choices of αi “ 0

Ñ Corresponding data points ignored
§ Can use a sparsity-promoting prior; e.g., ℓ1 (L1VM)
§ Can use customized loss function Ñ support vector machines (SVM)
§ Pro: lower computational cost, lower space consumption
§ Cons: also affects model complexity (and thus generalization

performance)
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Example: Logistic regression, RBF centroids, L2
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Example: Logistic regression, RBF centroids, L1
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Example: Linear SVM, RBF centroids
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Example: KNN (for reference)
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Kernel trick

• Rather than working on kernelized feature vectors

ϕvmpxq “
`

κpx,x1q κpx,x2q . . . κpx,xN q
˘J

,

the kernel trick modifies the learning algorithm directly

• Key idea of the kernel trick
§ Express the learning algorithm in a way that accesses the data only

in terms of inner products of form xx,x1y

§ Then replace all inner products of form xx,x1y by calls to the
kernel function κpx,x1q

• Discussion
§ Requires the kernel to be a Mercer kernel
§ Then approach is equivalent to working on the implicit feature

representation ϕκ corresponding to κ
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Recall: K-nearest neighbor classifier (KNN)

• Simple, non-parametric classifier
• Uses statistics about neighbors NKpx,Dq, i.e., the K training

points closest to classify test input x:

ppy “ c|x,D ,Kq “
1

K

ÿ

iPNKpx,Dq

Ipyi “ cq,

where Ipeq is the indicator function

Ipeq “

#

1 if e is true
0 if e is false

• Discussion
§ Makes probabilistic predictions
§ Example of memory-based learning
§ Key assumption: close points have similar labels
§ Requires a suitable distance function and sufficient data
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Kernelized KNN

• KNN accesses the training data to obtain the K-closest
neighbors NKpx,Dq of x in D

• With squared Euclidean distance, we have

dpxi,xq “ ∥xi ´ x∥22 “ xxi ´ x,xi ´ xy

“ xxi,xiy ` xx,xy ´ 2xxi,xy

• After replacing inner products by kernel function calls, we obtain

dκpxi,xq “ κpxi,xiq ` κpx,xq ´ 2κpxi,xq

• For example, with an Gaussian RBF kernel, this simplifies to

drbfpxi,xq “ 2 ´ 2κpxi,xq
§ Distance drbf the smaller the more similar xi and x are
§ For this choice of kernel, we obtain the same neighbors as KNN

and hence the same classifier

• Key advantage: can use KNN on structured objects
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Kernelized ridge regression (1)

• Kernel trick harder to apply to parametric models

• Here we outline how to kernelize ridge regression
(= linear regression with ℓ2 regularization)

• Regularized risk formulation

R1
emppwq “ ∥Xw ´ y∥2 ` λ ∥w∥2

• Can show: optimal solution given by

w “ XJpXXJ ` λIN q´1y

§ Since rXXJ
sij “ xxi,xjy, we can kernelize this subexpression by

using the kernel matrix K instead (recall: Kij “ κpxi,xjq)
§ But what about the leading XJ term?
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Kernelized ridge regression (2)

• So far, we have

w “ XJpK ` λIN q´1y

§ Called primal variables (one per feature)

• Define

α “ pK ` λIN q´1y

§ Called dual variables (one per example)
§ Can be computed solely via kernel calls (= is kernelized)

• Rewrite the primal variables using the dual ones

w “ XJα “

N
ÿ

i“1

αixi

§ Optimal weight vector is thus linear combination of the data points
§ Cannot compute w without accessing X though (not kernelized)
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Kernelized ridge regression (3)

• Let’s plugin w “
řN

i“1 αixi to predict

f̂pxq “ wJx “

˜

N
ÿ

i“1

αix
J
i

¸

x “

N
ÿ

i“1

αixxi,xy

§ This we can kernelize!

• Final predictor is

f̂pxq “

N
ÿ

i“1

αiκxxi,xy

§ That’s the predictor we have seen on slide 07-2/??
§ But: with kernel trick, ℓ2 regularization is applied to w (not α)

§ w = implicit weight vector for transformed features (ϕκpxq)
§ α = explicit weight vector for data points (ϕvmpxq)
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Sparse Vector Machines
• Recall: vector machines (VM) use linear predictor

ηpxq “ w0 `

N
ÿ

i“1

αiκpxi,xq

§ Sparse VM: few αi’s non-zero Ñ few data points matter
§ Sparsity reduces overfitting and computational cost
§ Important esp. when N is large

• Non-kernelized: explicitly use features ϕvmpxq “
`

κpxi,xq
˘N

i“1
§ Directly learn α, can be used with any kernel
§ Feature space determined by training data
§ Regularization/prior on α
§ Sparsity achievable via feature selection / prior / regularization

• Kernelized: implicitly use transformed features ϕκpxq
§ Use Mercer kernel and apply kernel trick
§ Feature space determined by kernel κ
§ Regularization/prior on (implicit) weights for transformed features
§ Sparsity achievable via modified loss Ñ support vector machine
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Sparsity via ℓ0 regularization

• In the regularized risk minimization framework, we may directly
encourage sparsity using the ℓ0 pseudo-norm

J0pθq “ Remppθq ` λ ∥θ∥0
§ Recall: ∥θ∥0 = no. nonzero entries in θ

• Penalty ∥θ∥0 corresponds to number of relevant parameters
Ñ variable selection

• Coefficient λ trades off fit (λ small) and sparsity (λ large)
• Hard optimization problem

3 / 25
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Sparsity via ℓ1 regularization

• We may use the ℓ1 regularization instead

J1pθq “ Remppθq ` λ ∥θ∥1
§ Recall: ∥θ∥1 = sum of absolute values of entries in θ
§ Agrees with ∥θ∥0 if θ P t ´1, 0, 1 u

D

• Encourages sparsity
§ In contrast to ℓ2 (see next slide)

• Leads to shrinkage
§ Larger nonzero parameter values penalized more than smaller ones

Ñ biased estimator

• Easier to optimize, e.g., via subgradient-based methods
• With squared loss, known as LASSO (least absolute shrinkage

and selection operator)
• Can be combined with additional regularizers

(e.g., ℓ2 Ñ elastic net)
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Example: L1VM (logistic regression, RBF features)
Objective: argminw0,α

`
ř

i ´ log Berpyi|σpw0 ` αJϕvmpxiqqq ` λ ∥α∥1
˘
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Why ℓ1 regularization? (1)
Let’s look at a two-dimensional parameter space θ P R2.
• Border of blue area = ℓ1 unit ball
• Red lines = ℓ0 “unit ball” Ñ axes except 0
• ℓ0 unit ball intersects ℓ1 unit ball at extreme points

• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm

1

1

-1

-1

Sparsity
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Why ℓ1 regularization? (2)
Let’s find a solution to the problem θJx “ y w.r.t. θ.
• Underdetermined system with infinitely many solution
• Sparse solution: minθ ∥θ∥0 s.t. θJx “ y

§ Example: θ1 “ 0, θ2 “ y{x2 Ñ ℓ0 norm=1

• Using ℓ1 instead: minθ ∥θ∥1 s.t. θJx “ y
§ Increasing ℓ1 norm can be seen as

“inflating” the ℓ1 unit ball
§ Minimum ℓ1 norm

= minimum inflation
§ Achieved at intersection

with θ1 or θ2 axis
(whatever is smaller)

• ℓ1 tends to select extreme
points Ñ variable selection
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Sparsity via prior
• Consider probabilistic model pp¨|θq and a prior ppθq

§ Prior is sparsity-promoting if substantial probability mass at /
density around regions where θ contains zeros

§ Encourages sparse MAP estimates

• Example: Latent Dirichlet Allocation
§ Goal: given a document collection, find overall topics and topic

distribution of each document
§ Makes sparsity assumptions between topics and words / documents
§ Uses Dirichlet prior with α ! 1, which is sparsity-promoting
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Example: Latent Dirichlet allocation

9 / 25

R
(topicˆword),
few words per
topic

L (docˆtopic),
few topics per
doc

Blei et al. Latent dirichlet allocation. JMLR, 2003.

http://dl.acm.org/citation.cfm?id=944937


Example: Laplace distribution
• Recall: RRM with ℓ2 regularization fl MAP with Gaussian prior
• Likewise, RRM with ℓ1 regularization fl MAP with Laplace prior

Lappθ|µ, bq “
1

2b
exp

ˆ

´
|θ ´ µ|

b

˙

§ For sparsity, we use location µ “ 0 (= mean/median/mode)
§ Scale parameter b controls strength of prior (variance is 2b2)
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Support vector machines

• Recall: kernel trick
§ Mercer kernel κ
§ Rewrite learning/prediction algorithm in terms of inner products
§ Replace inner product by kernel calls
§ Equivalent to working in the implicit feature space of the kernel

• Recall: kernelized ridge regression
§ Squared loss, ℓ2 regularization (on weights for impl. kernel features)
§ Train: α “ pK ` λIN q´1y
§ Predict: ηpxq “ w0 `

ř

i αiκpxi,xq

§ α generally not sparse
§ Natural probabilistic interpretation

• Support vector machines (SVMs) modify loss for sparsity
§ « linear predictor + kernel trick + sparsity/large margin
§ Predict: ηpxq “ w0 `

ř

i αiκpxi,xq as well
§ Few αi’s nonzero, corresponding xi called support vectors
§ No natural probabilistic interpretation
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ϵ-insensitive loss

• Key idea of SVMs: no loss on examples predicted “well enough”
§ Such examples do not affect the cost at the solution
§ And they do not affect predictions (αi “ 0)

• For regression, Vapnik proposed ϵ-insensitive loss

Lϵpy, ŷq “

#

0 if |y ´ ŷ| ă ϵ

|y ´ ŷ| ´ ϵ otherwise

“ p|y ´ ŷ| ´ ϵq`,

where pxq` “ maxp0, xq.
§ Data points with labels within an ϵ-tube around the prediction

incur no loss, i.e., when y P pŷ ´ ϵ, ŷ ` ϵq
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Illustration
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SVMs for regression (SVR)

• Using the ϵ-insensitive loss with a linear predictor, we obtain
support vector regression (SVR):

J “ C
ÿ

i

Lϵpyi, ŷpxiqq `
1

2
∥w∥2

§ ŷpxiq linear in feature space of kernel
§ With linear kernel, called linear SVR
§ ℓ2 regularization on weight as in ridge regression
§ C “ 1{λ is a regularization constant

• Convex problem, can be solved via quadratic programming
§ Solution has form ŷpxq “ w0 `

ř

i αiκpx,xiq

§ αi “ 0 iff ŷi lies strictly within ϵ-tube around label yi, i.e.,
ŷi R pyi ´ ϵ, yi ` ϵq

§ Support vectors (αi ą 0) lie on or outside of ϵ-tube

• Hyperparameters: ϵ, C, kernel parameters
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Hinge loss

• SVM are popular method for classification (SVC)

• Let y P t ´1, 1 u and consider the decision rule

ŷ “ sgnpηpxqq,

where ηpxq is a score/predictor produced by the classifier

• In SVC, we use a linear predictor and the hinge loss

Lhingepy, ηq “

#

0 if yη ą 1

1 ´ yη otherwise

“ p1 ´ yηq`

§ yη called margin
§ Observe: yη ą 1 iff prediction correct (y “ sgnpηq) and predictor

“confident” in that score large (|η| ą 1)
§ Data points with large margin do not incur loss
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Hinge loss, illustration
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SVMs for classification (SVC)

• Using the hinge loss with a linear predictor η, we obtain support
vector classification (SVC):

J “ C
ÿ

i

Lhingepyi, ηpxiqq `
1

2
∥w∥2

§ ηpxiq linear in feature space of kernel
§ With linear kernel, called linear SVC
§ ℓ2 regularization on weight as in ridge regression
§ C “ 1{λ is a regularization constant

• Convex problem, can be solved via quadratic programming
§ Standard solvers OpN3q, SMO often faster, linear SVC OpNq

§ Solution has form ηpxq “ ŵ0 `
ř

i αiκpx,xiq

§ αi “ 0 iff margin large in that ηy ą 1
§ Support vectors (αi ą 0) have small margin

(misclassified and/or η ă 1)

• Hyperparameters: C, kernel parameters
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The large-margin principle
• Large-margin principle: select a decision boundary with a large

margin (= distance to the closest training point)

• Goal is to reduces generalization error; e.g.,
§ Consider a perfect classifier (e.g., linearly separable training data)
§ Observe: All points “within margin” of a training point will be

classified just as the training point
§ The larger the margin, the more consistent the output of the

classifier is around the training data
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SVMs are large-margin classifiers (1)

• Consider linear SVM with ηpxq “ w0 ` wJx

• Distance of x to decision boundary is r “
ηpxq

∥w∥
§ Why? Let xK be orthogonal projection of x to decison boundary
§ Write x “ xK ` r w

∥w∥
§ Observe that

ηpxq “ w0 ` wJxK
l jh n

“0

`wJpr
w

∥w∥ q

l jh n

“r∥w∥

§ Note: r ą 0 for positive predictions, r ă 0 for negatives

• For lin. sep. training data, maximum margin classifier given by

argmax
w,w0

min
i

yiri “ argmax
w,w0

min
i

yi
ηi

∥w∥ ,

where ηi “ ηpxiq “ w0 ` wJx and ri “ ηi{ ∥w∥
§ At solution, all points correctly classified (yiri ą 0)
§ And margin yiri “ |ri| as large as possible
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SVMs are large-margin classifiers (2)

• argmaxw,w0
mini yiηi{∥w∥

• Observe: rescaling w and w0 by constant c ą 0
§ Scales yiηi by factor c
§ But does not change margin ri “ ηi{ ∥w∥
§ Thus: can add constraints yiηi ě 1 without changing the solution
§ Inner minimum then 1{ ∥w∥

• Rewritten optimization problem

argmin
w,w0

1

2
∥w∥2 s.t. yiηi ě 1 for i “ 1, . . . , N

§ Constraint = correct prediction, margin at least 1
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SVMs are large-margin classifiers (3)

• argminw,w0

1
2 ∥w∥2 s.t. yiηi ě 1 for i “ 1, . . . , N

• What if data not linearly separable (in kernel’s feature space)?
§ No feasible solution with yiηi ě 1 for all i exists
§ Idea: introduce slack variable ξi ě 0 for each data point
§ ξi “ 0 Ñ correctly classified, large margin (ě 1)
§ 0 ă ξi ă 1 Ñ correctly classified, small margin (P p0, 1q)
§ ξi ě 1 Ñ incorrectly classified

• Objective with soft margin constraints

argmin
w,w0

C
ÿ

i

ξi `
1

2
∥w∥2 s.t. ξi ě 0, yiηi ě 1 ´ ξi

§ 1
2 ∥w∥2 for large margin

§
ř

i ξi for few errors (too-small margin or misclassified)
§ C is hyperparameter that controls trade-off
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SVMs are large-margin classifiers (4)

• argminw,w0
C

ř

i ξi ` 1
2 ∥w∥2 s.t. ξi ě 0, yiηi ě 1 ´ ξi

• Observe: we have ξi ě 1 ´ yiηi and ξi ě 0, hence at optimum

ξi “ maxp0, 1 ´ yiηiq “ p1 ´ yiηiq` “ Lhingepyi, ηiq

• We obtain the SVM objective (slide 17)

argmin
w,w0

C
ÿ

i

Lhingepyi, ηiq `
1

2
∥w∥2

§ C controls allowed training errors and affects generalization error
Ñ Often set via cross-validation

§ Sometimes: parameterized using C “ 1{pνNq, where ν roughly
corresponds to the fraction of misclassified training examples
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Example: Support vector machine (Gaussian kernel)
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Example: Support vector machine (poly3 kernel)
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Discussion

• Key ingredients to SVM
1. Kernel trick Ñ prevents underfitting with linear classifier
2. Sparsity / large margin Ñ prevents overfitting

• Key ingredients to L1VM
§ Use kernel (solely) to generate explicit features ϕvm
§ ℓ1 regularization for sparsity

• SVM or L1VM?
§ Both are discriminative kernel methods
§ Often similar performance in practice
§ L1VMs probabilistic, SVMs not
§ L1VMs fast to train, SVMs slow (unless linear)
§ L1VMs handle multiclass classification naturally, SVMs with

difficulties
§ L1VMs any kernel, SVMs Mercer kernel
§ Both: kernel parameters / regularization weights need tuning
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Design decisions in machine learning

• Using machine learning in a application involves many design
decisions; e.g.:
▶ Data collection and preprocessing
▶ Feature engineering
▶ Model class & architecture engineering
▶ Learning algorithm
▶ Training objective (e.g., loss, regularization)
▶ Hyperparameters of these components
▶ . . .

• How to choose?
▶ Choices matter since they may heavily impact performance
▶ Space of possible choices is large and difficult to navigate
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Example: Link Prediction for Knowledge Graphs (1)
Task: Given a knowledge graph, predict missing links.

RESCAL TransE DistMult ComplEx ConvE
0

10
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40
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lid
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n 
M

RR

FB15K-237

RESCAL TransE DistMult ComplEx ConvE

WNRR

Performance over quasi-random hyperparameter configurations
(validation data, higher is better)

Large influence of design choices.
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Example: Link Prediction for Knowledge Graphs (2)

RESCAL (2011)
TransE (2013)

DistMult (2015)
ComplEx (2016)

ConvE (2018)
RotatE (2019)

TuckER (2019)
SACN (2019)

24
26
28
30
32
34
36
38

M
RR

FB15K-237

Large
Recent
Ours
First

Reported performance of various KGE models
(test data, higher is better)

Good choices key for model selection and comparative studies.
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Automated Machine Learning (AutoML)

• Vision of Automated Machine Learning (AutoML)
▶ Decide in a data-driven, objective, and automated way
▶ User simply provides data, system does the rest
▶ Democratization: make ML accessible to “everyone”

• In practice also: semi-automate
▶ Reduce need for human in the loop
▶ Make practice of ML more systematic and efficient
▶ Improve performance
▶ Improve reproducibility and fairness of scientific studies

• Many approaches, many systems, active research area

• Key directions
▶ Hyperparameter optimization (our focus)
▶ Meta-learning (learn how to learn)
▶ Neural architecture search
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Outline (Hyperparameter Optimization)

0. Overview
1. The Hyperparameter Optimization Problem
2. Blackbox Optimization
3. Multi-Fidelity Optimization
4. HPO in Practice
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Summary
• Hyperparameter tuning important part of ML pipeline

▶ Choices matter and are difficult to make

• Automated hyperparameter optimization
▶ Explore the hyperparameter configuration space automatically
▶ Use validation protocol to assess configurations

• Blackbox optimization methods
▶ Only based on results of evaluations
▶ E.g., grid search, random search, ES, CMA-ES, Bayesian

optimization

• Multi-fidelity methods
▶ Open the blackbox to use cheaper low-fidelity “approximation”
▶ Especially useful for expensive tasks
▶ E.g., successive halving, Hyperband, BOHB

• In practice, HPO method needs to selected and parameterized
▶ E.g., hyperparameter bounds and transformations very important
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Suggested reading

• Automated Machine Learning: Methods, Systems, Challenges (Ch. 1)
Editors: Frank Hutter, Lars Kotthoff, Joaquin Vanschoren
Springer, 2019

• AutoML tutorial @ NIPS18 (slides, videos)
Frank Hutter, Joaquin Vanschoren

Additional resources
• Taking the Human Out of the Loop: A Review of Bayesian

Optimization
Shahriari et al., Proc. of the IEEE, 2016
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Types of hyperparameters

• Hyperparameters influence the learning process
▶ In contrast, parameters are learned
▶ In practice, can have many hyperparameters (e.g., 10s or 100s)

• Discrete hyperparameters; e.g.,
▶ k in a kNN classifier
▶ Number of units in a hidden layer of an FNN

• Continuous hyperparameters; e.g.,
▶ Learning rate
▶ Regularization weight

• Categorical hyperparameters; e.g.,
▶ Use early stopping (yes/no)
▶ Learning algorithm (SGD, Adagrad, Adam)
▶ Type of regularization (L1, L2, L3)
▶ Activation function (tanh, ReLu)
▶ Operator (convolution layer, max pooling layer)
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Hyperparameter optimization
• Hyperparameter optimization (HPO): automatically select

values for the hyperparameters

• Important part of ML pipeline

• This is challenging!
▶ Hyperparameter configuration space is complex and high-dimensional
▶ Model training/evaluation can be expensive
▶ Cannot directly optimize generalization performance due to limited

training data
▶ Often neither gradient nor useful properties such as convexity

3 / 6Melo, 2019

https://azure.microsoft.com/de-de/blog/how-to-accelerate-devops-with-machine-learning-lifecycle-management/


Hyperparameter configuration space

• L hyperparameters

• l-th hyperparameter has domain Λl

• Hyperparameter configuration space: Λ = Λ1×Λ2× · · ·×ΛL

▶ When hyperparameters for preprocessing/algorithms are included,
HPO also referred to as full model selection (FMS) or combined
algorithm selection and hyperparameter optimization (CASH)

• Space may contain conditional hyperparameters
▶ Only active for certain choices of other hyperparameters
▶ Structure can be modeled using a directed acyclic graph
▶ Example: algorithm (kNN, LogReg) and algorithm

hyperparameters (k only active when kNN is chosen)
▶ Example: number of layers in an FNN and configuration of layer i

(only active when at least i layers)
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Definition

Definition: Hyperparameter Optimization

Given data D, the HPO problem is to find

λ∗ = argmin
λ∈Λ

V (λ,D).

• V is a validation protocol
▶ Measures the performance of using hyperparameter configuration

λ for a particular task based on data D
▶ Often needs to be approximated since only finite dataset available

• Example: holdout validation or cross validation with a
user-defined loss (e.g., misclassification rate)

• Alternatives/variants
▶ Multiple objectives (e.g., consider resource consumption)
▶ Ensembling: combine multiple good hyperparameter configurations
▶ Bayesian model selection: integrate out hyperparameters
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Example: Holdout validation

• Holdout validation produces model as side product
• In general, validation protocol can be expensive to evaluate

▶ Several strategies to reduce cost exists

6 / 6Zheng, 2015
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Blackbox optimization

• Any blackbox optimization method can be used for HPO
▶ Goal is to find minλ V (λ)
▶ V (λ) can be evaluated (or approximated)
▶ No knowledge about what happens “inside” V
▶ No access to gradient information such as ∇λV (λ)

Optimizer Validation protocol (V )

Hyperparameter values

Validation loss

• Generally, use history { (λi, V (λi)) }ni=1 to decide where to
evaluate next (λn+1)
▶ Explored hyperparameter values often called trials
▶ Note: closely related to learning
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Approaches to blackbox optimization

• Model-free methods: do not use history
▶ Example: grid search, random search

• Stochastic search: maintain probability distribution p(λ)
▶ Used to sample new values of λ to evaluate
▶ Updated with new observations
▶ Example: population-based methods, simulated annealing

• Global optimization: maintain model V̂ (λ) plus confidence
▶ Use model to choose where to evaluate next
▶ Exploration/exploitation trade-off
▶ Example: Bayesian optimization
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Grid search

• Grid search is most basic HPO method
▶ Specify a finite set of choices for each hyperparameter
▶ Evaluate all combinations of these choices (Cartesian product)

• Example: 2 real-valued hyperparameters and a 10×10 grid

4 / 27Wikipedia
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Random search

• Random search samples configurations from Λ at random
• Example: 2 real-valued hyperparameters, 100 trials

(using uniform sampling)

5 / 27Wikipedia
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Discussion (1)
• Grid search suffers from the curse of dimensionality

▶ Number of trials grows exponentially with dimensionality of
configuration space

▶ E.g., 30 hyperparameters with 4 choices each → > 1018 trials

• Random search explores configuration space better
▶ E.g., consider L real hyperparameters and n trials
▶ Random search explores n values per hyperparameters
▶ Grid search explores only n1/L values per hyperparameter
▶ Especially problematic if some hyperparameters are unimportant

6 / 27Hutter et al., 2019
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Discussion (2)

• Choice of grid points problematic
▶ May be non-trivial
▶ May significantly affect (or bias) results

• Both methods are parallelizable across a set of workers
▶ Easier to do for random search (no synchronization needed)

• Random search easy to shrink/expand number of trials

• Random search generally preferable over grid search
▶ More efficient empirically and theoretically
▶ Hence useful baseline

• May take far longer than “guided” search method
▶ E.g., HPO on L binary features without interactions require O(2L)

trials with random search but O(L) with suitable guided search
▶ Still, random search often a component of such methods

(e.g., for initialization and exploration)

7 / 27
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Population-based methods (1)

• Population-based methods maintain a population of
configurations
▶ Special case of stochastic search
▶ Population used to determine which trials to perform next
▶ Population updated based on results (e.g., mutation, cross-over)

• Example: evolution strategy (ES)
▶ Maintain an isotropic Gaussian N (θ(t), σ2I)
▶ In t-th iteration,

1. Sample λ configurations from N (θ(t), σ2I) (offspring) and
evaluate

2. Keep best µ results
3. Use their mean as θ(t+1)

▶ (µ, λ)-ES: select best results from offspring only
▶ (µ+ λ)-ES: include prior trials (parents)
▶ Example: (1 + 1)-ES = hill climbing
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Population-based methods (2)
• Example: covariance matrix adaptation (CMA-ES)

▶ Improves on ES by modeling covariance as well
▶ Very competitive in benchmarks
▶ Easy to use and parallelize

9 / 27Wikipedia

http://www.cmap.polytechnique.fr/~nikolaus.hansen/ws1p34.pdf
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Bayesian Optimization

• Bayesian optimization
▶ State-of-the-art global optimization framework
▶ Very good results for HPO empirically

• Approach
1. Maintain a probabilistic surrogate model of V (λ)
2. Optimize an acquisition function using the surrogate model to

select next configuration
3. Update surrogate model and repeat

• Surrogate model cheap to evaluate

• Acquisition function trades off exploration and exploitation
▶ Determines “utility” of evaluating a each configuration
▶ Takes uncertainty provided by surrogate model into account
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Surrogate models
• Used to model current knowledge about V (λ)

• At its heart, a regression problem
▶ Input x = λ corresponds to hyperparameter configuration
▶ Output y = V (λ) corresponds to validation loss
▶ Data is given by trials so far: D = { (λi, V (λi)) }ni=1

• Parametric models
▶ Parameter vector θ with prior p(θ)
▶ Used to derive posterior predictive p(V̂ |λ,D) =

∫
p(V̂ |λ,θ)p(θ|D) dθ,

which accounts for uncertainty about parameters θ
▶ Example: Bayesian linear regression

▶ p(V̂ |λ, θ, σ2) = N (θ⊤λ, σ2)
▶ p(θ) is normal inverse gamma (=conjugate prior)
▶ Posterior predictive also Gaussian & can be computed in closed

form
▶ But: linearity assumption not suitable for HPO

▶ Example: Gaussian process regression (coming up)
▶ Think: Bayesian + kernel + linear regression
▶ Commonly used for HPO, but also when little data and/or no

gradients available
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Recall: Bayesian linear regression (from 02-3)
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Gaussian process regression

• Gaussian process regression (GPR) often used in HPO with BO
▶ Gaussian process GP(µ0, κ) represents a distribution over

possible functions; for us: validation functions (from Λ to R)
▶ GPR is a non-parameteric Bayesian approach that uses a GP as a

prior to build a regression model
▶ Parameters: inputs λi and corresponding outputs fi (= V (λi))
▶ Hyperparameters: kernel κ, prior mean function µ0 : Λ → R

→ need to be chosen adequately

• Obtained by kernelizing Bayesian linear regression
▶ Recall: lecture 08 on kernels
▶ Use kernel κ(λ1,λ2) to measure similarity between configurations
▶ “Replace” design matrix X = (λT

i )
n
i=1 with kernel matrix K

(where Kij = κ(λi,λj))
▶ Use kernel trick

• Intuitively, prior ensures smoothness, i.e., that similar inputs
(according to kernel) produce similar outputs
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Illustration (1)

Sample of functions from a Gaussian process

15 / 27Durrande, 2016

http://gpss.cc/gpuqss16/slides/durrande_school.pdf


Illustration (2)

Observations (1-dimensional)

16 / 27Durrande, 2016

http://gpss.cc/gpuqss16/slides/durrande_school.pdf


Illustration (3)

Samples from Gaussian process conditioned on observations
(=samples from GPR model)

17 / 27Durrande, 2016

http://gpss.cc/gpuqss16/slides/durrande_school.pdf


Illustration (4)

Conditional distribution of functions cond. on observations
(=GPR model)

18 / 27Durrande, 2016

http://gpss.cc/gpuqss16/slides/durrande_school.pdf


Gaussian process regression (prediction)

• Consider new input λ+ and data D = { (λi, fi) }ni=1

• For clarity, let’s write Fi for unknown values (random variable)
and fi for observed values (constants)
▶ We want to reason about F+, the unknown value at λ+

• GPR model
1. GP gives us joint distribution p(F1, . . . , Fn, F+)
2. GPR determines cond. distribution

p+(F+ = f)
def
= p(F+ = f |F1 = f1, . . . , Fn = fn)

• Using a GPR model
▶ Prediction = posterior mean f̂+ = Ep+

[f ]
▶ Uncertainty = posterior variance σ2

+ = varp+ [f ]
▶ Sampling = sample value from p+
▶ f̂+ and σ2

+ are shown on slide 18 for various choices of λ+ ∈ [0, 1]
▶ Samples are shown on slides 15 and 17 (each function sampled

sequentially and by conditioning on previous values)
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Details (Step 1)
Step 1: GP gives us joint distribution p(F1, . . . , Fn, F+)

• Let F =
(
F1 · · · Fn F+

)⊤
▶ F is an (n+ 1)-dimensional random variable
▶ Elements are unknown function values at λ1, . . . ,λn,λ+

• GP(µ0, κ) assumes that F1, . . . , Fn, F+ are jointly Gaussian
▶ In particular, that F is a multivariate Gaussian

F ∼ N (m,K)

▶ m is an (n+ 1)-dimensional mean vector with mi = µ0(λi)
▶ K is n (n+ 1)× (n+ 1)-dimensional covariance matrix with

kij = κ(λi,λj)

• Observe: distribution of F completely determined by µ0 and κ
(for our choices of λ1, . . . ,λn,λ+)
▶ GP thus serves as a prior on function values
▶ Hyperparameters µ0 and κ define this prior
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Details (Step 2)
Step 2: GPR determines cond. distribution

p+(F+ = f)
def
= p(F+ = f |F1 = f1, . . . , Fn = fn)

• We assumed p(F ) = N (F |m,K) (a multivariate Gaussian)
• We know f1, . . . , fn, but not f+
• p+ is obtained by conditioning p(F ) on observed values f1, . . . , fn

▶ Need to compute a conditional of a Gaussian (cf. 07-1/9)
▶ Partition into observed (o) and new (+) parts

f =

(
fo

f+

)
m =

(
mo

m+

)
K =

(
Koo ko+

k⊤
+o k++

)
▶ where f+,m+, k++ ∈ R; f0,mo,ko+,k+o ∈ Rn; Koo ∈ Rn×n

▶ All values but f+ are known
▶ We obtain: p+(f) = N (f |µ+, σ

2
+) (that’s another Gaussian)

▶ µ+ = m+ + k⊤
+oK

−1
oo (mo − fo)

▶ σ2
+ = k++ − k⊤

+oK
−1
oo ko+
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GPR for BO

• GPR can be used as a surrogate model in BO
▶ But: V (λi) is often a random variable itself (since we often

perform random choices during model fitting)
▶ This can be modeled by observation noise
▶ With isotropic Gaussian noise (as in linear regression), we assume

V (λi) ∼ N (fi, σ
2), i.e., we observed only a noisy variant of fi

▶ σ2 is an additional hyperparameter

• Cost: O(n3) to fit (compute K−1
oo ), then O(n2) per prediction

→ Expensive for large number of observations

• Predictions used to maximize acquisition function
▶ Aquisition function has form α(λ+) ∈ R
▶ Given λ+, α(λ+) computed based on f̂+ (prediction) and σ2

+

(uncertainty)
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Matérn kernels
• Common choice: a Matérn kernel

▶ Stationary kernel (value only depends on difference of in inputs)
▶ Smoothness parameter ν (kernel differentiable ⌊ν − 1⌋ times)
▶ ν → ∞→ Equivalent to squared exponential kernel

(Gaussian kernel with diagonal covariance)
▶ ν = 1/2 → Equivalent to exponential kernel
▶ Parameterized by length scales σj (one per hyperparameter) and

bandwidth σ2

• Choice of kernels can have large impact (!!!)
23 / 27
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Discussion and alternatives

• GP regression in Bayesian optimization
▶ Traditional choice: expressive, smooth, well-calibrated uncertainty

estimates, closed-form predictive distribution
▶ Cubic cost → feasible only when limited function evaluations
▶ Complex configuration spaces problematic: high dimensionality,

discrete/categorical variables, conditional hyperparameters
▶ Strong assumptions on noise
▶ Harder to parallelize

→ Many approaches/variants proposed in the literature

• Alternative: Random forests
▶ Natively handle larger and also conditional spaces
▶ E.g., SMAC framework

• Alternative: Tree-Structured Parzen Estimators (TPE)
▶ Model densities of good (p(λ|V < α)) and bad (p(λ|V > α)

choices using a kernel density estimator (Parzen estimator)
▶ Multiple such estimators arranged in a tree for conditional spaces
▶ Good empirical performance on structured HPO tasks

24 / 27
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Acquisition function

• Many acquisition functions α exist, no single best one
• Improvement-based methods try to improve over a target τ

▶ Ideally, value close to minimum
▶ Heuristically, best value so far

• Probability of improvement (PI): αPI(λ) = p(V̂ (λ) < τ)
▶ Can work well when target close to minimum
▶ Otherwise may exploit too aggressively

• Expected improvement (EI): αEI(λ) = E[(τ − V̂ (λ))+]
▶ Incorporates amount of improvement (if any)

• Alternative: upper confidence bound (UCB)
▶ E.g., set αUCB(λ) such that p(V̂ (λ) < αUCB(λ)) = 0.05
▶ Optimistic method

• Alternative: information-based methods use posterior
distribution p(λ∗|V̂ ) of best configuration
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Acquisition function (example)
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• Note: Acquisition function needs to be maximized
→ Auxiliary optimization techniques

26 / 27Shahriari, 2016
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Practical considerations

• Description of configuration space
▶ Often box constrained
▶ Sometimes logarithm of hyperparameter optimized

(e.g., learning rate, regularization weight)
▶ As so often, choices matter

• Practical constraints
▶ In practice, often additional constraints: memory consumption,

training time, prediction time, energy usage, . . .
▶ E.g., a single slow configuration should not consume all of the

available time budget
▶ Can usually only be observed afterwards (e.g., training time)
▶ Simplest approach: add penalty term to V (λ) for constraint

violations
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Low-fidelity approximations

• Blackbox optimization can be expensive
▶ Increasing dataset sizes
▶ Increasingly complex models
▶ Even training a single HP configuration may take a long time
▶ Example: BERT training took 4 days

• Idea: “probe” a configuration in a less costly manner using
low-fidelity approximations
▶ Often done when performing manual HP tuning
▶ Use a subset of the data
▶ Use reduced inputs (e.g., feature subset, lower-resulution images)
▶ Use reduced models (e.g., used by GPT-4)
▶ Train for a few iterations
▶ Use a subset of the cross-validation folds

• Tradeoff between quality of approximation and runtime
▶ Lower fidelity → faster but lower quality
▶ Higher fidelity → slower but higher quality

2 / 17

https://nlp.stanford.edu/seminar/details/jdevlin.pdf
https://arxiv.org/pdf/2303.08774.pdf


Multi-fidelity hyperparameter optimization

• Multi-fidelity optimization methods
▶ Systematically use low-fidelty approximations for HPO
▶ Usually involve multiple fidelities
▶ Allows to explore larger parts of HP configuration space within a

given computational budget
▶ For expensive learning tasks, runtime gains often outperform

approximation error in practice

1. Predictive termination methods
▶ Successively increase fidelity for a single configuration
▶ Stop when increasing fidelity further not beneficial → reduce cost
▶ Based on learning curve prediction

2. Selection with static fidelities
▶ Fixed schedule of fidelities to try (from low to high)
▶ Select which configurations to explore (further)

3. Selection with adaptive fidelities
▶ Also choose fidelities actively
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Predictive termination

• Learning curve = performance of an iterative ML algorithm as
a function of iterations/training time

• HPO with predictive termination
▶ Use any HPO method for iterative ML algorithms, but modify the

validation protocol
▶ Validate regularly (e.g., after every k iterations)
▶ We obtain a partial learning curve
▶ Use a learning curve model to estimate whether the partial

learning curve is likely to fall behind the best model found so far
▶ If so, terminate training and output estimated final performance
▶ If not, continue training

• Learning curve model
▶ Key goal is to identify “bad” configurations quickly
▶ Only few observations per curve: uncertainty modeling is key
▶ May exploit prior knowledge, e.g., learning curves are

non-increasing and saturate

4 / 17
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Parametric learning curve model of Domhan et al. (1)

• Linear combination of 11 suitable parametric functions and
additive Gaussian noise

• Prior: positive weights, non-decreasing

5 / 17Domhan et al., 2015
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Parametric learning curve model of Domhan et al. (2)

6 / 17Domhan et al., 2015

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf


Background: Multi-armed bandits

• Multi-fidelity HPO can be modeled as particular multi-armed
bandit problems

• Generally, a multi-armed bandit (MAB) is
▶ A set of L real reward distributions B = {R1, . . . , RL }
▶ Casino analogy: L slot machines, each with a single arm to pull
▶ Reward obtained by sampling from Ri of some arm i
▶ Key question: Which arm to pull? (allocation)

• MAB problem: maximize payoff over H pulls (horizon)
▶ Payoff = cumulative reward
▶ Reward distributions unknown, but reward observed after each pull
▶ Exploration/exploitation trade-off
▶ Explore: pull an arm to gather information about its reward distribution
▶ Exploit: pull an arm with high (estimated) reward

• Many techniques, many variants
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HPO and multi-armed bandits (1)

• HPO and MAB are closely related
▶ Arm = hyperparameter configuration
▶ Pull an arm = train with this hyperparameter configuration
▶ Loss = observed validation loss

• Best-arm identification
▶ Goal is not to maximize payoff, but to estimate the “best” arm
▶ A pure exploration problem
▶ Strategies well-suited for maximizing payoff may not be well suited

for best-arm identification

• Many-armed bandits
▶ Number of arms > number of available trials
▶ E.g., when continuous variable included
▶ Cf. methods discussed for blackbox optimization
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HPO and multi-armed bandits (2)

• Multi-fidelity HPO can also be modeled
▶ First pull of arm i = train low-fidelity model
▶ Subsequent pulls of arm i = continue training to obtain a

higher-fidelity model
▶ Example: pull an arm = train for one additional SGD epoch

• Non-stochastic multi-armed bandit problem
▶ As MAP, but when pulling arm i for the Ti-th time, observe loss

liTi
(no randomness)

▶ Loss of an arm changes when its being pulled
(oblivious to any pulls of other arms)

▶ Losses converge in that vi = limTi→∞ liTi exists
▶ Goal is to identify best arm (lowest vi)

• Think: Ti = fidelity, liTi = low-fidelity validation loss, vi =
full-fidelity validation loss

• Difficult problem; e.g., cannot reject an arm or verify best arm
▶ In general, convergence to vi may be arbitrarily slow
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Successive halving

• A simple technique is successive halving (SH)

• Input: set of n arms, overall budget B

• Output: estimate of best arm

• Budget distributed evenly over R = ⌈log2(n+ 1)⌉ rounds
(≈ B/R pulls per round)

• Start with all arms active, then in each round
▶ Pull each active arm equally often (≈ doubles each round)
▶ Remove the half of the active arms with the largest loss
▶ After R rounds, only one arm survives → estimate of best arm

• Prespecifying the budget can be avoided by a “doubling trick”
▶ Start with B ← n, then repeatedly double B
▶ Reuse existing arms → no repeated computation
▶ When B∗ is the optimal budget, effective budget with doubling

trick is ≤ 2B∗
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Successive halving (example)

11 / 17Hutter et al., 2019
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Successive halving (discussion)
• Very simple, performs well

• Analysis and experimental study by Jamieson and Talwalkar (2016)
▶ Under certain conditions, provably better than random search
▶ Generally not much worse than random search
▶ Better anytime performance than random search
▶ Empirically good HPO performance w.r.t. other bandit methods
▶ One reason: few runs of validation protocol necessary

(2n+ 1, which is often ≪ B)

• Instead of halving, may use other factors
▶ HPO hyperparameter η (e.g., η = 2 for SH)
▶ In each round, keep 1/η of best arms, multiply budget by η

• In HPO, arms are sampled from the HP configuration space.
But how many arms should we use? (“n vs. B/n problem”)
▶ Many with small budget each
→ may terminate good configurations prematurely

▶ Few with large budget each
→ may waste resources on poor configurations

▶ Trade-off may not be easy to make by user
12 / 17
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n vs B/n problem (example)
HPO for LeNet on MNIST
• Successive halving with η = 3

• s low → few configurations with large budget each
• s high → many configurations with small budget each
• Optimal choice neither too low nor too high (here: s = 3)

13 / 17Li et al., 2018
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Hyperband

• Hyperband addresses the n vs B/n problem
• Key idea: run successive halving repeatedly from scratch with

fixed budget but different number of configurations
• Input: maximum per-configuration budget R, factor η (def. 3)

▶ Perform ⌊logη R+ 1⌋ runs of successive halving, called brackets
▶ Initial budget (r) in first round starts at 1 and is multiplied by η

from bracket to bracket
▶ Run as many configurations (n) with budget R as possible to not

exceed a fixed per-bracket budget (B′ = R⌊logη R+ 1⌋)
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Discussion
• Introduced, analyzed, and empirically studied by Li et al. (2018)

▶ Modeled as non-stochastic infinitely-armed bandit problem
▶ Can be extended to avoid specifying R (similar to doubling trick)
▶ Hyperband most useful when domain information on n-vs-B/n

trade-off is not available
▶ In practice, Hyperband outperformed by successive halving with

“right” number of configurations
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Beyond Hyperband

• Hyperband is based on random search
▶ Observations used to determine how many resources to spent on

each configuration, but not used to select suitable configurations
▶ Methods such as BOHB combine Bayesian optimization and

Hyperband
▶ Hyperband for quick improvements in the beginning
▶ Bayesian optimization for good performance in the long run

• Hyperband uses a prespecified set of fidelities
▶ Implicitly via parameter η and budget
▶ Usually only a small number (e.g., ≤ 5) and only one type (e.g.,

iterations) of fidelities considered
▶ One approach beyond: multi-fidelity BO methods such as BOCA
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Example: BOHB

17 / 17Hutter and Vanschoren, 2018
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Which method to use?
• Choice of HPO method difficult and application-dependent

• No standard, well-accepted HPO benchmark yet
▶ Evaluation protocols and metrics differ in the literature
▶ In progress: HPOBench, successor of HPOlib
▶ Related: COCO for blackbox optimizers
▶ Different authors use different evaluation methods

• Some criteria for choosing an HPO method
▶ Structure of search space (small? large? real-valued? conditional?)
▶ Number of possible evaluations (10s? 100s? 1000s?)
▶ Degree of possible parallelization (1 worker? few? hundreds?)
▶ Expertise and domain knowledge to set HPO hyperparameters
▶ Multiple fidelities possible?
▶ Extensibility and/or anytime properties needed?

• Recommendations of Feurer and Hutter (2019)
▶ Multiple fidelities → BOHB
▶ Real-valued, few trials → BO with Gaussian processes
▶ Real-valued, many trials → CMA-ES
▶ Large/categorical/conditional spaces → BO with SMAC or TPE
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How to set HPO hyperparameters?

• HPO methods have hyperparameters themselves
▶ Note: these are not the hyperparameters subject to HPO!
▶ Even present for basic methods such as grid search (which grid?)

or random search (which sampling distribution?)
▶ Choice many have significant impact

• Manual specification
▶ Implementations typically aim to provide sensible default choices
▶ (Hopefully) easier to set by experts than hyperparameters of

learning problem

• Estimate value of HPO hyperparameters from data
▶ Using a point estimate (e.g., marginal likelihood of data in BO)
▶ Problem: generally little data available (few trials)
▶ Problem: Not always possible (e.g., grid points)

• Fully Bayesian treatment of HPO hyperparameters
▶ Integrate out HPO hyperparameters
▶ E.g., possible for Gaussian processes (length scales, covariance

amplitude, observation noise, constant mean)
3 / 4
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Can HPO lead to overfitting?

• Hyperparameters typically tuned on validation loss
▶ No overfitting to training data
▶ Validation data is limited, however
▶ Overfitting to validation data is a concern
▶ Observed empirically

• Strategies against overfitting
▶ Vary training and validation splits across function evaluations
▶ With BO, do not choose model with best observed performance,

but with best estimated mean performance
▶ Use a separate holdout set to detect HPO overfitting or reassess

found configurations
▶ Prefer stable optima (flat around optimum) over sharp optima
▶ Use ensembles/Bayesian model selection (cf. 09-1, slide 5)
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Probability theory is nothing but common sense reduced
to calculation.
— Pierre Laplace, 1812
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Basic terms

• Sample space Ω = set of outcomes

• Event A ⊆ Ω = some outcomes
▶ Special cases: ∅ (empty event), Ω (trivial event)
▶ Can be complicated → consider only events from some event

space Σ

• Can combine events A and B
▶ A ∪B, A ∩B, A \B, Ā = Ω \A, . . .
▶ Disjoint iff A ∩B = ∅

• Probability space = triple (Ω,Σ, p)
▶ Informally, p : Σ → [0, 1] assigns a probability to events
▶ Usual properties (e.g., p(Ω) = 1)

• We will often think in terms of random variables
▶ Ω and Σ implicit
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Random variables
• We often associate random variables with data attributes

▶ Both observed and unobserved ones
▶ E.g., p(heart disease=true | age ≥ 50, gender=male)
▶ E.g., p(shows a zero=true | image pixels)
▶ E.g., p(is spam=true | words in e-mail)
▶ E.g., p(stock tomorrow ≥ 100 | stock history)

• Technically, random variables (RV) are functions
▶ Val(X) = set of possible values
▶ Random variable X : Ω → Val(X),
▶ Maps each outcome ω ∈ Ω to a value X(ω) in Val(X)
▶ X = x means {ω | X(ω) = x }
▶ X ≤ x means {ω | X(ω) ≤ x }
▶ Sample space often implicit (e.g., cross product of the

possible-value sets of the considered variables)
• RV is discrete if possible values finite/countably infinite

▶ E.g., Val(X) = { 0, 1 } or Val(X) = N
• RV is continuous if possible values uncountably infinite

▶ E.g., Val(X) = R
4 / 22



Discrete random variables (1)
• Described via probability mass function fX : Val(X) → [0, 1]

fX(x) = p(X = x)

• Example: Bernoulli distribution Ber(θ)
▶ Models coin flip with probability θ of heads
▶ Val(X) = { 0, 1 } → binary RV
▶ fX(1) = θ, fX(0) = 1− θ
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Discrete random variables (2)

• Example: categorical distribution Cat(θ)
▶ Generalization of Bernoulli distribution to k > 0 categories
▶ Probabilities of categories given by θ =

(
θ1, . . . , θk

)
, summing to 1

Patients arrive in

Spring Summer Autumn Winter

x

θ x

0.
0

0.
2
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4
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6
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• Others: binomial, multinomial, Poisson, empirical, . . .
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Union of events

• Given events A and B, the probability of “A or B” is given by

p(A ∨B) = p(A) + p(B)− p(A ∧B)

= p(A) + p(B) if A and B are disjoint

• Generalizes to principle of inclusion-exclusion

p(
∨n

i=1Ai) =
∑

∅≠J⊆{ 1,...,n }

(−1)|J |−1p(
∧

j∈J Aj)

• Allows to derive upper and lower bounds, e.g., union bound

p(
∨n

i=1Ai) ≤
∑n

i=1 p(Ai)
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Joint probabilities and sum rule
• The joint probability of events A and B is given by

p(A,B) = p(A ∧B)

• Sum rule (law of total probability)

p(X = x) =
∑

y∈Val(y)

p(X = x, Y = y)

▶ p(X = x) is called the marginal distribution
▶ When we apply the sum rule, we say that we marginalize out Y

Example p(X,Y ) H T
X=H 0.1 0.2
X=T 0.3 0.4

p(X = H) =
∑

y∈{H,T }

p(X = H, Y = y)

= p(X = H, Y = H) + p(X = H, Y = T) = 0.3
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Conditional probability

• The conditional probability of A, given that B is true, is
defined as

p(A|B) =
p(A,B)

p(B)
if p(B) > 0

• Can be represented in a conditional probability table (CPT)

Joint probabilities CPT
p(X,Y ) H T
X=H 0.1 0.2
X=T 0.3 0.4

p(X|Y ) H T
X=H 0.25 0.33̄
X=T 0.75 0.66̄
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Product rule

• Conditional probability: p(A|B) = p(A,B)/p(B)

• Implies the product rule

p(A,B) = p(A|B)p(B)

• Generalizes to chain rule

p(A1:n) = p(A1)p(A2|A1)p(A3|A1, A2) · · · p(An|A1:n−1)
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Bayes’ rule

• Using the product rule, we obtain Bayes’ rule

p(A|B) =
p(A)p(B|A)

p(B)

• In terms of RVs:

p(X = x|Y = y) =
p(X = x)p(Y = y|X = x)

p(Y = y)

• Many applications, foundation of Bayesian statistics (more later)
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Example: Medical diagnosis

• A mammogram is a test for breast cancer
• Suppose you are a women in your 40s
• If you have cancer, test positive (T = 1) with probability 80%
• If you don’t have cancer, test positive with prob. 10%
• About 0.4% of women in their 40s have breast cancer (B = 1)
• How likely is it that you have breast cancer if the test is positive?

p(B = 1|T = 1) =
p(B = 1)p(T = 1|B = 1)

p(T = 1)

=
0.004 · 0.8

0.004 · 0.8 + 0.9996× 0.1

= 0.031
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Independence

• We say X and Y are (unconditionally/marginally) independent
iff

∀x, y : p(X = x, Y = y) = p(X = x)p(Y = y)

• I.e., joint probability equals product of marginals
• Example: throw two coins X, Y

▶ Assuming that the coins are fair and throws are independent, we
have for example

p(X = H, Y = T) = p(X = H)p(Y = T) = 0.25

• Very useful, thus special notation: X ⊥ Y

• Note: disjointness ̸= independence
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Conditional independence

• Unconditional independence is rare
• X and Y are conditionally independent given Z iff

∀x, y, z :p(X = x, Y = y|Z = z)

= p(X = x|Z = z)p(Y = y|Z = z)

• Denoted X ⊥ Y | Z
• Example

▶ Event that it rains tomorrow (X)
▶ Event that ground is currently wet (Y )
▶ Event that it rains now (Z)
▶ Then: X ̸⊥ Y but X ⊥ Y | Z

• Note: X ⊥ Y | Z does not imply X ⊥ Y

• Note: X ⊥ Y does not imply X ⊥ Y | Z
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Continuous random variables

• Described via cumulative distribution function (cdf)
FX : Val(X) → [0, 1]

FX(x) = p(X ≤ x)

• Non-decreasing
• p(a ≤ X ≤ b) = FX(b)− FX(a) for a ≤ b

• If derivative exists, we obtain the probability density function
(pdf) fX : Val(X) → R+

fX(x) =
d

dx
FX(x)

• Probability of range corresponds to area below pdf:

p(a ≤ X ≤ b) =

∫ b

a
fX(x) dx

• Examples: uniform, Gaussian, Student’s t, Laplace, Gamma,
Beta, Dirichlet, ...
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The Gaussian Distribution (1)
• Normal distribution N (µ, σ2)

▶ µ is a mean parameter
▶ σ2 is a variance parameter (sometimes: precision λ = 1/σ2)
▶ Standard normal distribution: N (0, 1)
▶ Most widely used continuous distribution in statistics and ML

• pdf given by

N (x|µ, σ2) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
cdf pdf
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The Gaussian Distribution (2)
µ = 0 µ = 2

σ2 = 1
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Mean, variance, covariance

• The mean or expected value µ of a RV is given by

E[X] =
∑

x∈Val(x)

xfX(x) if X is discrete

E[X] =

∫
x
xfX(x) dx if X is continuous

• The variance σ2 is given by

var [X] = E[(X − µ)2]

• Useful fact: var [X] = E[X2]− E[X]2

• The covariance is given by

Cov [X,Y ] = E[(X − E[X])(Y − E[Y ])]
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“Flaw of averages”

Mean correct, variance ignored E[g(X)] ̸= g(E[X])

Be careful with expected values!

19 / 22Savage, 2009.

http://www.flawofaverages.com/


Notation
We will work with many random variables.
• We write X ∼ N (0, 1) to say that r.v. X has the specified distr.

• We write p(X = x) to refer to the pmf (when X discrete) or
pdf (continuous)

• We often drop the r.v. from our notation (when clear from text)
▶ Write p(x) instead of p(X = x) (marginal distribution)
▶ Write p(x, y) instead of p(X = x, Y = y) (joint distribution)
▶ Write p(x|y) instead of p(X = x|Y = y) (conditional distribution)

• p(x) can refer to a probability (x fixed) or a distribution (x
variable)

• We write X ⊥ Y if X and Y are independent

• We write X ⊥ Y |Z if X and Y are conditionally independent
given Z
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Important properties

p(A ∪B) = p(A) + p(B)− p(A ∩B) (inclusion-exclusion)

p(Ā) = 1− p(A)

If B ⊇ A, p(B) = p(A) + p(B \A) ≥ p(A)

p(X,Y ) = p(Y |X)p(X) (product rule)

p(X) =
∑
y

p(X, y) (sum rule, y discrete)

p(X) =

∫
y
p(X, y) dy (sum rule, y continuous)

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes theorem)

E[aX + b] = aE[X] + b (linearity of expectation)

E[X + Y ] = E[X] + E[Y ]

EY [EX [X|Y ]] = E[X] (law of total expectation)
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Vector
A vector is
• A 1D array of numbers
• A geometric entity with magnitude and direction
• A matrix with exactly one row or column

▶ Called row vector and column vector, resp.
▶ Transpose v⊤ transposes a row vector into a

column vector and vice versa

• A (latent) object/example
• A (latent) attribute/feature

4 / 39



Y ear

Stockholm 9.95
Minsk 10.77
London 14.85
Budapest 14.91
Paris 15.46

Bucharests 16.44
Barcelona 19.90

Rome 20.44
Lisbon 21.36
Athens 22.31
V alencia 22.36
Malta 23.35



−6 −4 −2 2 4 6

−
6

−
4

−
2

2
4

6

0

(
4
−3

) ( Jan Apr Jul Oct Y ear

Stockholm −0.70 8.60 21.90 9.90 10.00
)



Vector norm
The norm of vector defines its magnitude. Let
v =

(
v1 v2 · · · vn

)⊤.

• Euclidean norm: ∥v∥ =
√∑n

i=1 v
2
i

▶ Corresponds to intuitive notion of length in Euclidean space

• ℓp norm for 1 ≤ p ≤ ∞: ∥v∥p = (
∑n

i=1 |vi|
p)1/p

▶ ℓ1 norm = sum of absolute values
(Manhattan distance from origin)

▶ ℓ2 norm = Euclidean norm
(bird-fly distance from origin)

▶ ℓ∞ norm = maximum absolute value
▶ The ℓp norms never increase as p increases, i.e.,

∥v∥p+a ≤ ∥v∥p for a ≥ 0

• Properties of vector norms
▶ ∥v∥ > 0 when v ̸= 0 and ∥v∥ = 0 iff v = 0
▶ ∥av∥ = |a| ∥v∥ (absolute scalability)
▶ ∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥ (triangle inequality)
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Norms and distances
The distance between two vectors u,v ∈ Rn can be quantified
with norm ∥u− v∥.

• Stockholm, s =
( Jan Apr Jul Oct Y ear

−0.70 8.60 21.90 9.90 10.00
)

• Minsk, m =
(
−2.10 12.20 23.60 10.20 10.60

)
• Athens, a =

(
12.90 20.30 32.60 23.10 22.30

)
ℓ1 s m a

s 0.00 7.60 61.50
m 7.60 0.00 56.70
a 61.50 56.70 0.00

ℓ2 s m a

s 0.00 4.27 27.60
m 4.27 0.00 25.98
a 27.60 25.98 0.00

ℓ∞ s m a

s 0.00 3.60 13.60
m 3.60 0.00 15.00
a 13.60 15.00 0.00
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Dot product (algebraic definition)
The dot product of two vectors u,v ∈ Rn is given by

u · v =

n∑
i=1

uivi.

• Also known as scalar product
• An inner product for Euclidean space: ⟨u,v⟩
• Matrix product of a row and a column vector: u⊤v

• Properties (with a, b ∈ R)
▶ u · v = v · u
▶ (au) · v = a(u · v)
▶ (au+ bv) ·w = (au) ·w + (bv) ·w

• Many uses, many interpretations
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With dot products, we can ...

• Compute the (squared) Euclidean norm

v · v =

n∑
i=1

v2i = ∥v∥2

• Determine the value of a coordinate

vi = v · ei,

where ei denotes the i-th standard basis vector (i.e., [ei]j = 1
if i = j else 0)

• Compute the sum of the elements of a vector

v · 1n =

n∑
i=1

vi,

where 1n is the all-ones vector of dimensionality n

• ...
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Dot product: Weighted sum
The elements of one vector are interpreted as weights for the
elements of the other vector.

Example: Anna goes shopping

Item Bread Butter Pizza
Price/piece 1e 0.50e 3e
Quantity bought 1 2 5

• How much does Anna pay?

• Prices can be interpreted as “weights”: p =
(
1 0.5 3

)⊤
• Quantities are n =

(
1 2 5

)⊤
• Total is p · n = 1 · 1 + 0.5 · 2 + 3 · 5 = 17

• Similarly: Can interpret quantities as weights for prices
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Dot product: Expected value
One vector corresponds to probabilities, the other one to a random
variable.

Example: Bob is gambling

Outcome Jackpot Win Loss
Probability 0.1 0.2 0.7
Amount won 5e 1e -2e

• How much does Bob win in expectation? (Should he play?)

• Probabilities p =
(
0.1 0.2 0.7

)⊤
▶ A non-negative vector that sums to one (∥p∥1 = 1) is called a

probability vector
▶ Corresponds to a probability distribution over a finite set of

outcomes
• Amounts won x =

(
5 1 −2

)⊤
▶ Corresponds to a random variable; associates a real value with

each outcome

• Expected value p · x = 0.1 · 5 + 0.2 · 1 + 0.7 · (−2) = −0.7
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Dot product: Sample variance
Denote by ū = 1

n

∑
i ui the mean of u. If we treat the entries of u

as samples from some distribution, then the sample variance is
given by

s2 =
1

n− 1

n∑
i=1

(ui − ū)2 =
∥u− ū∥2

n− 1
=

(u− ū) · (u− ū)

n− 1
,

where ū denotes the sample mean vector, i.e., [ū]i = ū for
1 ≤ i ≤ n.
• Example

▶ u =
(
10 11 12

)⊤
▶ ū = 11, ū =

(
11 11 11

)⊤
▶ u− ū =

(
−1 0 1

)⊤
▶ s2 = 1, ∥u∥2 = 365

• Variances are thus closely related to norms; the key difference is
centering and averaging

• When we center data before analyzing it, dot products are
proportional to variances (u · u) or covariances (u · v)
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Dot product: Sets and intersections
The indicator vector of a subset T of a set S = { s1, . . . , sn } is
the vector x such that xi = 1 if si ∈ T and xi = 0 if si /∈ T . If u
and v are indicator vectors for subsets U, V ⊆ S, resp., then
u · v = |U ∩ V |.
• S = {France,Germany,Denmark,Poland }
• Anna visited France, Germany, and Poland: u =

(
1 1 0 1

)⊤
• Bob visited Germany, Denmark, and Poland: v =

(
0 1 1 1

)⊤
• Number of countries visited by both:

u ·v = 1 · 0+1 · 1+0 · 1+1 · 1 = 2 = |{Germany,Poland }|
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Dot product (geometric definition)
An alternative geometric definition of the dot product of two
vectors u,v ∈ Rn is

u · v = ∥u∥ ∥v∥ cos θ,
where −π ≤ θ ≤ π denotes the angle between u and v.
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Why is this?
Let’s focus on the 2D case. Recall the law of cosines:

c2 = a2 + b2 − 2ab cos θ.

Now set u = B − C and v = A− C and observe
that v − u = A−B.

cos θ =
a2 + b2 − c2

2ab
=

∥u∥2 + ∥v∥2 − ∥v − u∥2

2 ∥u∥ ∥v∥

=
u · u+ v · v − (v − u) · (v − u)

2 ∥u∥ ∥v∥

=
u · u+ v · v − v · v + 2u · v − u · u

2 ∥u∥ ∥v∥

=
u · v

∥u∥ ∥v∥
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Dot product: Test for orthogonality
Two nonzero vectors u,v ∈ Rn are orthogonal iff u · v = 0.
• Since 0 = u · v = ∥u∥ ∥v∥ cos θ and ∥u∥ , ∥v∥ > 0, we have
cos θ = 0

• And this means that the angle is 90 degrees

0

u

v

θ
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Dot product: Cosine similarity (1)
The angle between u and v is another way to measure the
similarity between two vectors. The cosine similarity of u and v
is given by

cos(u,v) =
u · v

∥u∥ ∥v∥
.

• −1 ≤ cos(u,v) ≤ 1

• Vectors that point in roughly the same direction
→ small angle → cosine similarity ≈ 1

• Vectors that point in roughly opposite directions
→ large angle → cosine similarity ≈ −1

• Vectors that are roughly orthogonal
→ roughly right angle → cosine similarity ≈ 0

• Example: Determine the similarity between a document and a
query in IR
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Dot product: Cosine similarity (2)
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Dot product: Pearson correlation
The sample Pearson correlation coefficient is a measure of
linear correlation. It is given by

rx,y =
(x− x̄) · (y − ȳ)

∥x− x̄∥ ∥y − ȳ∥
.

• Numerator proportional to the sample covariance
• Denominator proportional to sample standard deviations
• Related to cosine similarity, but performs centering
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Dot product: Similarity
The dot product itself can also be seen as a measure of similarity
or compatibility. Recall

u · v = ∥u∥ ∥v∥ cos θ.

Example: Shopping transactions
• Like in previous example, vectors u and v correspond to persons
• Elements correponds to frequencies of buying each product
• We can think of the direction of a vector as “preference”

▶ Which products are being bought?
▶ cos θ large when u and v have similar interest

• We can think of the magnitude of a vector as “strength”
▶ How much is being bought?
▶ ∥u∥ ∥v∥ large when both persons buy a lot

• If u · v is large, u and v have similar shopping behavior and buy
a lot
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Dot product: Projection
The vector projection of v onto u is given by

proju(v) =
u · v
∥u∥︸ ︷︷ ︸
scalar

projection

u

∥u∥
=

u · v
∥u∥2

u

• The scalar projection
describes how far v points
in the direction u

• The vector projection
is a vector pointing this far
in the direction of u

• Note: norm of u (when ̸= 0)
does not affect result, only
direction does
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Notation
Let A ∈ Rm×n be a real m× n matrix. We write
• aij or Aij (both scalars) for the value of entry (i, j)

• aj or A:j (both column vectors) for the j-th column of A
• ai (column vector) or Ai: (row vector) for the i-th row of A
Thus

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



=
(
A:1 A:2 · · · A:n

)
=


A1:

A2:
...

Am:


22 / 39



Full matrix ring (addition)
The set of all matrices in Rn×n form a ring, the full matrix ring.
• Addition and substraction are element-wise

[A+B]ij = aij + bij

[A−B]ij = aij − bij

• Addition is associative and commutative
• The additive identity is the n× n zero matrix 0n×n

• The additive inverse is −A with [−A]ij = −aij

• In general [cA]ij = caij for c ∈ R (scalar multiplication)
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Full matrix ring (multiplication)

• For multiplication, we take dot products

[AB]ij = ai · bj =
n∑

k=1

aikbkj

• The multiplicative identity is
the n× n identity matrix In

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


• Multiplication is associative, but not commutative

(AB ̸= BA in general)
• Multiplication distributes over addition

(A(B +C) = AB +AC and (B +C)A = BA+CA)
• Multiplication does not always have an inverse (division)
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Rectangular matrices

• We generally have rectangular matrices A ∈ Rm×n

• We can only add and substract matrices of the same dimensions
(Am×n +Bm×n)

• We can only multiply matrices with a matching inner dimension
▶ We can multiply A ∈ Rm×r with B ∈ Rr×n (inner dimension is r)
▶ Gives an m× n matrix (outer dimensions)
▶ [AB]ij = ai · bj =

∑r
k=1 aikbkj

CA

B

a⊤
i

bj

cij
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Interpretation for matrix multiplication (1)
When we multiply A and B, we compute all dot products between
rows of A and columns of B.
• We can apply any of the interpretations of the dot product
• E.g., weighted sum

▶ m supermarkets, r products, n persons
▶ aik = price of product k at supermarket i
▶ bkj = quantity of product k bought by person j
▶ [AB]ij = how much the j-th person would pay

when buying at the i-th supermarket
• E.g., covariance

▶ If all columns of Am×n are centered
(
∑

k aik = 0), then 1
m−1A

⊤A ∈ Rn×n

is the sample covariance matrix
▶ [ 1

m−1A
⊤A]ii holds the sample variance

of column i
▶ [ 1

m−1A
⊤A]ij holds the sample covariance

between columns i and j
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Interpretation for matrix multiplication (2)
We can also interpret rows i of AB as a linear combination of the
rows of B with the coefficients coming from A

[AB]i: = ai1B1: + ai2B2: + · · ·+ airBr:,

and, similarly, the columns of AB as linear combinations of the
columns of A

[AB]:j = b1jA:1 + b2jA:2 + · · ·+ brjA:r.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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Interpretation for matrix multiplication (3)
We can view matrix AB as the sum of the r component
matrices obtained by multiplying the k-th column of A and the
k-th row of B:

AB = A:1B1: +A:2B2: + · · ·+A:rBr:

• Components A:kBk: are outer products (m× n matrices)
• Note: when u ∈ Rm and v ∈ Rn, the matrix product

▶ u⊤v corresponds to a dot product (a scalar), m = n required
▶ uv⊤ corresponds to an outer product (an m× n matrix)

• In our supermarket example
▶ Components correspond to products
▶ Entry (i, j) of k-th component indicates how much the j-th person

would pay for product k when buying at the i-th supermarket

C=
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Transposes
The matrix transpose A⊤ switches rows and columns, i.e.,

[A⊤]ij = aji.

The following properties hold
• (A⊤)⊤ = A

• (A+B)⊤ = A⊤ +B⊤

• (cA)⊤ = cA⊤

• (AB)⊤ = B⊤A⊤
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Summing and scaling
Let A ∈ Rm×n. Denote by 1n the all-ones vector of dimensionality
n. For s ∈ Rn, denote by diag (s) the n× n matrix with the
entries of s on the main diagonal:

diag (s) =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sn


• A1n computes the row sums of A
• 1⊤mA computes the column sums of A
• A diag (c) scales each column j of A by cj , c ∈ Rn

• diag (r)A scales each row i of A by ri, r ∈ Rm
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Matrices as linear maps

• A matrix A ∈ Rm×n is a linear map from Rn to Rm

▶ If x ∈ Rn, then y = Ax ∈ Rm is the image of x
▶ y =

∑n
j=1 ajxj , i.e., a linear combination of the columns of A

• If A ∈ Rm×r and B ∈ Rr×n, then AB maps from Rn to Rm

▶ Product AB corresponds to composition of linear maps A and B

• Square matrix A ∈ Rn×n is invertible (= nonsingular) iff there
is matrix B ∈ Rn×n such that AB = I
▶ Matrix B is the inverse of A, denoted A−1

▶ If A is invertible, then AA−1 = A−1A = I
▶ AA−1x = A−1Ax = x

▶ Non-square matrices do not have (general) inverses but can have
right or left inverses: AR = I or LA = I

• The transpose of A ∈ Rm×n is a linear map A⊤ : Rm → Rn

▶ (A⊤)ij = Aji

▶ Generally, transpose is not the inverse (AA⊤ ̸= I)
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Matrix norms

• Matrix norms measure the magnitude of the matrix
▶ Magnitude of the values in the matrix
▶ Magnitude of the image

• Operator norms measure how large the image of a unit vector
can get
▶ Induced by a vector norm
▶ For p ≥ 1, ∥A∥p = max{∥Ax∥p | ∥x∥p = 1}
▶ ∥A∥1 = maximum sum of absolute values of a column
▶ ∥A∥∞ = maximum sum of absolute values of a row
▶ Spectral norm: ∥A∥2 = largest singular value of A (more later)

• The Frobenius norm is the vector-ℓ2 norm applied to the
elements of a matrix (treating them as a vector)
▶ ∥A∥F =

√∑m
i=1

∑n
j=1 a

2
ij

▶ Note: ∥A∥F ̸= ∥A∥2
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Matrix rank and linear independence
• A vector u ∈ Rn is linearly dependent on set of vectors
V = {vi} ⊂ Rn if u can be expressed as a linear combination of
vectors in V
▶ u =

∑
i aivi for some a1, . . . , an ∈ R

▶ Set V is linearly dependent if some vi ∈ V is linearly dependent
on V \ {vi}

▶ If V is not linearly dependent, it is linearly independent
• The column rank of matrix A is the maximum number of

linearly independent columns of A
• The row rank of A is the maximum number of linearly

independent rows of A
• The Schein rank of A is the least integer r such that A = LR

for some L ∈ Rm×r and R ∈ Rr×n

▶ Equivalently, the least r such that A is a sum of r vector outer
products

• All these ranks are equivalent
▶ E.g., matrix has rank 1 iff it is an outer product of two (non-zero)

vectors
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Matrices as systems of linear equations

• A matrix can hold the coefficients of a system of linear
equations (c.f. Chinese Nine Chapters on Arithmetic)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

⇔


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



x1

x2

...
xn

 =


b1
b2
...
bm



• If the coefficient matrix A is invertible, the system has exact
solution x = A−1b

• If m < n the system is underdetermined and can have an
infinite number of solutions

• If m > n the system is overdetermined and (usually) does not
have an exact solution

• The least-squares solution is the vector x that minimizes
∥Ax− b∥22 (cf. linear regression)
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Special types of matrices
• The diagonals of matrix A go from top-left to bottom-right

▶ The main diagonal contains the elements aii
▶ The k-th upper diagonal contains the elements ai,(i+k)
▶ The k-th lower diagonal contains the elements a(i+k),i)
▶ The anti-diagonals go from top-right to bottom-left

• Matrix is diagonal if all its non-zero values are in a diagonal
(typically main diagonal)
▶ Bi-diagonal matrices have values in two diagonals, etc.

• Matrix A is upper (right) triangular if all of its non-zeros are
in or above the main diagonal
▶ Lower (left) triangular matrices have all non-zeros in or below

main diagonal
▶ Upper left and lower right triangular matrices: replace diagonal

with anti-diagonal
• A square matrix P is permutation matrix if each row and each

column of P has exactly one 1 and rest are 0s
▶ If P is a permutation matrix, PA permutes the order of the rows

and AP the order of the columns of A
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Orthogonal matrices

• A set V = {vi} ⊂ Rn is orthogonal if all vectors in V are
mutually orthogonal
▶ v · u = 0 for all v ̸= u ∈ V
▶ If all vectors in V also have unit norm (∥v∥2 = 1), V is

orthonormal
• A square matrix A is orthogonal if its columns are a set of

orthonormal (!) vectors or equivalently
▶ Its rows are orthonormal
▶ A⊤A = In

▶ A−1 = A⊤

• An m× n matrix A is
▶ column-orthogonal if columns are a set of orthonormal vectors

(only possible if m ≥ n); then A⊤ is left inverse (A⊤A = In)
▶ row-orthogonal if rows are a set of orthonormal vectors (only

possible if m ≤ n); then A⊤ is right inverse (AA⊤ = Im)
• If A and B are orthogonal, so is AB

▶ Similarly: column-orthogonality and row-orthogonality is preserved
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Outline

1. Vectors

2. Matrices

3. Summary
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Lessons learned

• Many uses, many interpretations
▶ Vectors
▶ Matrices
▶ Dot products
▶ Matrix products

• Magnitudes and distances are measured by norms
• Basic concepts of linear algebra
• Special types of matrices: diagonal, triangular, orthogonal
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Suggested reading

• Murphy, Ch. 7.1–7.3.1

• A linear algebra text book such as
▶ Carl Meyer

Matrix Analysis and Applied Linear Algebra
Society for Industrial and
Applied Mathematics, 2000
http://www.matrixanalysis.com (used to be freely available)

• Wolfram MathWorld articles

• Wikipedia articles
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