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Previously on “Semantic Web Technologies”

• We have got to know

– The RDF and RDFS languages

– The Linked Open Data paradigm

• We have accessed Linked Open Data

– with browsers and via programming frameworks

– jumping from node to node in the graph

• ...let us have a closer look!
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An Example RDF Graph

Berlin

Germany

lies in 0002
lies in

0003lies in

0004
lies in
lies in

...

3.501.872

state

691.518
inhabitants

1.378.176
inhabitants

1.798.836
inhabitants

Question: in which states are the five biggest cities of Germany located?

0020

0001
inhabitants

state

Hamburg (Land)

state

0022

0021



10/7/19 Heiko Paulheim 4 

Information Retrieval on Linked Open Data

• Question: in which states are the five biggest cities of Germany 
located?

• So let's try...
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Information Retrieval on Linked Open Data

• Observations

– Navigation across derefencable URIs ultimately leads to a goal

– But it is tedious

– A lot of useless data is potentially retrieved

• Different information needs

– Good for simple factual questions

– Less efficient for more complex questions
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Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...
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What Would We Like to Have?

Berlin

Germany

lies in 0002
lies in

0003lies in

0004
lies in
lies in

...

3.501.872
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1.798.836
inhabitants

Question: in which states are the five biggest cities of Germany located?
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state

0022

0021
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Wanted: A Query Language for the Semantic Web

• ...just like SQL is for relational databases

SELECT name, birthdate FROM customers
WHERE id = '00423789'

id name birthdate

00183283 Stephen Smith 23.08.1975

00423782 Julia Meyer 05.09.1982

00789534 Sam Shepherd 31.03.1953

00423789 Herbert King 02.04.1960

... ... ...
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Wanted: A Query Language for the Semantic Web

• SPARQL: "SPARQL Query Language for RDF"

– a recursive acronym

• A W3C Standard since 2008

• Allows for querying RDF graphs
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Hello SPARQL!

• Example:

SELECT ?child
WHERE { :Stephen :fatherOf ?child }

:Stephen :Julia:fatherOf

Expressions with ? 
denote variables
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SPARQL Basics

• Basic structure:

SELECT <list of variables>
WHERE { <pattern> }

• Variables denoted with ?

• Prefixes as in RDF/N3:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?name
WHERE { ?person foaf:name ?name }
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SPARQL Basics

• The <pattern> in the WHERE clause is like N3

– with variables

• {?p foaf:name ?n }

• {?p foaf:name ?n; foaf:homepage ?hp }

• {?p foaf:knows ?p1, ?p2 }
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SPARQL Basics: Graph Pattern Matching

• Pattern: ?x :knows :Julia .

– Result: { ?x = :Peter }

:Julia:Peter :knows

:Stephen

:knows

:Ellen

:knows

:fatherOf

:motherOf
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SPARQL Basics: Graph Pattern Matching

• Pattern: :Julia :knows ?x .

– Result: { ?x = :Stephen, ?x = :Ellen }

:Julia:Peter :knows

:Stephen

:knows

:Ellen

:knows

:fatherOf

:motherOf
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SPARQL Basics: Graph Pattern Matching

• Pattern: :Peter :knows ?x . ?x knows ?y .

– Result: { (?x = :Julia, ?y = :Stephen) ; (?x = :Julia, ?y = :Ellen)}

:Julia:Peter :knows

:Stephen

:knows

:Ellen

:knows

:fatherOf

:motherOf
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SPARQL: Pattern Matching on RDF Graphs

• A person who has a daughter and a son:

{ ?p :hasDaughter ?d ; :hasSon ?s . }

• A person knowing two persons who know each other

{ ?p :knows ?p1 , ?p2 . ?p1 :knows ?p2 . }

• A person who has two children:

{ ?p :hasChild ?c1, ?c2 . }
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SPARQL: Pattern Matching on RDF Graphs

• A person who has two children:

{ ?p :hasChild ?c1, ?c2 . }

• ResultSet:

– ?p=:Stephen, ?c1=:Julia, ?c2=:Julia

Observation: different variables are not 
necessarily bound to different resources!

:Stephen :Julia:hasChild
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SPARQL: Blank Nodes

• WHERE clause: an RDF graph with variables

SELECT ?person1 ?person2 ?otherPerson
WHERE { ?person1 :knows ?otherPerson .

?otherPerson :fatherOf ?person2 . }

• Result:

– ?person1 = :Peter, ?person2 = :Julia; ?otherPerson = _:x1

• Note: Blank Node IDs are only unique within one result set!

:Julia:fatherOf:Peter :knows



10/7/19 Heiko Paulheim 19 

SPARQL: Matching Literals

• Strings

{ ?country :name "Germany" . }

• Watch out for language tags!

{ ?country :name "Germany"@en . }

→ The Strings "Germany" and "Germany"@en are different!

• Numbers:

{ ?person :age "42"^^xsd:int .}

Short hand notation:

{ ?person :age 42 . }
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SPARQL: Filters

• Used for further restricting results

{?person :age ?age . FILTER(?age < 42) }

• Operators for comparisons:

= != < > <= >=

• Logical operations:

&& || !
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SPARQL: Filters

• Persons with younger siblings

{ ?p1 :siblingOf ?p2 . 
  ?p1 :age ?a1 .
  ?p2 :age ?a2 .
  FILTER(?a2 < ?a1)}

• Persons that have both younger and older siblings
{ ?p1 :siblingOf ?p2,p3 . 
  ?p1 :age ?a1 .
  ?p2 :age ?a2 .
  ?p3 :age ?a3 .
  FILTER(?a2 < ?a1 && ?a3 > ?a1)}

Question: why do we get 
different persons for p2 and p3?
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SPARQL: Filters

• Second try: a person with two children

{ ?p :hasChild ?c1, ?c2 . FILTER( ?c1 != ?c2) }

• A slight improvement

→ Variables are now bound to different resources

• But: we still have the Non-Unique Naming Assumption

→ i.e., given that
:Peter :hasChild :Julia .
:Peter :hasChild :Stefan .

we still cannot conclude that Peter has two children!

• Furthermore, there is still the Open World Assumption

→ i.e., Peter could also have more children
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Filters for Strings

• Searching in Strings: using regular expressions

• People called “Ann”

{?person :name ?n . FILTER(regex(?n,"^Ann$")) }

{?person :name ?n . FILTER(regex(?n,"Ann")) }

→ the second variant would also find, e.g., “Mary-Ann”

• str: URIs and Literals as strings

• allows for, e.g., searching for literals across languages

{?country :name ?n . FILTER(str(?n) = "Tyskland") }
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Further Built-In Features

• Querying the type of a resource

– isURI

– isBLANK

– isLITERAL

• Querying for the data type and language tags of literals

– DATATYPE(?v)

– LANG(?v)

• Comparing the language of two literals

– langMATCHES(?v1,?v2)

– Caution: given ?v1 = "Januar"@DE, ?v2 = "Jänner"@DE-at

LANG(?v1) = LANG(?v2) → false

langMATCHES(?v1,?v2)  → true
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Combining Patterns

• Find the private and work phone number

{ ?p :privatePhone ?nr } 
UNION { ?p :workPhone ?nr }

• UNION creates a set union

?p = :peter, ?nr = 123; 
?p = :john, ?nr = 234;
?p = :john, ?nr = 345;
...

That happens if John has both a
private and a work phone
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Interlude: A Real-World Example

Der SPIEGEL, 27/2016, p. 52
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Interlude: A Real-World Example

Who is this Walter K.?

?x

SoccerPlayer

rdf:type Stuttgart
dbo:birthPlace

Germany National 
Football Team

dbo:careerStation dbo:team

^Walter K.*
rdfs:label
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Interlude: A Real-World Example

Who is this Walter K.?

SELECT DISTINCT(?x) WHERE {
?x dbo:birthPlace dbr:Stuttgart . 
?x a dbo:SoccerPlayer . 
?x dbo:careerStation ?s. ?s dbo:team dbr:Germany_national_football_team. 
?x rdfs:label ?l . FILTER(REGEX(?l,"^Walter K.*"))

}
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Interlude: A Real-World Example

Who is this Walter K.?

We get one result:

<http://dbpedia.org/resource/Walter_Kelsch>
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Interlude: A Real-World Example
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Optional Patterns

• Find a person's phone number and fax number, if existing

 { ?p :phone ?tel } 
OPTIONAL { ?p :fax ?fax }

• OPTIONAL also creates unbound variables

?p = :peter, ?tel = 123, ?fax = 456;
?p = :john, ?tel = 234, ?fax = ;
?p = :julia, ?nr = 978; ?fax = 349;
...

Unbound variable: 
John does not have a fax 

number (as far as we know)
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Unbound Variables

• Variables can remain unbound

• We can test this with BOUND

• Everybody who has a phone or a fax (or both):

OPTIONAL {?p :phone ?tel . }
OPTIONAL {?p :fax ?fax . }
FILTER ( BOUND(?tel) || BOUND(?fax) )
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Negation

• This is a common question w.r.t. SPARQL

• How do I do this:

– "Find all persons who do not have siblings."

• This is left out of SPARQL intentionally!

• Why?

• Open World Assumption

– we cannot know!

• For the same reason, there is no COUNT
– at least not in standard SPARQL
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Negation – Hacking SPARQL

• However, there is a possibility

– try with caution!

• Using OPTIONAL and BOUND

• Find all persons without siblings

OPTIONAL {?p :hasSibling ?s . }
FILTER ( !BOUND(?s) )

• This works

• However, you should know what you are doing

– ...and how to interpret the results!
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Negation – Hacking SPARQL

• How does that work?

• Results before FILTER:

OPTIONAL {?p :hasSibling ?s . }

?p = :peter, ?s = :julia
?p = :julia, ?s = :peter
?p = :mary, ?s = 
?p = :paul, ?s = 

• Applying the FILTER

– FILTER(!BOUND(?s))

?p = :mary, ?s = 
?p = :paul, ?s = 

Unbound variables
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Sorting and Paging Results

• Sorting: ORDER BY ?name

• Limitations: LIMIT 100

• Lower Bounds: OFFSET 200

• Example: persons 101-200, ordered by name
– ORDER BY ?name LIMIT 100 OFFSET 100

• LIMIT/OFFSET without ORDER BY:
– Result orderings are not deterministic

– There is no default ordering
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Sorting and Paging Results

• Application scenarios:

– Some SPARQL services limit their result set sizes

– Pre-loading in applications

• Application example:

– let the user browse cities

– it is more likely that users want to see the big cities

– display 100 biggest cities on one page, show more on demand

• SELECT ?city ?population 
WHERE {?city hasPopulation ?population}
ORDER BY DESC(?population)
LIMIT 100
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Filtering Duplicates

• SELECT DISTINCT ?person 
WHERE { ?person :privatePhone ?nr } 
UNION { ?person :workPhone ?nr }

• This means: all results with identical variable bindings are filtered

• This does not mean: persons identified by ?person are actually 
different

• Why?

– Non-unique naming assumption
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Custom Built-Ins

• Some SPARQL engines allow special constructs

• also known as Custom Built-Ins

• Example: geographic processing

– Dataset: Linked Geo Data
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LinkedGeoData

• A LOD Wrapper for OpenStreetMaps
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Custom Built-Ins

• Querying for coordinates

– simple: 
WHERE { ?x geo:long ?long; geo:lat ?lat .
FILTER (?long>8.653 && ?long<8.654 && 
        ?lat>49.878 && ?lat<49.879)}

• More complex queries

– all cafés within a 1km radius of a given point

WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?geo .
FILTER (bif:st_intersects(

?geo, bif:st_point(8.653, 49.878), 1))}
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Further Query Types: ASK

• So far, we have only looked at SELECT queries

• ASK allows for yes/no queries:

– e.g., are there persons with siblings?

ASK {?p :hasSibling ?s . }

• Often faster than SELECT queries

• The answer is true or false

– false means: there are no matching sub graphs

– do not misinterpret (Open World Assumption!)
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Further Query Types: DESCRIBE

• All properties of a resource

DESCRIBE <http://dbpedia.org/resource/Berlin>

• Can be combined with a WHERE clause

DESCRIBE ?city WHERE { :Peter :livesIn ?city . }

• Allows for exploration of a dataset with unknown structure

• Caution: types of results are not standardized, 
results vary from implementation to implementation!
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Further Query Types: CONSTRUCT

• Creates a new RDF graph

CONSTRUCT 
{ ?x rdfs:seeAlso 
<http://dbpedia.org/resource/Berlin> . } WHERE 
{ <http://dbpedia.org/resource/Berlin> ?y ?x . 
        FILTER (isURI(?x)) }

• CONSTRUCT returns complete RDF graphs

– e.g., for further processing
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Query Federation

• Queries can be answered over multiple SPARQL endpoints

• Example

SELECT ?name ?lat ?long WHERE {

?x a foaf:Person . 
?x foaf:name ?name .
?x foaf:based_near ?city .
?city owl:sameAs ?geocity .
SERVICE <http://linkedcoordinates.org/sparql> {

?geocity geo:lat ?lat .
?geocity geo:long ?long .

}

}

:John :London

“John Smith”

:534789

“51.50939”

“-0.11832”
owl:sameAs

geo:lat

geo:long
foaf:based_near

foaf:name
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SPARQL: Wrap-Up

• SPARQL is a query language for the semantic web

• Basic principle: pattern matching on graphs

• SPARQL allows for directed search for information 
instead of navigating the graph from node to node

• Results follow the semantic principles of RDF!

– Open World Assumption

– Non-unique naming assumption
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Example: Jena + SPARQL

• Querying models with SPARQL

String queryString = "SELECT ?x ...";

Query query = QueryFactory.create(queryString);

QueryExecution qe = 
  QueryExecutionFactory.create(query, model);

ResultSet results = qe.execSelect();

while(results.hasNext()) {

  QuerySolution sol = results.next();
  String s = sol.get("x").toString();
  ...

}
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Recap: Reasoning with Jena

• Given: a schema and some data

Model schemaModel = ModelFactory.createDefaultModel();

InputStream IS = new 
FileInputStream("data/example_schema.rdf");

schemaModel.read(IS);

Model dataModel = ModelFactory.createDefaultModel();

IS = new FileInputStream("data/example_data.rdf");

dataModel.read(IS);

Model reasoningModel = 
  ModelFactory.createRDFSModel(schemaModel, dataModel);

• Now, reasoningModel contains all derived facts
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Example: Jena + SPARQL + Reasoning

• Derived facts can also be queries with SPARQL

• Given the reasoningModel
  Query q = QueryFactory.create(
    "SELECT ?t WHERE 
    { <http://example.org/Madrid> 
      <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
      ?t .}" );
  QueryExecution qexec = 
    QueryExecutionFactory.create(q, reasoningModel);
  ResultSet rs = qexec.execSelect();
  while(rs.hasNext())
    String type = rs.next().get("t");

• Here, the query produces two solutions
– http://example.org/City 

– http://www.w3.org/2000/01/rdf-schema#Resource
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Accessing Public SPARQL Endpoints

• SPARQL Endpoints are an important building block of the 
Semantic Web tool stack

• Access using Jena:

String query = "SELECT ...";

String endpoint = "http://dbpedia.org/sparql";

Query q = QueryFactory.create(strQuery);

QueryExecution qexec = 
  QueryExecutionFactory.sparqlService(endpoint, q);

ResultSet RS = qexec.executeSelect();
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Accessing Public SPARQL Endpoints

• Recap:

– Jena uses the iterator pattern quite frequently

• Observation:

– SPARQL ResultSets are also like iterators

– Data can be retrieved from the server little by little
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Triple Pattern Fragments

• Observation:

– Operating SPARQL endpoints is costly

• Hence, there are often downtimes

– Accessing data via dumps or derefencing is time consuming

• See initial experiment

• Triple Pattern Fragments provide a middle ground solution

http://linkeddatafragments.org
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Triple Pattern Fragments

• Only allow simple restrictions

– i.e., only {?s ?p ?o}

• Provide results in a paged fashion

– Estimated count

– Links to further pages

http://linkeddatafragments.org
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Triple Pattern Fragments

• Most SPARQL queries can be solved by iteratively retrieving TPFs

– Successively issuing new selectors

– More targeted, i.e., less calls, than derefencing individual URIs

http://linkeddatafragments.org
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Triple Pattern Fragments

• Example: astronauts born in capital countries

select ?x ?y ?z where {
?x a dbpedia-owl:Astronaut . 
?x dbpedia-owl:birthPlace ?y . 
?z dbpedia-owl:capital ?y . 
?z a dbpedia-owl:Country

}

• Algorithm:

– retrieve pattern: ?x a dbpedia-owl:Astronaut . 

– for each result ?x: retrieve ?x dbpedia-owl:birthPlace ?y .

– for each result ?y: retrieve ?z dbpedia-owl:capital ?y .

– for each result ?z: check ?z a dbpedia-owl:Country .

+/- 651

 ±13,779 

±1,137,061
 ±5,034

653

1,209

637
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Triple Pattern Fragments

• Middle ground between 

– setting up a SPARQL server (costly for the server)

– providing a full RDF dump (costly for the client)

• In our example, a SPARQL query was broken down 
into ~3k HTTP GET requests

– Using clever index structures, this might still be faster

– Results may also be streamed – allows for early stopping
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Triple Pattern Fragments vs. SPARQL

• All SPARQL constructs can be translated to a TPF query plan

• Some are quite fast

– e.g., typical star-shaped queries

• Some are rather slow

– e.g., regex queries for labels
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Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...
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Questions?
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