
Heiko Paulheim

Previously on "Semantic Web Technologies"

- Linked Open Data
 - We know the principles
 - We have seen examples for some datasets
- Today
 - A closer look on actual examples
 - Some useful, large-scale resources

Growing Interest in Knowledge Graphs

Introduction

- Knowledge Graphs on the Web
- Everybody talks about them, but what is a Knowledge Graph?
 - I don't have a definition either...

Journal Paper Review, (Natasha Noy, Google, June 2015): "Please define what a knowledge graph is – and what it is not."

Definitions

- Knowledge graphs could be envisaged as a network of all kind things which are relevant to a specific domain or to an organization. They are not limited to abstract concepts and relations but can also contain instances of things like documents and datasets.
 (Blumauer, 2014)
- We define a Knowledge Graph as an RDF graph.
 (Färber and Rettinger, 2015)
- Knowledge graphs are large networks of entities, their semantic types, properties, and relationships between entities.
 (Kroetsch and Weikum, 2016)
- [...] systems exist, [...], which use a variety of techniques to extract new knowledge, in the form of facts, from the web. These facts are interrelated, and hence, recently this extracted knowledge has been referred to as a knowledge graph.

 (Pujara et al., 2013)

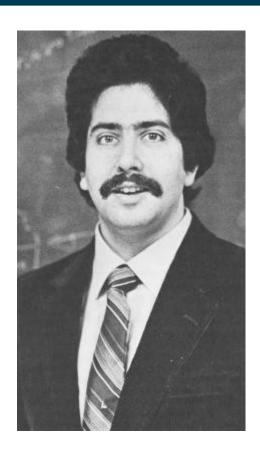
Ehrlinger and Wöß: Towards a Definition of Knowledge Graphs. 2016

Introduction

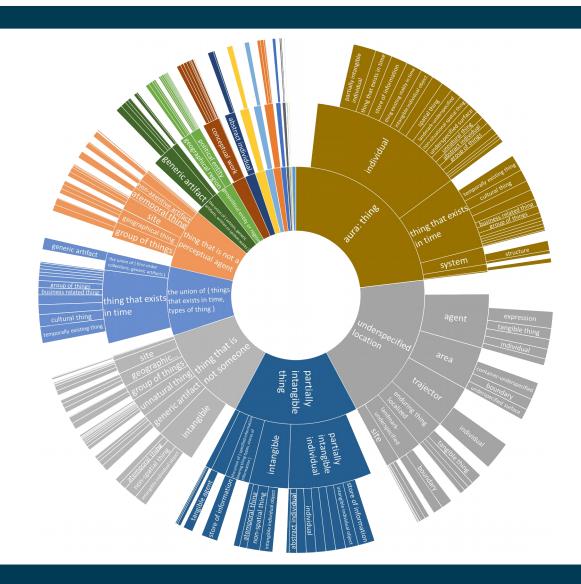
- My working definition: a Knowledge Graph
 - mainly describes instances and their relations in a graph
 - Unlike an ontology
 - Unlike, e.g., WordNet
 - Defines possible classes and relations in a schema or ontology
 - Unlike schema-free output of some IE tools
 - Allows for interlinking arbitrary entities with each other
 - Unlike a relational database
 - Covers various domains
 - Unlike, e.g., Geonames

Paulheim: Knowledge graph refinement: A survey of approaches and evaluation methods, 2017.

Introduction

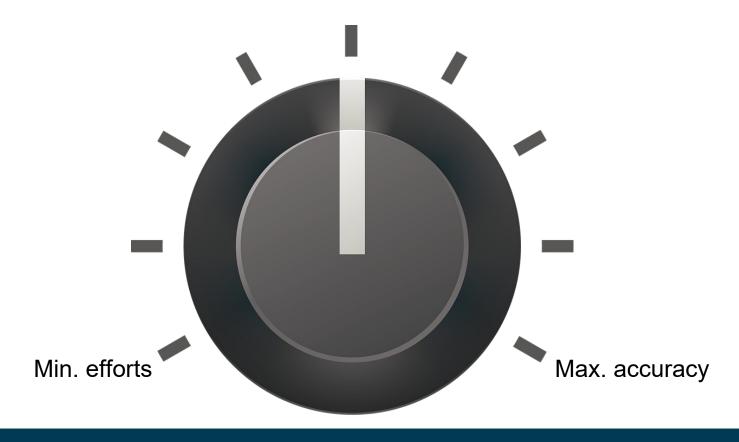

Knowledge Graphs out there (not guaranteed to be complete)

Name	Instances	Facts	Types	Relations	
DBpedia (English)	4,806,150	176,043,129	735	2,813	public
YAGO	4,595,906	25,946,870	488,469	77	
Freebase	49,947,845	3,041,722,635	26,507	37,781	
Wikidata	15,602,060	65,993,797	23,157	1,673	
NELL	2,006,896	432,845	285	425	
OpenCyc	118,499	2,413,894	45,153	18,526	
Google's Knowledge Graph	570,000,000	18,000,000,000	1,500	35,000	
Google's Knowledge Vault	45,000,000	271,000,000	1,100	4,469 -	private
Yahoo! Knowledge Graph	3,443,743	1,391,054,990	250	800	private


Paulheim: Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web 8:3 (2017), pp. 489-508

Knowledge Graph Creation: CyC

- The beginning
 - Encyclopedic collection of knowledge
 - Started by Douglas Lenat in 1984
 - Estimation: 350 person years and 250,000 rules should do the job of collecting the essence of the world's knowledge
- The present (as of June 2017)
 - − ~1,000 person years, \$120M total development cost
 - 21M axioms and rules
 - Used to exist until 2017



Knowledge Graph Creation: CyC

Knowledge Graph Creation

- Lesson learned no. 1:
 - Trading efforts against accuracy

Knowledge Graph Creation: Freebase

- The 2000s
 - Freebase: collaborative editing
 - Schema not fixed

Present

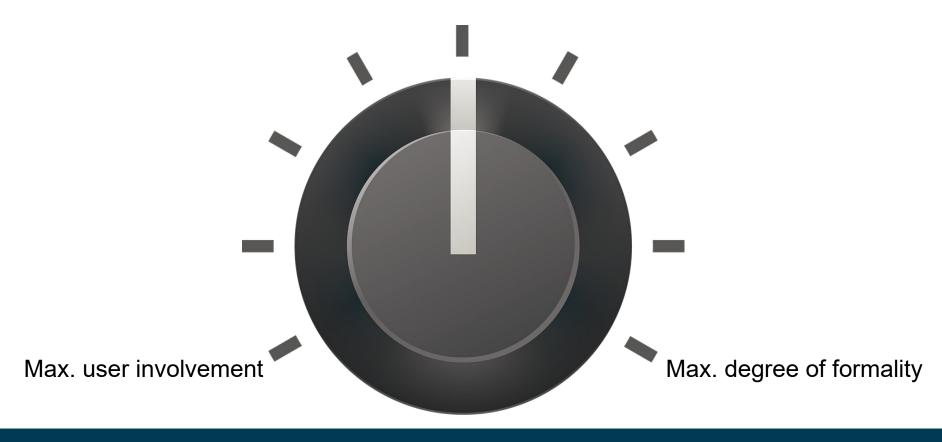
coming up soon: was it a good deal or not?

- Acquired by Google in 2010
- Powered first version of Google's Knowledge Graph
- Shut down in 2016
- Partly lives on in Wikidata (see in a minute)

Knowledge Graph Creation: Freebase

- Community based
- Like Wikipedia, but more structured

Arnold Schwarzenegger -


Discuss "Arnold Schwarzenegger" Show Empty Fields

- Types: Person (People), US Politician (Government), Film actor (Film), Film producer (Film), Pro Athlete (Sports), Sports Award Winner (Sports)
- Also known as: Arnold Alois Schwartzenegger, The Governator
- .≡ Gender: Male
- .≡ **Date of Birth:** Jul 30, 1947
- .≡ Place of Birth: Thal, Austria
- □ Country Of Nationality: United States
- ⇒ **Profession:** Politician, Bodybuilder, Entrepreneur, Actor
- 🚅 Religion: Roman Catholicism
- ⇒■ Parents: Aurelia Jadrny Schwarzenegger, Gustav Schwarzenegger
- Children: Christopher Schwarzenegger, Patrick Schwarzenegger, Christina Schwarzenegger, Katherine Schwarzenegger
- Siblings: Meinhard Schwarzenegger
- .≡ Spouse (or domestic partner): Maria Shriver Apr 26, 1986
- .**≡ Height:** 1.88 m
- IMDB Entry: http://www.imdb.com/name/nm0000216/
- .≡ Career Start: 1968 .≡ Career End: 1980

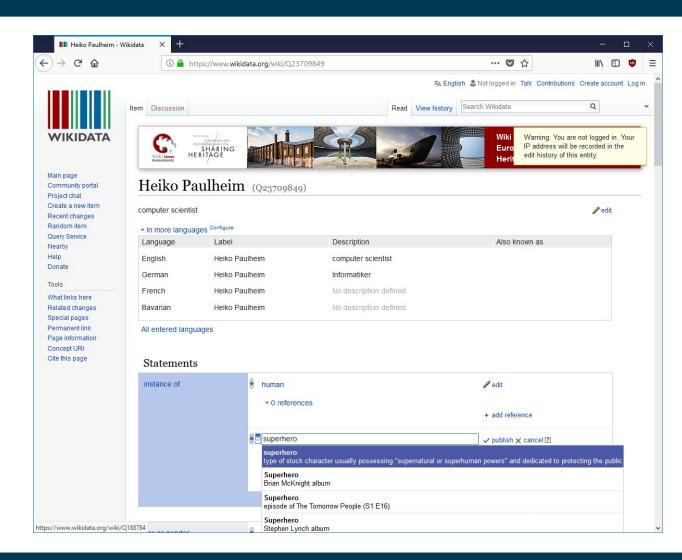
Knowledge Graph Creation

- Lesson learned no. 2:
 - Trading formality against number of users

Knowledge Graph Creation: Wikidata

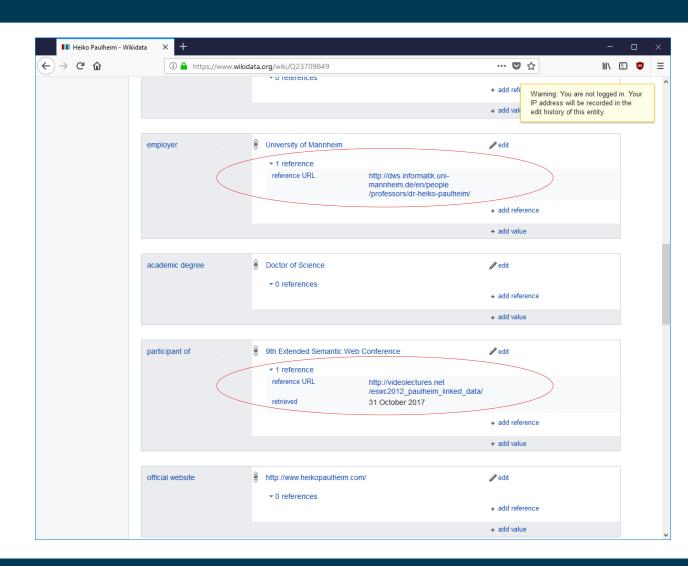
The 2010s

- Wikidata: launched 2012
- Goal: centralize data from Wikipedia languages
- Collaborative
- Imports other datasets

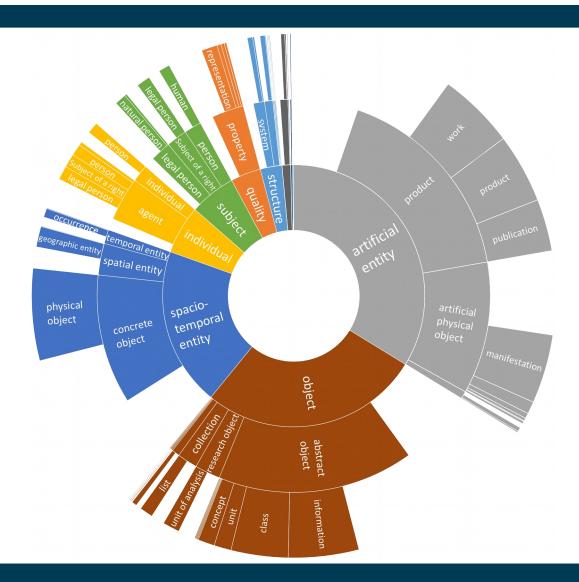


Present

- One of the largest public knowledge graphs (see later)
- Includes rich provenance


Knowledge Graph Creation: Wikidata

 Collaborative editing



Knowledge Graph Creation: Wikidata

Provenance

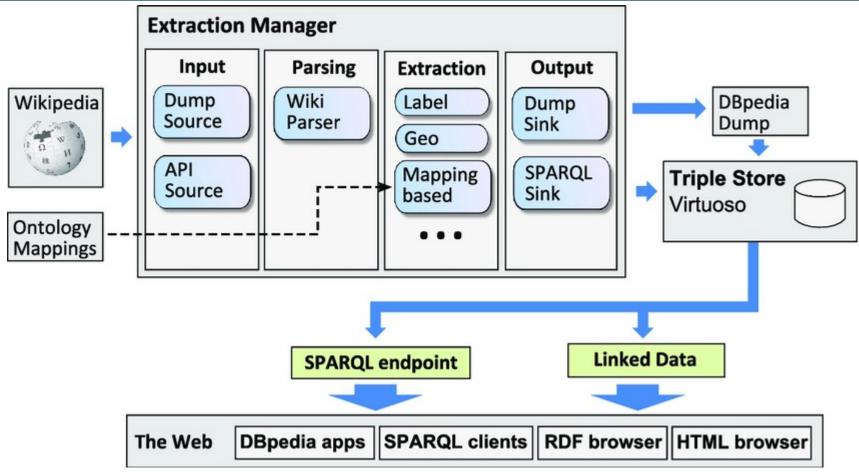


Wikidata

Knowledge Graph Creation

- Lesson learned no. 3:
 - There is not one truth (but allowing for plurality adds complexity)

Knowledge Graph Creation: DBpedia & YAGO


The 2010s

- DBpedia: launched 2007
- YAGO: launched 2008
- Extraction from Wikipedia using mappings & heuristics
- Present
 - Two of the most used knowledge graphs
 - ...with Wikidata catching up

University of Mannheim

```
Universität Mannheim
                                                  -<rdf:RDF>
         JIBUS L
                                                      <<u>rdf-Description_rdf-about="http://dbpedia.org/resource/Mannheim_Centre_for_European_Social_Research"></u>
           {Infobox university
                                                                                           /dbpedia.org/resource/University of Mannheim"/>
                             =''In Omnibus Veritas Suprema Lex Esto'' ([[Latin]])
           motto
                             = Truth in everything should be the supreme law
          Imottoeng
                                                                                          edia.org/resource/Wolfgang Franz">
                             =University of Mannheim
                                                                                           //dbpedia.org/resource/University of Mannheim"/>
  \subset
          native name
                             =Universität Mannheim
                                                                                           dbpedia.org/resource/University of Mannheim"/>
                             =Uni Mannheim Siegel.gif
           image name
                                                                                           dbpedia.org/resource/University of Mannheim"/>
                             =[[Seal (emblem)|Seal]] of the UMA
                             =1763: Theodoro Palatinae <br/> 1907: Handelshochschwedia.org/resource/Heinz_K%C3%B6nig">
           established
                             =[[Public University|Public]]
                                                                                           //dbpedia.org/resource/University of Mannheim"/>
           type
           endowment
                             =€115 [[million]]
Motto
          |academic staff =800 (full time)
                                                                                          edia.org/resource/Roman Inderst">
           administrative staff = 550 (full time)
                                                                                           //dbpedia.org/resource/University of Mannheim"/>
Motto in Englis
           Schools
                                                                                           //dbpedia.org/resource/University of Mannheim"/>
           rector
                             =[[Ernst-Ludwig von Thadden]]
Established
                                                                                          edia.org/resource/Claus E. Heinrich">
           chancellor
                             =[[Susann-Annette Storm]]
                             =12,151 <small>''(HWS 2013/14)''</small><ref name="ur//dbpedia.org/resource/University of Mannheim"/>
           students
          /Studierendenstatistik hws13.pdf|title= Studierendenstatistik der Unit//dbpedia.org/resource/University of Mannheim"/>
                                                                                           //dbpedia.org/resource/University of Mannheim"/>
                             =6,915<ref name="uni-mannheim.de"/>
Type
          undergrad
          Ipostgrad
                             =4,965<ref name="uni-mannheim.de"/>
Endowment
                                                                                          edia.org/resource/Susann-Annette Storm">
          Idoctoral
                             =249<ref name="uni-mannheim.de"/>
Chancellor
                                                                                           //dbpedia.org/resource/University_of_Mannheim"/>
          Iprofess
Rector
Academic staf | City
                             =[[Mannheim]]
                                                                                          edia.org/resource/Bruno Sälzer">
Administrative state
                             =[[Baden-Württemberg]]
                                                                                           //dbpedia.org/resource/University of Mannheim"/>
staff
           country
                             =[[Germany]]
Students
                             = {{Coord|49.4832|8.4647|region:DE-BW type:edu source
           coor
                                                    -<rdf:Description rdf:about="http://dbpedia.org/resource/Heinz König">
Undergraduates 6,915[1]
                                                        <dbo:award rdf:resource="http://dbpedia.org/resource/University of Mannheim"/>
             4 965[1]
Postgraduates
                                                      </rdf:Description>
             249[1]
Doctoral
students
```


Lehmann et al.: DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. 2014

Mapping en:Infobox film

This is the mapping for the Wikipedia template Infobox film 🗗. Find usages of this Wikipedia template here 🗗.

Test this mapping @ (or in namespace File @ or Creator @) with some example Wikipedia pages. Check which pro⊈

Read more about mapping Wikipedia templates.

Template Mapping (help)		
map to class	Film	

Mappings

Property Mapping (help)		
template property	director	
ontology property	director	

Property Mapping (help)		
template property	producer	
ontology property	producer	

OntologyClass:Film

This is the definition of an ontology class.

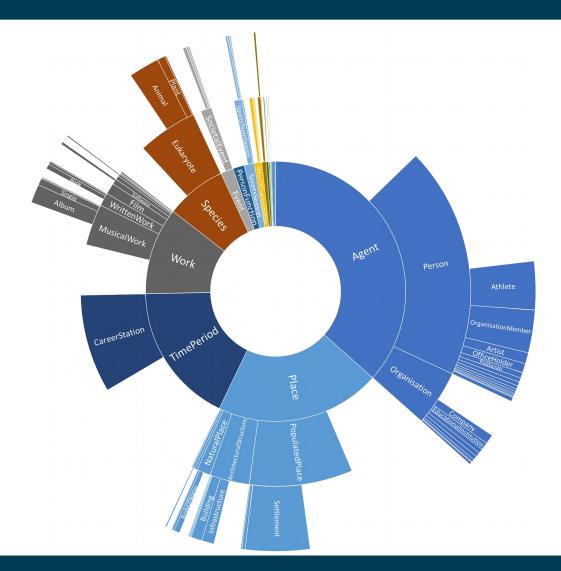
Show all properties & available for this class.

Show class in class hierarchy .

Read more about editing the ontology schema.

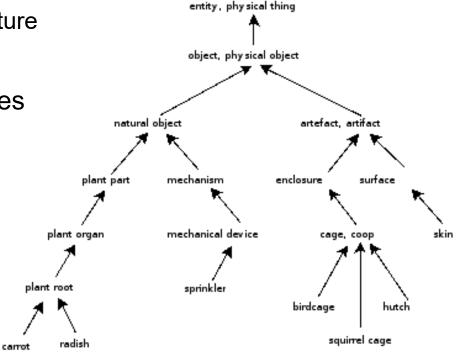
You can see the result of your edit on DBpedia Live (this is

Ontology class (help)		
rdfs:label (en)	film	
rdfs:label (en)	movie	
rdfs:label (nl)	film	
rdfs:label (da)	film	
rdfs:label (de)	Film	
rdfs:label (el)	ταινία	
rdfs:label (fr)	film	
rdfs:label (ko)	영화	
rdfs:label (ja)	映画	
rdfs:label (ar)	فيلم	
rdfs:label (pl)	film	
rdfs:label (ga)	scannán	
rdfs:label (es)	película	
rdfs:subClassOf	Work	
owl:equivalentClass	schema:Movie, wikidata:Q11424	
owl:disjointWith		


OntologyProperty:director

This is the definition of an ontology property.

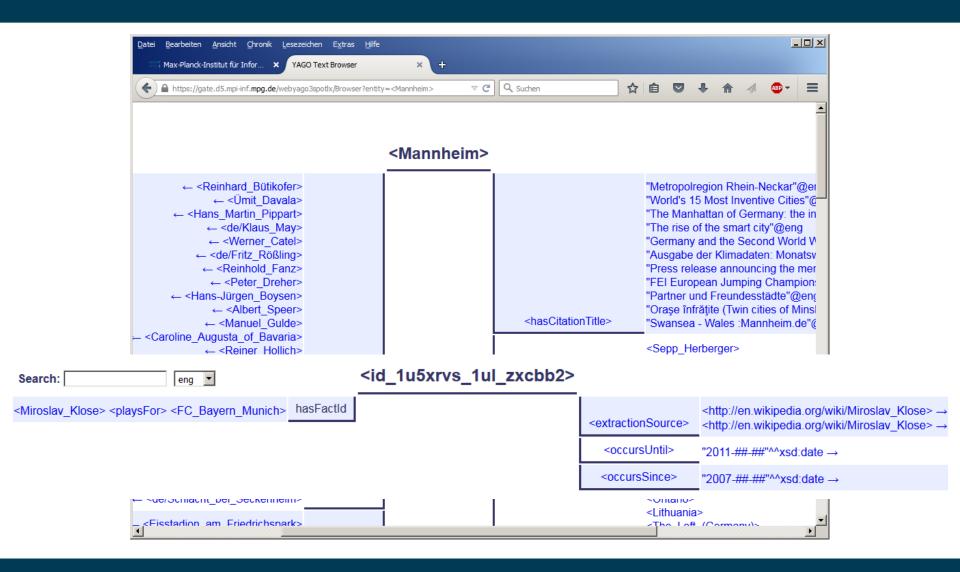
Read more about editing the ontology schema.


You can see the result of your edit on DBpedia Live & (this is BETA!).

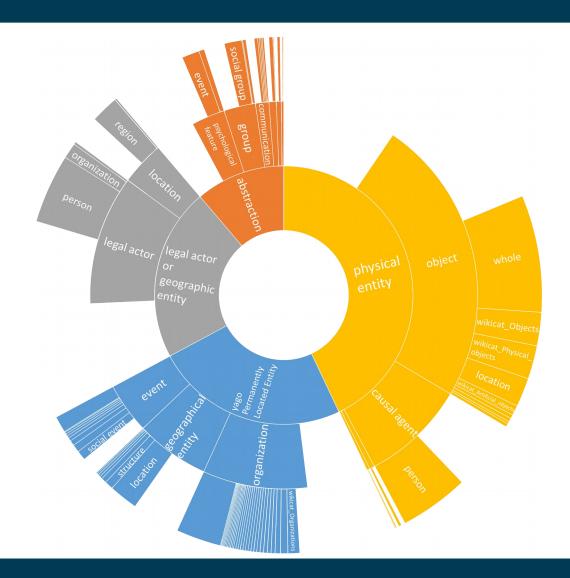
rty (help)
• 1
director
film director
regisseur
instruktør
regisseur
директор
σκηνοθέτης
director de cine
réalisateur
A film director is a person who directs the making of a film. ^[1]
Un réalisateur (au féminin, réalisatrice) est une personne qui dirige la fabrication d'une œuvre audic cinéma ou la télévision. [2]
Film
Person
dul:coparticipatesWith
schema:director, wikidata:P57

YAGO

- Wikipedia categories for types
 - Plus WordNet as upper structure
- Manual mappings for properties

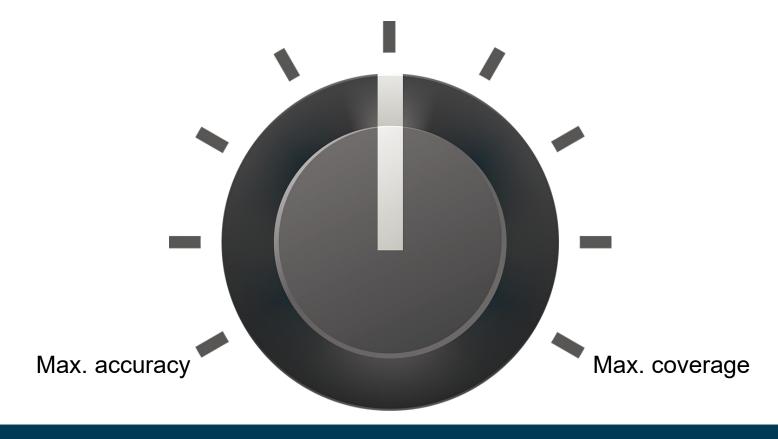


entity

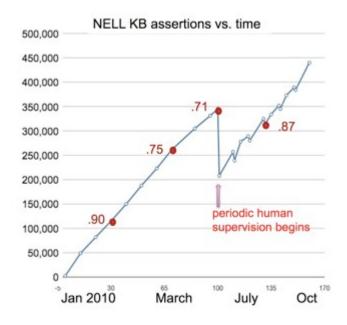

Figure 1. "is a" relation example

https://www.cs.princeton.edu/courses/archive/spring07/cos226/assignments/wordnet.html

YAGO

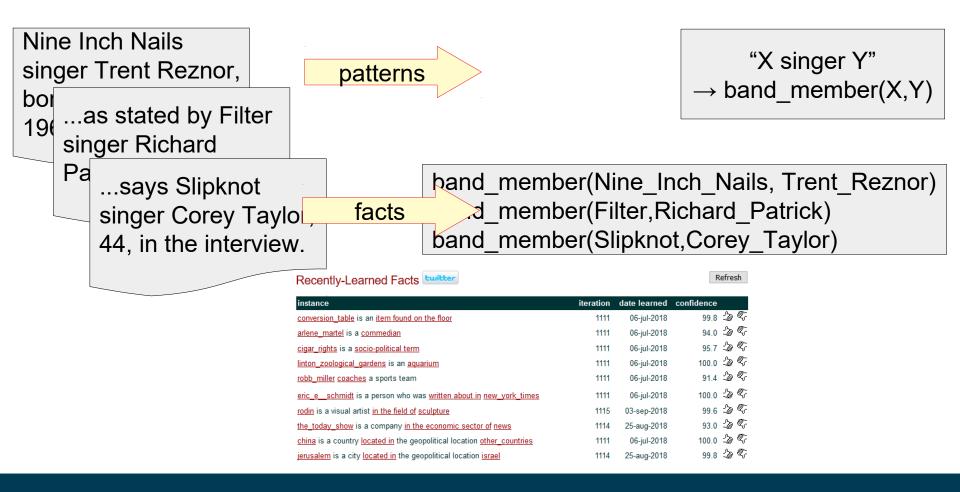


YAGO


Knowledge Graph Creation

- Lesson learned no. 4:
 - Heuristics help increasing coverage (at the cost of accuracy)

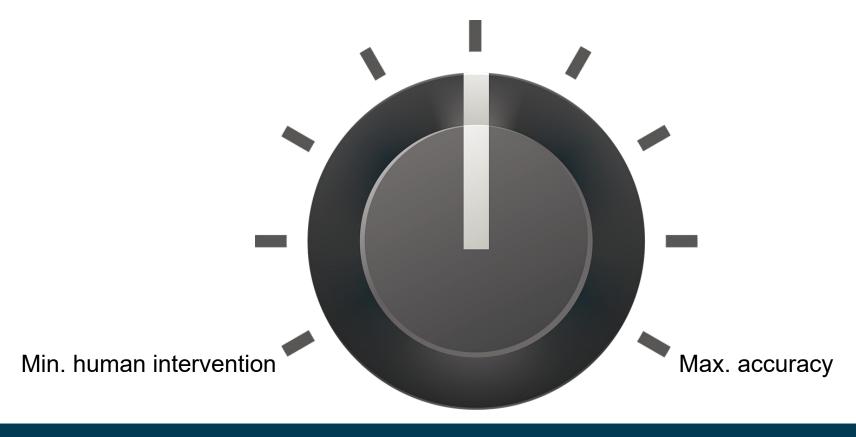
Knowledge Graph Creation: NELL


- The 2010s
 - NELL: Never ending language learner
 - Input: ontology, seed examples, text corpus
 - Output: facts, text patterns
 - Large degree of automation, occasional human feedback
- Until ~one year ago
 - Still running
 - New release every few days

http://rtw.ml.cmu.edu/rtw/overview

Knowledge Graph Creation: NELL

Extraction of a Knowledge Graph from a Text Corpus



Knowledge Graph Creation: NELL

Knowledge Graph Creation

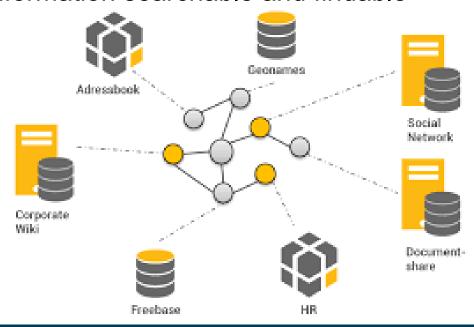
- Lesson learned no. 5:
 - Quality cannot be maximized without human intervention

Summary of Trade Offs

- (Manual) effort vs. accuracy and completeness
- User involvement (or usability) vs. degree of formality
- Simplicity vs. support for plurality and provenance
 - → all those decisions influence the shape of a knowledge graph!

Non-Public Knowledge Graphs

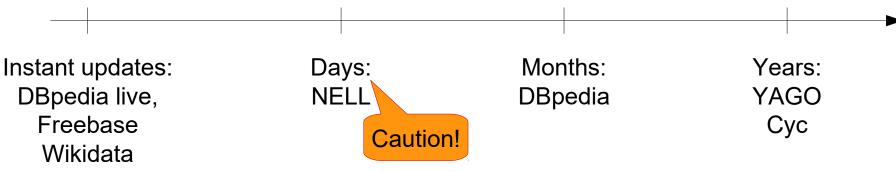
- Many companies have their own private knowledge graphs
 - Google: Knowledge Graph,
 Knowledge Vault
 - Yahoo!: Knowledge Graph
 - Microsoft: Satori
 - Facebook: Entities Graph
 - Thomson Reuters: permid.org (partly public)



However, we usually know only little about them

10/14/19 Heiko Paulheim <u>33</u>

Non-Public Knowledge Graphs


- Knowledge Graphs are used…
- ...in companies and organizations
 - collect, organize, and integrate knowledge
 - link isolated information sources
 - make information searchable and findable

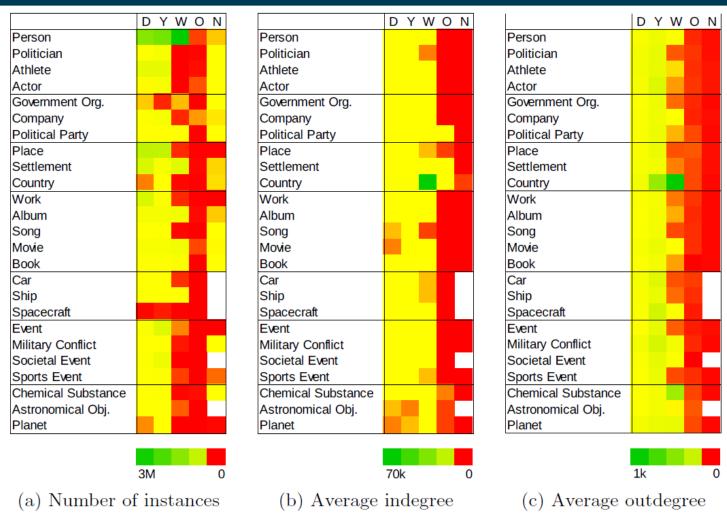
Masuch, 2014

Comparison of Knowledge Graphs

Release cycles

Size and density

Table 1: Global Properties of the Knowledge Graphs compared in this paper


	DBpedia	YAGO	Wikidata	OpenCyc	NELL
Version	2016-04	YAGO3	2016-08-01	2016-09-05	08 m.995
# instances	5,109,890	5,130,031	17,581,152	118,125	1,974,297
# axioms	397,831,457	$1,\!435,\!808,\!056$	$1,\!633,\!309,\!138$	2,413,894	3,402,971
avg. indegree	13.52	17.44	9.83	10.03	5.33
avg. outdegree	47.55	101.86	41.25	9.23	1.25
# classes	754	576,331	30,765	116,822	290
# relations	3,555	93,659	11,053	165	1,334

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

Comparison of Knowledge Graphs

- What do they actually contain?
- Experiment: pick 25 classes of interest
 - And find them in respective ontologies
- Count instances (coverage)
- Determine in and out degree (level of detail)

Comparison of Knowledge Graphs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

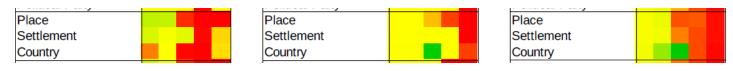
Comparison of Knowledge Graphs

- Summary findings:
 - Persons: more in Wikidata
 (twice as many persons as DBpedia and YAGO)
 - Countries: more details in Wikidata
 - Places: most in DBpedia
 - Organizations: most in YAGO
 - Events: most in YAGO
 - Artistic works:
 - Wikidata contains more movies and albums
 - YAGO contains more songs

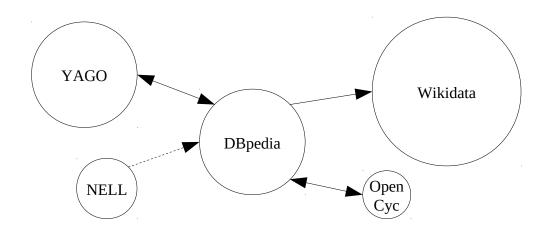
Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

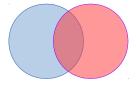
Caveats

Reading the diagrams right...



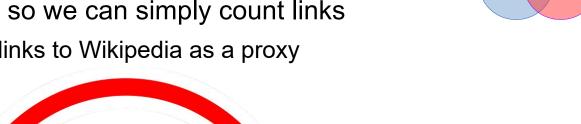
- So, Wikidata contains more persons
 - but less instances of all the interesting subclasses?
- There are classes like Actor in Wikidata
 - but they are hardly used
 - rather: modeled using profession relation


Caveats

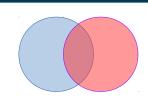

Reading the diagrams right... (ctd.)

- So, Wikidata contains more data on countries, but less countries?
- First: Wikidata only counts current, actual countries
 - DBpedia and YAGO also count historical countries
- "KG1 contains less of X than KG2" can mean
 - it actually contains less instances of X
 - it contains equally many or more instances, but they are not typed with X (see later)
- Second: we count single facts about countries
 - Wikidata records some time indexed information, e.g., population
 - Each point in time contributes a fact

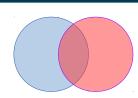
- How largely do knowledge graphs overlap?
- They are interlinked, so we can simply count links
 - For NELL, we use links to Wikipedia as a proxy



Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017


- How largely do knowledge graphs overlap?
- They are interlinked, so we can simply count links
 - For NELL, we use links to Wikipedia as a proxy

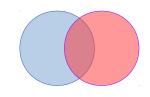
Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017


- Links between Knowledge Graphs are incomplete
 - The Open World Assumption also holds for interlinks

- But we can estimate their number
- Approach:
 - find link set automatically with different heuristics
 - determine precision and recall on existing interlinks
 - estimate actual number of links

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

- Idea:
 - Given that the link set F is found
 - And the (unknown) actual link set would be C



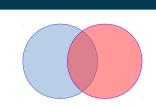
- Precision P: Fraction of F which is actually correct
 - i.e., measures how much |F| is over-estimating |C|
- Recall R: Fraction of C which is contained in F
 - i.e., measures how much |F| is under-estimating |C|
- From that, we estimate $|C| = |F| \cdot P \cdot \frac{1}{R}$

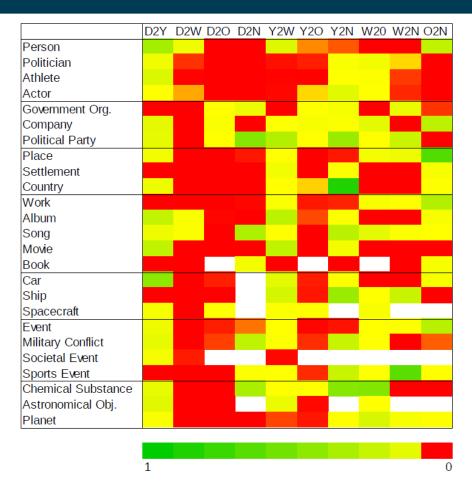
Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

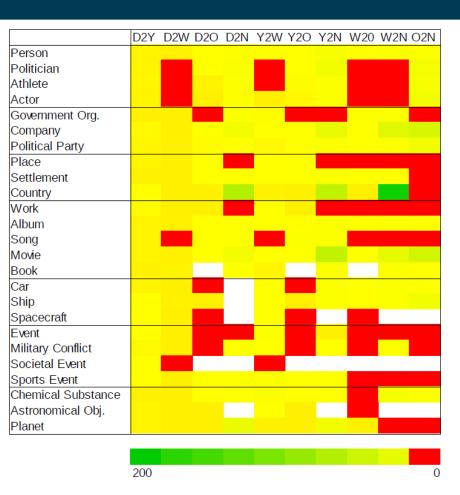
Mathematical derivation:

- Definition of recall:
$$R = \frac{|F_{correct}|}{|C|}$$

- Definition of precision: $P = \frac{|F_{correct}|}{|F|}$
- Resolve both to $|F_{correct}|$, substitute, and resolve to |C|


$$|C| = |F| \cdot P \cdot \frac{1}{R}$$


Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017


Experiment:

- We use the same 25 classes as before
- Measure 1: overlap relative to smaller KG (i.e., potential gain)
- Measure 2: overlap relative to explicit links (i.e., importance of improving links)
- Link generation with 16 different metrics and thresholds
 - Intra-class correlation coefficient for |C|: 0.969
 - Intra-class correlation coefficient for |F|: 0.646
- Bottom line:
 - Despite variety in link sets generated, the overlap is estimated reliably
 - The link generation mechanisms do not need to be overly accurate

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

(a) Overlap as potential gain

(b) Overlap relative to existing links

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

Summary findings:

 DBpedia and YAGO cover roughly the same instances (not much surprising)

- NELL is the most complementary to the others
- Existing interlinks are insufficient for out-of-the-box parallel usage

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

- There are quite a few metrics for evaluating KGs
 - size, degree, interlinking, quality, licensing, ...

Data quality metrics related to accessibility dimensions (type QN refers to a quantitative metric, QL to a qualitative one).

Dimension	Abr	Metric	Description	Typ
	A1	accessibility of the SPARQL end- point and the server	checking whether the server responds to a SPARQL query [18]	QN
Availability	A2	accessibility of the RDF dumps	checking whether an RDF dump is provided and can be down- loaded [18]	QN
	А3	dereferenceability of the URI	checking (i) for dead or broken links i.e. when an HTTP-GET request is sent, the status code 404 Not Found is not be returned (ii) that useful data (particularly RDF) is returned upon lookup of a URI, (iii) for changes in the URI i.e the compliance with the recommended way of implementing redirections using the status code 303 See Other [18,30]	QN
	A4	no misreported content types	detect whether the HTTP response contains the header field stating the appropriate content type of the returned file e.g. application/rdf+xml [30]	QN
	A5	dereferenced forward-links	dereferenceability of all forward links: all available triples where the local URI is mentioned in the subject (i.e. the de- scription of the resource) [31]	QN
Licensing	L1	machine-readable indication of a license	detection of the indication of a license in the VoID description or in the dataset itself [18,31]	QN
	L2	human-readable indication of a license	detection of a license in the documentation of the dataset [18, 31]	QN
	L3	specifying the correct license	detection of whether the dataset is attributed under the same license as the original [18]	QN
Interlinking	II	detection of good quality inter- links	(i) detection of (a) interlinking degree, (b) clustering coeffi- cient, (c) centrality, (d) open sameAs chains and (e) description richness through sameAs by using network measures [25], (ii) via crowdsourcing [1.65]	QN
	I2	existence of links to external data providers	detection of the existence and usage of external URIs (e.g. us- ing owl:sameAs links) [31]	QN
	I3	dereferenced back-links	detection of all local in-links or back-links: all triples from a dataset that have the resource's URI as the object [31]	QN
Security	S1	usage of digital signatures	by signing a document containing an RDF serialization, a SPARQL result set or signing an RDF graph [13,18]	QN
	S2	authenticity of the dataset	verifying authenticity of the dataset based on a provenance vo- cabulary such as author and his contributors, the publisher of the data and its sources (if present in the dataset) [18]	QL
Performance	P1	usage of slash-URIs	checking for usage of slash-URIs where large amounts of data is provided [18]	QN
	P2	low latency	(minimum) delay between submission of a request by the user and reception of the response from the system [18]	QN
	P3	high throughput	(maximum) no. of answered HTTP-requests per second [18]	QN
	P4	scalability of a data source	detection of whether the time to answer an amount of ten re- quests divided by ten is not longer than the time it takes to an- swer one request [18]	QN

Zaveri et al.: Quality Assessment for Linked Open Data: A Survey. SWJ 7(1), 2016

Framework with an example weighting which would be reasonable for a user setting as given in [30].												
Dimension	Metric	DBpedia	Freebase	OpenCyc	Wikidata	YAGO	Example of Use Weighting w _i					
Accuracy	m_{synRDF}	1	1	1	1	1	1					
	m_{synLit}	0.994	1	1	1	0.624	1					
	$m_{semTriple}$	1	1	1	1	1	1					
Trustworthiness	m_{graph}	0.5	0.5	1	0.75	0.25	1					
	m_{fact}	0.5	1	0	1	1	2					
	m_{NoVal}	0	1	0	1	0	1					
Consistency	$m_{checkRestr}$	0	1	0	1	0	1					
-	$m_{conClass}$	0.875	1	0.999	1	0.333	1					
	$m_{conRelat}$	0.991	0.45	1	0	0.992	1					
Relevancy	$m_{Ranking}$	0	0	0	1	0	1					
Completeness	$m_{eSchema}$	0.905	0.762	0.921	1	0.952	1					
	m_{eCol}	0.402	0.425	0	0.285	0.332	1					
	m_{cPop}	0.93	0.94	0.48	0.99	0.89	3					
Timeliness	m_{Freq}	0.5	0	0.25	1	0.25	3					
	$m_{Validity}$	0	1	0	1	1	1					
	m_{Change}	0	1	0	0	0	1					
Ease of understanding	m_{Descr}	0.704	0.972	1	0.9999	1	3					
	m_{Lang}	1	1	0	1	1	2					
	m_{uSer}	1	1	0	1	1	1					
	m_{uURI}	1	0.5	1	0	1	2					
Interoperability	m_{Reif}	1	0.5	0.5	0	0.5	1					
	$m_{iSerial}$	1	0	0.5	1	1	2					
	m_{extVoc}	0.61	0.108	0.415	0.682	0.134	2					
	$m_{propVoc}$	0.15	0	0.513	0.001	0	1					
Accessibility	m_{Deref}	1	0.437	1	0.414	1	2					
	m_{Avai}	0.9961	0.9998	1	0.9999	0.7306	2					
	m_{SPARQL}	1	0	0	1	1	1					
	m_{Export}	1	1	1	1	1	0					
	m_{Negot}	0.5	0	0	1	1	1					
	m_{HTML_RDF}	1	1	0	1	1	0					
	m_{Meta}	1	0	1	0	0	1					
Licensing	$m_{macLicense}$	1	0	0	1	0	1					
Interlinking	m_{Inst}	0.592	0.018	0.443	0	0.305	2					
	m_{URIs}	0.929	0.954	0.894	0.957	0.956	1					
Unweighted Average		0.708	0.605	0.498	0.738	0.625						
Weighted Average		0.718	0.575	0.516	0.742	0.646						

Färber et al.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO SWJ 9(1), 2018

...but what is the cost of a single statement?

Some back of the envelope calculations...

Paulheim: How much is a triple?
Estimating the Cost of Knowledge Graph Creation, 2018

Case 1: manual curation

Cyc: created by experts
 Total development cost: \$120M
 Total #statements: 21M

→ \$5.71 per statement

Freebase: created by laymen
 Assumption: adding a statement to Freebase equals adding a sentence to Wikipedia

 English Wikipedia up to April 2011: 41M working hours (Geiger and Halfaker, 2013),
 size in April 2011: 3.6M pages, avg. 36.4 sentences each

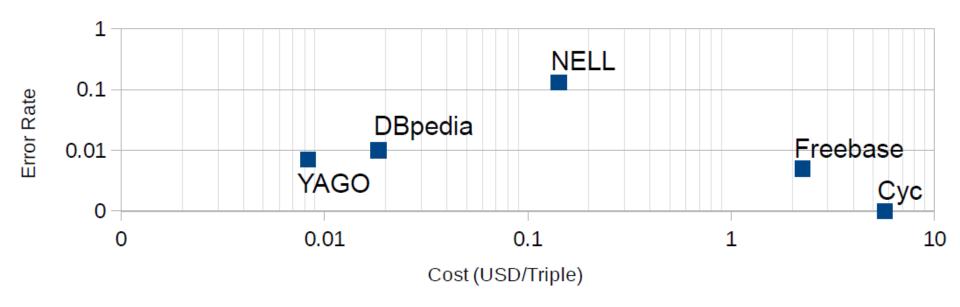
• Using US minimum wage: \$2.25 per sentence

acquisition by Google estimated as \$60-300M

→ \$2.25 per statement

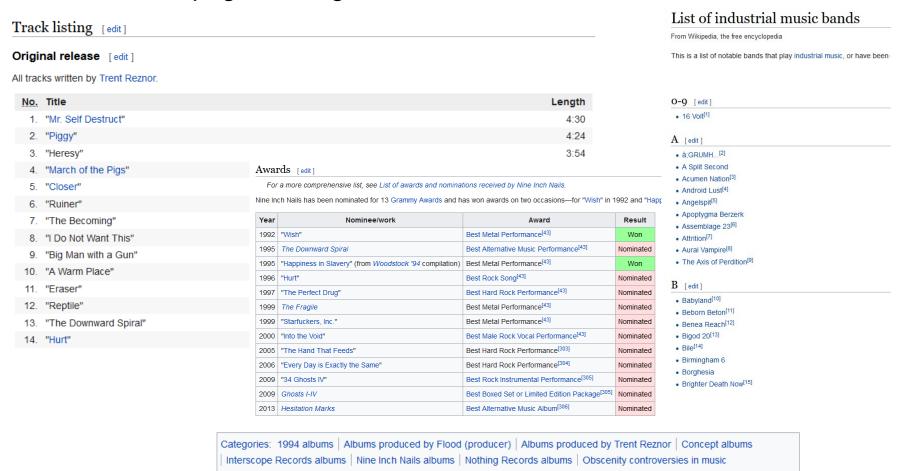
(Footnote: total cost of creating Freebase would be \$6.75B)

- Case 2: automatic/heuristic creation
 - DBpedia: 4.9M LOC, 2.2M LOC for mappings software project development: ~37 LOC per hour (Devanbu et al., 1996)


we use German PhD salaries as a cost estimate

- YAGO: made from 1.6M LOC
 uses WordNet: 117k synsets, we treat each synset like a Wiki page
 - \rightarrow 0.83c per statement
- NELL: 103k LOC
 - → 14.25c per statement
- Compared to manual curation: saving factor 16-250

- Graph error rate against cost
 - we can pay for accuracy
 - NELL is a bit of an outlier



New Kids on the Block

Further Sources of Knowledge in Wikipedia

show: list pages, categories, tables, ...

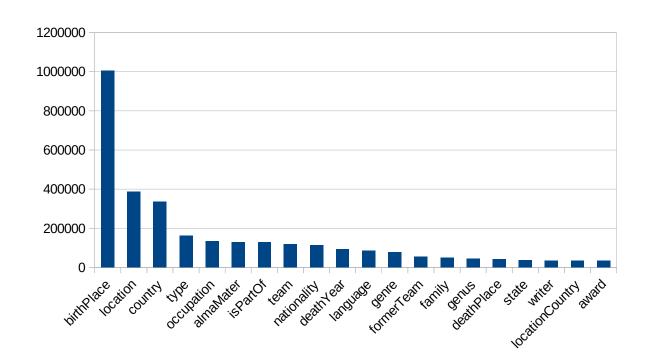
CaLiGraph Idea

- Entities co-occur in surface patterns
 - e.g., enumerations, table columns, ...
- Co-occurring entities share semantic patterns
 - e.g., types, relations, attribute values
- Existing entities co-occur with new entities

Categories: 1994 albums | Albums produced by Flood (producer) | Albums produced by Trent Reznor | Concept albums | Interscope Records albums | Note Inch Nails albums | Nothing Records albums | Obscenity controversies in music

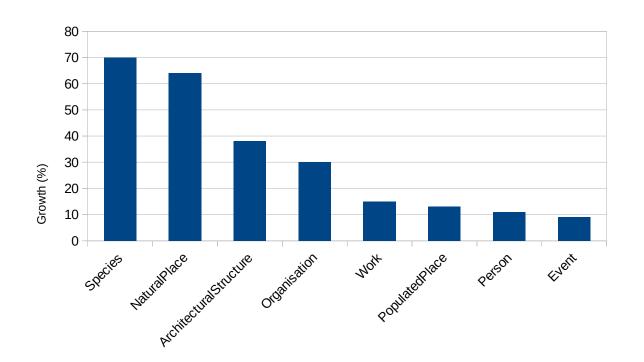
Track listing [edit] Original release [edit] All tracks written by Trent Reznor. No. Title 1. "Mr. Self Destruct" 2. "Piggy" 3. "Heresy" 4. "March of the Pigs" 5. "Closer" 6. "Ruiner" 7. "The Becoming" 8. "I Do Not Want This" 9. "Big Man with a Gun" 10. "A Warm Place" 11. "Eraser" 12. "Reptile" 13. "The Downward Spiral" 14. "Hurt"

CaLiGraph Idea


 Surface patterns and semantic patterns also exist outside of Wikipedia

		and returns to sca						
Rank	Municipality	Pr	Cat	DEA	DEA _{CRS}	DEANIR	Sc. Eff	RTS
1	Dihlabeng	FS	B2	1	1	1	1	Con
	Kungwini	GT	B2	1	1	1	1	Con
1	Bela Bela	LIM	B2	1	1	1	1	Con
1	Emakhazeni	MP	B2	1	1	1	1	Con
1	Matlosana	NW	B1	1	0.901	1	0.901	Dec
l	Mangaung	FS	A	1	0.499	1	0.499	Dec
1	City of Tshwane	GT	A	1	0.392	1	0.392	Dec
1	Ekurhuleni	GT	A	1	0.343	1	0.343	Dec
1	City of Cape Town	WC	A	1	0.301	1	0.301	Dec
1	City of Johannesburg	GT	A	1	0.292	1	0.292	Dec
11	Mbombela	MP	B1	0.902	0.489	0.902	0.543	Dec
12	Mogalakwena	LIM	B2	0.88	0.688	0.88	0.782	Dec
13	Polokwane	LIM	B1	0.854	0.512	0.854	0.6	Dec
14	Nelson Mandela Bay	EC	A	0.8	0.32	0.8	0.399	Dec
15	Moqhaka	FS	B2	0.788	0.694	0.788	0.88	Dec
16	Sol Plaatjie	NC	B1	0.766	0.539	0.766	0.704	Dec
17	Newcastle	KZN	B1	0.712	0.51	0.712	0.717	Dec
18	Ethekwini	KZN	A	0.707	0.231	0.707	0.326	Dec
19	Emfuleni	GT	Bl	0.706	0.287	0.706	0.407	Dec
20	Khara Hais	NC	B2	0.687	0.663	0.663	0.965	Inc
21	Buffalo City	EC	A	0.637	0.298	0.637	0.467	Dec
22	Matjhabeng	FS	Bl	0.612	0.372	0.612	0.608	Dec
23	Msukaligwa	MP	B2	0.564	0.519	0.564	0.92	Dec
24	Tlokwe	NW	B1	0.555	0.554	0.554	0.998	Inc
24	Saldanha Bay	WC	B2	0.555	0.54	0.54	0.972	Inc
26	Rustenburg	NW	B1	0.541	0.295	0.541	0.546	Dec
27	Mogale City	GT	B1	0.528	0.368	0.528	0.698	Dec
28	Drakenstein	WC	Bl	0.518	0.456	0.518	0.881	Dec
29	Makana	EC	B2	0.504	0.48	0.504	0.953	Dec
30	Breede Valley	WC	B2	0.487	0.471	0.487	0.967	Dec
31	Steve Tshwete	MP	B1	0,474	0.436	0.474	0.921	Dec
32	Umhlathuze	KZN	B1	0.463	0.247	0.463	0.534	Dec
33	Randfontein	GT	B2	0.42	0,357	0.42	0.851	Dec
34	Govan Mbeki	MP	B1	0.385	0.354	0.385	0.92	Dec
35	Merafong City	GT	B2	0.372	0.282	0.372	0.757	Dec
36	Nokeng Tsa Taemane	GT	B2	0.365	0.359	0.365	0.986	Dec
37	Mossel Bay	WC	B2	0.352	0.334	0.352	0.95	Dec
38	Westonaria	GT	B2	0.319	0.269	0.319	0.843	Dec
39	Midvaal	GT	B2	0.314	0.307	0.307	0.978	Inc
40	Metsimaholo	FS	B2	0.295	0.283	0.295	0.959	Dec
41	Knysna	WC	B2	0.266	0.253	0.266	0.951	Dec
42	George	WC	B1	0.239	0.218	0.239	0.911	Dec
43	Msunduzi	KZN	Bi	0.237	0.19	0.237	0.803	Dec
44	Overstrand	WC	B2	0.183	0.19	0.18	0.983	Inc

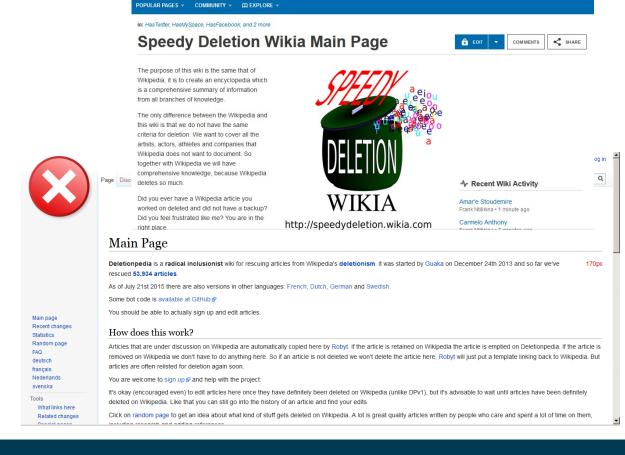
People → Intro → Professors → Administration → Researchers Dr. Sanja Stajner Dr. Ioana Hulpus Dr. Melisachew Wudage Dr. Christian Meilicke Dr. Federico Nanni Dr. Dmitry Ustalov ▶ Taha Alhersh Alexander Diete ► Manuel Fink Nicolas Heist ▶ Sven Hertling Jakob Huber ▶ Amirhossein Kardoost ▶ Elena Kuss Anne Lauscher Oliver Lehmberg ▶ Robert Litschko ▶ Andre Melo Yaser Oulabi ▶ Daniel Ruffinelli ▶ Christoph Kilian Theil ▶ Timo Sztyler ▶ Kiril Gashteovski ▶ Samuel Broscheit ▶ Anna Primpeli ▶ Benedikt Kleppmann Yanjie Wang Jonathan Kobbe → Affiliated PhD students → Visiting researchers → Alumni


CaLiGraph – Current State

Significant coverage enhancements of DBpedia Properties

CaLiGraph – Current State

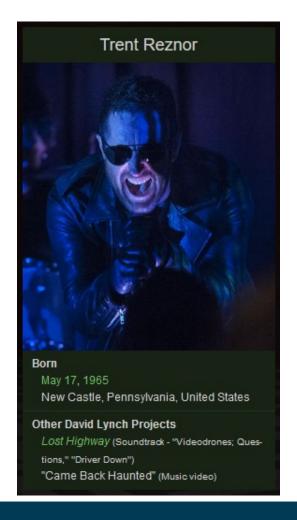
Significant instance set enhancements by list extraction



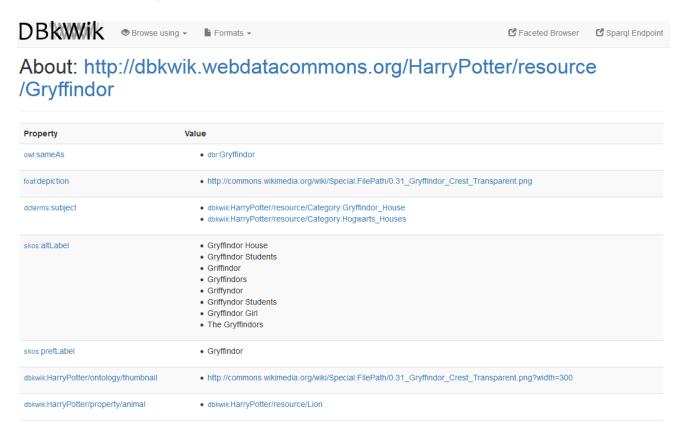
- Wikipedia-based Knowledge Graphs will remain an essential building block of Semantic Web applications
- But they suffer from...
 - ...a coverage bias
 - ...limitations of the creating heuristics

- One (but not the only!) possible source of coverage bias
 - Articles about long-tail entities become deleted

- Why stop at Wikipedia?
- Wikipedia is based on the MediaWiki software
 - ...and so are thousands of Wikis
 - Fandom by Wikia: >385,000 Wikis on special topics
 - WikiApiary: reports >20,000 installations of MediaWiki on the Web

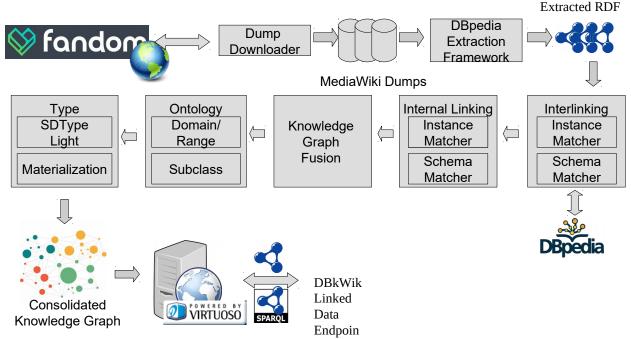


Collecting Data from a Multitude of Wikis



- The DBpedia Extraction Framework consumes MediaWiki dumps
- Experiment
 - Can we process dumps from arbitrary Wikis with it?
 - Are the results somewhat meaningful?

Example from Harry Potter Wiki



http://dbkwik.org/

- Differences to DBpedia
 - DBpedia has manually created mappings to an ontology
 - Wikipedia has one page per subject
 - Wikipedia has global infobox conventions (more or less)
- Challenges
 - On-the-fly ontology creation
 - Instance matching
 - Schema matching

Hertling & Paulheim: DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis. ICBK 2018

- Heuristics
 - Ontology induction
 - Instance/Schema Matching

Hertling & Paulheim: DBkWik: A Consolidated Knowledge Graph from

Thousands of Wikis. ICBK 2018

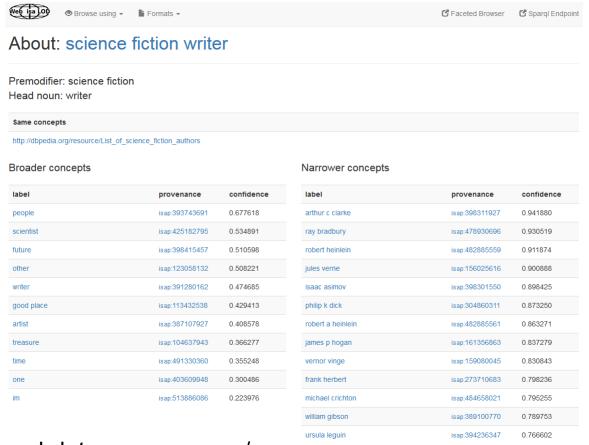
- Downloaded ~15k Wiki dumps from Fandom
 - 52.4GB of data, roughly the size of the English Wikipedia
- Prototype: extracted data for ~250 Wikis
 - 4.3M instances, ~750k linked to DBpedia
 - 7k classes, ~1k linked to DBpedia
 - 43k properties, ~20k linked to DBpedia
 - ...including duplicates!
- Link quality
 - Good for classes, OK for properties (F1 of .957 and .852)
 - Needs improvement for instances (F1 of .641)

Solving the Integration Problems in DBkWik

- A new task at OAEI since 2018
 - Benchmark for schema/instance matching tools
 - Turned out to be non-trivial

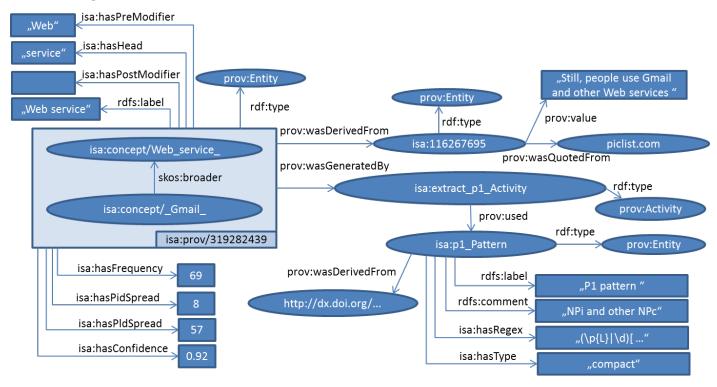
			class				property				instance				overall			
System	Time	#testcases	Size	Prec.	F-m.	Rec.	Size	Prec.	F-m.	Rec.	Size	Prec.	F-m.	Rec.	Size	Prec.	F-m.	Rec.
AGM	10:47:38	5	14.60.	23 (0.23)().09 (0.09)	0.06 (0.06)	49.40.	66 (0.66)	0.32 (0.32	0.21 (0.21)	5169.0	0.48 (0.48	3) 0.25 (0.25	5) 0.17 (0.17)	5233.2	0.48 (0.48)	.25 (0.25)	0.17 (0.17)
AML	0:45:46	4	27.50.	78 (0.98)).69 (0.86)	0.61 (0.77)	58.20.	72 (0.91)	0.59 (0.73	0.62)	7529.8	0.72 (0.90	0.88(0) 0.71	3) 0.69 (0.86)	7615.5	0.72 (0.90)0	.70 (0.88)	0.86) (0.86)
baselineAltLabel	0:11:48	5	16.41.	00 (1.00)().74 (0.74)	0.59 (0.59)	47.80.	99 (0.99)	0.79 (0.79	0.66 (0.66)	4674.2	0.89 (0.89	0.84 (0.84)	4) 0.80 (0.80)	4739.0	0.89 (0.89)	.84 (0.84)) .80 (0.80)
baselineLabel	0:12:30	5	16.41.	00 (1.00)().74 (0.74)	0.59 (0.59)	47.80.	99 (0.99)	0.79 (0.79	0.66 (0.66)	3641.2	0.95 (0.95	5) 0.81 (0.8 ⁴	1)0.71 (0.71)	3706.0	0.95 (0.95)0	.81 (0.81)	0.71 (0.71)
D <u>O</u> ME	1:05:26	4	22.50.	74 (0.92)().62 (0.77)	0.53 (0.66)	75.50.	79 (0.99)	0.77 (0.96	0.75 (0.93)	4895.2	0.74 (0.92	2)0.70 (0.88	3)0.67 (0.84)	4994.8	0.74 (0.92)0	.70 (0.88)	0.84)
FCAMap-KG	1:14:49	5	18.61.	00 (1.00)).82 (0.82)	0.70 (0.70)	69.01.	00 (1.00)	0.98 (0.98	0.96 (0.96)	4530.6	0.90 (0.90	0.84 (0.84)	1)0.79 (0.79)	4792.6	0.91 (0.91)0	.85 (0.85)	0.79 (0.79)
LogMap	0:15:43	5	26.00.	95 (0.95)().84 (0.84)	0.76 (0.76)	0.0 0.	00 (0.00)	0.00 (0.00	0.00 (0.00)	0.0	0.00 (0.00	0.00 (0.00)	0.00 (0.00)	26.0	0.95 (0.95)0	.01 (0.01)	0.00 (0.00)
LogMapBio	2:31:01	5	26.00.	95 (0.95)().84 (0.84)	0.76 (0.76)	0.0 0.	00 (0.00)	0.00 (0.00	0.00 (0.00)	0.0	0.00 (0.00	0.00 (0.00)	0.00 (0.00)	26.0	0.95 (0.95)0	.01 (0.01)	0.00 (0.00)
LogMapKG	2:26:14	5	26.00.	95 (0.95)().84 (0.84)	0.76 (0.76)	0.0 0.	00 (0.00)	0.00 (0.00	0.00 (0.00)	29190.4	10.40 (0.40	0.54 (0.54)	1)0.86 (0.86)	29216.4	0.40 (0.40)	.54 (0.54)	0.84 (0.84)
LogMapLt	0:07:28	4	23.00.	80 (1.00)().56 (0.70)	0.43 (0.54)	0.0 0.	00 (0.00)	0.00 (0.00	0.00 (0.00)	6653.8	0.73 (0.91)0.67 (0.84	1)0.62 (0.78)	6676.8	0.73 (0.91)0	.66 (0.83)	0.76)
POMAP++	0:14:39	5	2.0 0.	00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.0 0.	00 (0.00)	0.00 (0.00	0.00 (0.00)	0.0	0.00 (0.00	0.00 (0.00)	0.00 (0.00)	19.4	0.00 (0.00)	.00 (0.00)	0.00 (0.00)
Wiktionary	0:20:14	5	21.41.	00 (1.00)).80 (0.80)	0.67 (0.67)	75.80.	97 (0.97)	0.98 (0.98	0.98 (0.98)	3483.6	0.91 (0.91)0.79 (0.79	9)0.70 (0.70)	3581.8	0.91 (0.91)	.80 (0.80)).71 (0.71)

- Background: Web table interpretation
- Most approaches need typing information
 - DBpedia etc. have too little coverage on the long tail
 - Wanted: extensive type database

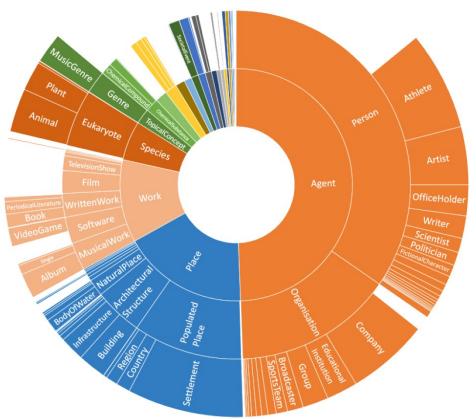

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017

- Extraction of type information using Hearst-like patterns, e.g.,
 - T, such as X
 - X, Y, and other T
- Text corpus: common crawl
 - ~2 TB crawled web pages
 - Fast implementation: regex over text
 - "Expensive" operations only applied once regex has fired
- Resulting database
 - 400M hypernymy relations

Common Crawl


Seitner et al.: A large DataBase of hypernymy relations extracted from the Web. LREC 2016

Example:


http://webisa.webdatacommons.org/

- Initial effort: transformation to a LOD dataset
 - including rich provenance information

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017

Estimated contents breakdown

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017

- Main challenge
 - Original dataset is quite noisy (<10% correct statements)
 - Recap: coverage vs. accuracy
 - Simple thresholding removes too much knowledge
- Approach
 - Train RandomForest model for predicting correct vs. wrong statements
 - Using all the provenance information we have
 - Use model to compute confidence scores

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017

- Current challenges and works in progress
 - Distinguishing instances and classes
 - i.e.: subclass vs. instance of relations
 - Splitting instances
 - · Bauhaus is a goth band
 - Bauhaus is a German school
 - Knowledge extraction from pre and post modifiers
 - Bauhaus is a goth band → genre(Bauhaus, Goth)
 - Bauhaus is a German school → location(Bauhaus, Germany)

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017

Summary

- We have seen a couple of Knowledge Graphs
 - How they are built
 - What they contain
- For your project
 - Have a look at the fit for your domain
 - Try different options
- For a master's thesis later
 - Work on recent developments in our group

Questions?

