
Semantic Web Technologies
SPARQL

Heiko Paulheim

10/7/19 Heiko Paulheim 2

Previously on “Semantic Web Technologies”

• We have got to know

– The RDF and RDFS languages

– The Linked Open Data paradigm

• We have accessed Linked Open Data

– with browsers and via programming frameworks

– jumping from node to node in the graph

• ...let us have a closer look!

10/7/19 Heiko Paulheim 3

An Example RDF Graph

Berlin

Germany

lies in 0002
lies in

0003lies in

0004
lies in
lies in

...

3.501.872

state

691.518
inhabitants

1.378.176
inhabitants

1.798.836
inhabitants

Question: in which states are the five biggest cities of Germany located?

0020

0001
inhabitants

state

Hamburg (Land)

state

0022

0021

10/7/19 Heiko Paulheim 4

Information Retrieval on Linked Open Data

• Question: in which states are the five biggest cities of Germany
located?

• So let's try...

Germany

lies in 0002
lies in

0003lies in

0004
lies in
lies in

...

3.501.872

state

691.518
inhabitants

1.378.176
inhabitants

1.798.836
inhabitants

0020

0001
inhabitants

state

Hamburg (Land)

state

0022

0021
HTTP GET

HTTP GET

HTTP GET

HTTP GET

HTTP GET

HTTP GET

HTTP GET

HTTP GET

10/7/19 Heiko Paulheim 5

Information Retrieval on Linked Open Data

• Observations

– Navigation across derefencable URIs ultimately leads to a goal

– But it is tedious

– A lot of useless data is potentially retrieved

• Different information needs

– Good for simple factual questions

– Less efficient for more complex questions

10/7/19 Heiko Paulheim 6

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

10/7/19 Heiko Paulheim 7

What Would We Like to Have?

Berlin

Germany

lies in 0002
lies in

0003lies in

0004
lies in
lies in

...

3.501.872

state

691.518
inhabitants

1.378.176
inhabitants

1.798.836
inhabitants

Question: in which states are the five biggest cities of Germany located?

0020

0001
inhabitants

state

Hamburg (Land)

state

0022

0021

10/7/19 Heiko Paulheim 8

Wanted: A Query Language for the Semantic Web

• ...just like SQL is for relational databases

SELECT name, birthdate FROM customers
WHERE id = '00423789'

id name birthdate

00183283 Stephen Smith 23.08.1975

00423782 Julia Meyer 05.09.1982

00789534 Sam Shepherd 31.03.1953

00423789 Herbert King 02.04.1960

...

10/7/19 Heiko Paulheim 9

Wanted: A Query Language for the Semantic Web

• SPARQL: "SPARQL Query Language for RDF"

– a recursive acronym

• A W3C Standard since 2008

• Allows for querying RDF graphs

10/7/19 Heiko Paulheim 10

Hello SPARQL!

• Example:

SELECT ?child
WHERE { :Stephen :fatherOf ?child }

:Stephen :Julia:fatherOf

Expressions with ?
denote variables

10/7/19 Heiko Paulheim 11

SPARQL Basics

• Basic structure:

SELECT <list of variables>
WHERE { <pattern> }

• Variables denoted with ?

• Prefixes as in RDF/N3:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?name
WHERE { ?person foaf:name ?name }

10/7/19 Heiko Paulheim 12

SPARQL Basics

• The <pattern> in the WHERE clause is like N3

– with variables

• {?p foaf:name ?n }

• {?p foaf:name ?n; foaf:homepage ?hp }

• {?p foaf:knows ?p1, ?p2 }

10/7/19 Heiko Paulheim 13

SPARQL Basics: Graph Pattern Matching

• Pattern: ?x :knows :Julia .

– Result: { ?x = :Peter }

:Julia:Peter :knows

:Stephen

:knows

:Ellen

:knows

:fatherOf

:motherOf

10/7/19 Heiko Paulheim 14

SPARQL Basics: Graph Pattern Matching

• Pattern: :Julia :knows ?x .

– Result: { ?x = :Stephen, ?x = :Ellen }

:Julia:Peter :knows

:Stephen

:knows

:Ellen

:knows

:fatherOf

:motherOf

10/7/19 Heiko Paulheim 15

SPARQL Basics: Graph Pattern Matching

• Pattern: :Peter :knows ?x . ?x knows ?y .

– Result: { (?x = :Julia, ?y = :Stephen) ; (?x = :Julia, ?y = :Ellen)}

:Julia:Peter :knows

:Stephen

:knows

:Ellen

:knows

:fatherOf

:motherOf

10/7/19 Heiko Paulheim 16

SPARQL: Pattern Matching on RDF Graphs

• A person who has a daughter and a son:

{ ?p :hasDaughter ?d ; :hasSon ?s . }

• A person knowing two persons who know each other

{ ?p :knows ?p1 , ?p2 . ?p1 :knows ?p2 . }

• A person who has two children:

{ ?p :hasChild ?c1, ?c2 . }

10/7/19 Heiko Paulheim 17

SPARQL: Pattern Matching on RDF Graphs

• A person who has two children:

{ ?p :hasChild ?c1, ?c2 . }

• ResultSet:

– ?p=:Stephen, ?c1=:Julia, ?c2=:Julia

Observation: different variables are not
necessarily bound to different resources!

:Stephen :Julia:hasChild

10/7/19 Heiko Paulheim 18

SPARQL: Blank Nodes

• WHERE clause: an RDF graph with variables

SELECT ?person1 ?person2 ?otherPerson
WHERE { ?person1 :knows ?otherPerson .

?otherPerson :fatherOf ?person2 . }

• Result:

– ?person1 = :Peter, ?person2 = :Julia; ?otherPerson = _:x1

• Note: Blank Node IDs are only unique within one result set!

:Julia:fatherOf:Peter :knows

10/7/19 Heiko Paulheim 19

SPARQL: Matching Literals

• Strings

{ ?country :name "Germany" . }

• Watch out for language tags!

{ ?country :name "Germany"@en . }

→ The Strings "Germany" and "Germany"@en are different!

• Numbers:

{ ?person :age "42"^^xsd:int .}

Short hand notation:

{ ?person :age 42 . }

10/7/19 Heiko Paulheim 20

SPARQL: Filters

• Used for further restricting results

{?person :age ?age . FILTER(?age < 42) }

• Operators for comparisons:

= != < > <= >=

• Logical operations:

&& || !

10/7/19 Heiko Paulheim 21

SPARQL: Filters

• Persons with younger siblings

{ ?p1 :siblingOf ?p2 .
 ?p1 :age ?a1 .
 ?p2 :age ?a2 .
 FILTER(?a2 < ?a1)}

• Persons that have both younger and older siblings
{ ?p1 :siblingOf ?p2,p3 .
 ?p1 :age ?a1 .
 ?p2 :age ?a2 .
 ?p3 :age ?a3 .
 FILTER(?a2 < ?a1 && ?a3 > ?a1)}

Question: why do we get
different persons for p2 and p3?

10/7/19 Heiko Paulheim 22

SPARQL: Filters

• Second try: a person with two children

{ ?p :hasChild ?c1, ?c2 . FILTER(?c1 != ?c2) }

• A slight improvement

→ Variables are now bound to different resources

• But: we still have the Non-Unique Naming Assumption

→ i.e., given that
:Peter :hasChild :Julia .
:Peter :hasChild :Stefan .

we still cannot conclude that Peter has two children!

• Furthermore, there is still the Open World Assumption

→ i.e., Peter could also have more children

10/7/19 Heiko Paulheim 23

Filters for Strings

• Searching in Strings: using regular expressions

• People called “Ann”

{?person :name ?n . FILTER(regex(?n,"^Ann$")) }

{?person :name ?n . FILTER(regex(?n,"Ann")) }

→ the second variant would also find, e.g., “Mary-Ann”

• str: URIs and Literals as strings

• allows for, e.g., searching for literals across languages

{?country :name ?n . FILTER(str(?n) = "Tyskland") }

10/7/19 Heiko Paulheim 24

Further Built-In Features

• Querying the type of a resource

– isURI

– isBLANK

– isLITERAL

• Querying for the data type and language tags of literals

– DATATYPE(?v)

– LANG(?v)

• Comparing the language of two literals

– langMATCHES(?v1,?v2)

– Caution: given ?v1 = "Januar"@DE, ?v2 = "Jänner"@DE-at

LANG(?v1) = LANG(?v2) → false

langMATCHES(?v1,?v2) → true

10/7/19 Heiko Paulheim 25

Combining Patterns

• Find the private and work phone number

{ ?p :privatePhone ?nr }
UNION { ?p :workPhone ?nr }

• UNION creates a set union

?p = :peter, ?nr = 123;
?p = :john, ?nr = 234;
?p = :john, ?nr = 345;
...

That happens if John has both a
private and a work phone

10/7/19 Heiko Paulheim 26

Interlude: A Real-World Example

Der SPIEGEL, 27/2016, p. 52

10/7/19 Heiko Paulheim 27

Interlude: A Real-World Example

Who is this Walter K.?

?x

SoccerPlayer

rdf:type Stuttgart
dbo:birthPlace

Germany National
Football Team

dbo:careerStation dbo:team

^Walter K.*
rdfs:label

10/7/19 Heiko Paulheim 28

Interlude: A Real-World Example

Who is this Walter K.?

SELECT DISTINCT(?x) WHERE {
?x dbo:birthPlace dbr:Stuttgart .
?x a dbo:SoccerPlayer .
?x dbo:careerStation ?s. ?s dbo:team dbr:Germany_national_football_team.
?x rdfs:label ?l . FILTER(REGEX(?l,"^Walter K.*"))

}

10/7/19 Heiko Paulheim 29

Interlude: A Real-World Example

Who is this Walter K.?

We get one result:

<http://dbpedia.org/resource/Walter_Kelsch>

10/7/19 Heiko Paulheim 30

Interlude: A Real-World Example

10/7/19 Heiko Paulheim 31

Optional Patterns

• Find a person's phone number and fax number, if existing

 { ?p :phone ?tel }
OPTIONAL { ?p :fax ?fax }

• OPTIONAL also creates unbound variables

?p = :peter, ?tel = 123, ?fax = 456;
?p = :john, ?tel = 234, ?fax = ;
?p = :julia, ?nr = 978; ?fax = 349;
...

Unbound variable:
John does not have a fax

number (as far as we know)

10/7/19 Heiko Paulheim 32

Unbound Variables

• Variables can remain unbound

• We can test this with BOUND

• Everybody who has a phone or a fax (or both):

OPTIONAL {?p :phone ?tel . }
OPTIONAL {?p :fax ?fax . }
FILTER (BOUND(?tel) || BOUND(?fax))

10/7/19 Heiko Paulheim 33

Negation

• This is a common question w.r.t. SPARQL

• How do I do this:

– "Find all persons who do not have siblings."

• This is left out of SPARQL intentionally!

• Why?

• Open World Assumption

– we cannot know!

• For the same reason, there is no COUNT
– at least not in standard SPARQL

10/7/19 Heiko Paulheim 34

Negation – Hacking SPARQL

• However, there is a possibility

– try with caution!

• Using OPTIONAL and BOUND

• Find all persons without siblings

OPTIONAL {?p :hasSibling ?s . }
FILTER (!BOUND(?s))

• This works

• However, you should know what you are doing

– ...and how to interpret the results!

10/7/19 Heiko Paulheim 35

Negation – Hacking SPARQL

• How does that work?

• Results before FILTER:

OPTIONAL {?p :hasSibling ?s . }

?p = :peter, ?s = :julia
?p = :julia, ?s = :peter
?p = :mary, ?s =
?p = :paul, ?s =

• Applying the FILTER

– FILTER(!BOUND(?s))

?p = :mary, ?s =
?p = :paul, ?s =

Unbound variables

10/7/19 Heiko Paulheim 36

Sorting and Paging Results

• Sorting: ORDER BY ?name

• Limitations: LIMIT 100

• Lower Bounds: OFFSET 200

• Example: persons 101-200, ordered by name
– ORDER BY ?name LIMIT 100 OFFSET 100

• LIMIT/OFFSET without ORDER BY:
– Result orderings are not deterministic

– There is no default ordering

10/7/19 Heiko Paulheim 37

Sorting and Paging Results

• Application scenarios:

– Some SPARQL services limit their result set sizes

– Pre-loading in applications

• Application example:

– let the user browse cities

– it is more likely that users want to see the big cities

– display 100 biggest cities on one page, show more on demand

• SELECT ?city ?population
WHERE {?city hasPopulation ?population}
ORDER BY DESC(?population)
LIMIT 100

10/7/19 Heiko Paulheim 38

Filtering Duplicates

• SELECT DISTINCT ?person
WHERE { ?person :privatePhone ?nr }
UNION { ?person :workPhone ?nr }

• This means: all results with identical variable bindings are filtered

• This does not mean: persons identified by ?person are actually
different

• Why?

– Non-unique naming assumption

10/7/19 Heiko Paulheim 39

Custom Built-Ins

• Some SPARQL engines allow special constructs

• also known as Custom Built-Ins

• Example: geographic processing

– Dataset: Linked Geo Data

10/7/19 Heiko Paulheim 40

LinkedGeoData

• A LOD Wrapper for OpenStreetMaps

10/7/19 Heiko Paulheim 41

Custom Built-Ins

• Querying for coordinates

– simple:
WHERE { ?x geo:long ?long; geo:lat ?lat .
FILTER (?long>8.653 && ?long<8.654 &&
 ?lat>49.878 && ?lat<49.879)}

• More complex queries

– all cafés within a 1km radius of a given point

WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?geo .
FILTER (bif:st_intersects(

?geo, bif:st_point(8.653, 49.878), 1))}

10/7/19 Heiko Paulheim 42

Further Query Types: ASK

• So far, we have only looked at SELECT queries

• ASK allows for yes/no queries:

– e.g., are there persons with siblings?

ASK {?p :hasSibling ?s . }

• Often faster than SELECT queries

• The answer is true or false

– false means: there are no matching sub graphs

– do not misinterpret (Open World Assumption!)

10/7/19 Heiko Paulheim 43

Further Query Types: DESCRIBE

• All properties of a resource

DESCRIBE <http://dbpedia.org/resource/Berlin>

• Can be combined with a WHERE clause

DESCRIBE ?city WHERE { :Peter :livesIn ?city . }

• Allows for exploration of a dataset with unknown structure

• Caution: types of results are not standardized,
results vary from implementation to implementation!

10/7/19 Heiko Paulheim 44

Further Query Types: CONSTRUCT

• Creates a new RDF graph

CONSTRUCT
{ ?x rdfs:seeAlso
<http://dbpedia.org/resource/Berlin> . } WHERE
{ <http://dbpedia.org/resource/Berlin> ?y ?x .
 FILTER (isURI(?x)) }

• CONSTRUCT returns complete RDF graphs

– e.g., for further processing

10/7/19 Heiko Paulheim 45

Query Federation

• Queries can be answered over multiple SPARQL endpoints

• Example

SELECT ?name ?lat ?long WHERE {

?x a foaf:Person .
?x foaf:name ?name .
?x foaf:based_near ?city .
?city owl:sameAs ?geocity .
SERVICE <http://linkedcoordinates.org/sparql> {

?geocity geo:lat ?lat .
?geocity geo:long ?long .

}

}

:John :London

“John Smith”

:534789

“51.50939”

“-0.11832”
owl:sameAs

geo:lat

geo:long
foaf:based_near

foaf:name

10/7/19 Heiko Paulheim 46

SPARQL: Wrap-Up

• SPARQL is a query language for the semantic web

• Basic principle: pattern matching on graphs

• SPARQL allows for directed search for information
instead of navigating the graph from node to node

• Results follow the semantic principles of RDF!

– Open World Assumption

– Non-unique naming assumption

10/7/19 Heiko Paulheim 47

Example: Jena + SPARQL

• Querying models with SPARQL

String queryString = "SELECT ?x ...";

Query query = QueryFactory.create(queryString);

QueryExecution qe =
 QueryExecutionFactory.create(query, model);

ResultSet results = qe.execSelect();

while(results.hasNext()) {

 QuerySolution sol = results.next();
 String s = sol.get("x").toString();
 ...

}

10/7/19 Heiko Paulheim 48

Recap: Reasoning with Jena

• Given: a schema and some data

Model schemaModel = ModelFactory.createDefaultModel();

InputStream IS = new
FileInputStream("data/example_schema.rdf");

schemaModel.read(IS);

Model dataModel = ModelFactory.createDefaultModel();

IS = new FileInputStream("data/example_data.rdf");

dataModel.read(IS);

Model reasoningModel =
 ModelFactory.createRDFSModel(schemaModel, dataModel);

• Now, reasoningModel contains all derived facts

10/7/19 Heiko Paulheim 49

Example: Jena + SPARQL + Reasoning

• Derived facts can also be queries with SPARQL

• Given the reasoningModel
 Query q = QueryFactory.create(
 "SELECT ?t WHERE
 { <http://example.org/Madrid>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 ?t .}");
 QueryExecution qexec =
 QueryExecutionFactory.create(q, reasoningModel);
 ResultSet rs = qexec.execSelect();
 while(rs.hasNext())
 String type = rs.next().get("t");

• Here, the query produces two solutions
– http://example.org/City

– http://www.w3.org/2000/01/rdf-schema#Resource

10/7/19 Heiko Paulheim 50

Accessing Public SPARQL Endpoints

• SPARQL Endpoints are an important building block of the
Semantic Web tool stack

• Access using Jena:

String query = "SELECT ...";

String endpoint = "http://dbpedia.org/sparql";

Query q = QueryFactory.create(strQuery);

QueryExecution qexec =
 QueryExecutionFactory.sparqlService(endpoint, q);

ResultSet RS = qexec.executeSelect();

10/7/19 Heiko Paulheim 51

Accessing Public SPARQL Endpoints

• Recap:

– Jena uses the iterator pattern quite frequently

• Observation:

– SPARQL ResultSets are also like iterators

– Data can be retrieved from the server little by little

10/7/19 Heiko Paulheim 52

Triple Pattern Fragments

• Observation:

– Operating SPARQL endpoints is costly

• Hence, there are often downtimes

– Accessing data via dumps or derefencing is time consuming

• See initial experiment

• Triple Pattern Fragments provide a middle ground solution

http://linkeddatafragments.org

10/7/19 Heiko Paulheim 53

Triple Pattern Fragments

• Only allow simple restrictions

– i.e., only {?s ?p ?o}

• Provide results in a paged fashion

– Estimated count

– Links to further pages

http://linkeddatafragments.org

10/7/19 Heiko Paulheim 54

Triple Pattern Fragments

• Most SPARQL queries can be solved by iteratively retrieving TPFs

– Successively issuing new selectors

– More targeted, i.e., less calls, than derefencing individual URIs

http://linkeddatafragments.org

10/7/19 Heiko Paulheim 55

Triple Pattern Fragments

• Example: astronauts born in capital countries

select ?x ?y ?z where {
?x a dbpedia-owl:Astronaut .
?x dbpedia-owl:birthPlace ?y .
?z dbpedia-owl:capital ?y .
?z a dbpedia-owl:Country

}

• Algorithm:

– retrieve pattern: ?x a dbpedia-owl:Astronaut .

– for each result ?x: retrieve ?x dbpedia-owl:birthPlace ?y .

– for each result ?y: retrieve ?z dbpedia-owl:capital ?y .

– for each result ?z: check ?z a dbpedia-owl:Country .

+/- 651

 ±13,779

±1,137,061
 ±5,034

653

1,209

637

10/7/19 Heiko Paulheim 56

Triple Pattern Fragments

• Middle ground between

– setting up a SPARQL server (costly for the server)

– providing a full RDF dump (costly for the client)

• In our example, a SPARQL query was broken down
into ~3k HTTP GET requests

– Using clever index structures, this might still be faster

– Results may also be streamed – allows for early stopping

10/7/19 Heiko Paulheim 57

Triple Pattern Fragments vs. SPARQL

• All SPARQL constructs can be translated to a TPF query plan

• Some are quite fast

– e.g., typical star-shaped queries

• Some are rather slow

– e.g., regex queries for labels

10/7/19 Heiko Paulheim 58

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

10/7/19 Heiko Paulheim 59

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59

