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Previously on Semantic Web Technologies

• What we would like to have:

daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X) .

• Rules are flexible

• There are rules in the Semantic Web, e.g.

– Semantic Web Rule Language (SWRL)

– Rule Interchange Format (RIF)

– Some more

• Some reasoners do (partly) support rules
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Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...
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Towards Rules for the Semantic Web

• What we would like to have:

– daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X) .

• OWL only gives an approximation:

Woman

Person

is Child Of

is Daugther Of

                                rdfs:subPropertyOf



11/11/19 Heiko Paulheim 5 

SWRL

• Semantic Web Rule Language

– a rule language for the Semantic Web

– built to be  combined with OWL

• W3C Member Submission (2004)

– not a standard in a strict sense

– but widely adopted

• Tool support

– many reasoners

– Protégé
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SWRL Building Blocks

• Classes are defined as unary predicates

– :Peter a :Person . ↔ Person(Peter)

• Properties are defined as binary predicates

– :Peter :hasMother :Julia . ↔ hasMother(Peter,Mary)

– :Peter :hatAge 24^^xsd:integer . ↔ hasAge(Peter,24)
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SWRL Rules

• Basic form:

– Head (Consequence) ← Body (Condition)

• Body and head are conjunctions of predicates

• Variables are introduced by ?

• Example:

– daughterOf(?X,?Y) ← childOf(?X,?Y)   Woman(?X)∧

• There is no

– disjunction (logical or)

– negation

– undbound variables in the rule head

• ...but there are some ways out
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Disjunctions in Rule Body

• There is no disjunction

• Example for disjunction in rule body:

– Female faculty members are students or staff of the faculty

• Intuitive:

– FemaleFacultyMember(?X) ← Woman(?X)   Faculty(?Y) ∧  ∧
   (worksAt(?X,?Y)  studentAt(?X,?Y))⋁ studentAt(?X,?Y))
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Disjunctions in Rule Body

• Solution

– first step: convert body to disjunctive normal form

• i.e., disjunction of conjunctions

– second step: split into individual rules
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Disjunctions in Rule Body

• FemaleFacultyMember(?X) ← Woman(?X)   Faculty(?Y) ∧  ∧
  (worksAt(?X,?Y)  studentAt(?X,?Y))⋁ studentAt(?X,?Y))

• turns into

– FemaleFacultyMember(?X) ← 
     (Woman(?X)   Faculty(?Y)   worksAt (?X,?Y))∧ ∧

 (Woman(?X) ⋁ studentAt(?X,?Y)) ∧  Faculty(?Y)   worksAt (?X,?Y))∧

• ...which turns into

– FemaleFacultyMember(?X) ← 
Woman(?X)  Faculty(?Y)  worksAt (?X,?Y)∧ ∧

– FemaleFacultyMember(?X) ← 
Woman(?X)  Faculty(?Y)  studentAt (?X,?Y)∧ ∧
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Disjunctions in Rule Head

• Disjunctions in rule head

– are not so easy to get rid off

• Example

– Every faculty member is a student or an employee

Student(?X)  Employee(?X) ← FacultyMember(?X)⋁ studentAt(?X,?Y))

• On the other hand: what should a reasoner conclude?

→ disjunction in rule head does not make as much sense!
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Disjunctions in Rule Head

• SWRL is meant to be used together with OWL

• Idea: build an artificial class for the rule head

StudentOrEmployee owl:unionOf (Student Employee)

StudentOrEmployee(?X) ← FacultyMember(?X)

• This way, we can conclude that ?X is in the union of both classes

– Further reasoning on other axioms might rule out one option
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Negation

• Negation can be simulated with a similar trick

• Example:

– Creatures living in the water are not human.

• Intuitive:

Human(?X) ← Creature(?X)   habitat(?X,Water)∧
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Simulating Negation

• Again: combining SWRL and OWL

– NonHuman owl:complementOf Human .

• New Rule:

– NonHuman(?X) ← Creature(?X)   habitat(?X,Water) ∧

• Now, a reasoner can find a contradiction between

– :Nemo a :Creature; habitat :Water .

• and

– :Nemo a :Human .
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Simulating Negation

• Negation in the rule body:

FlightlessBird(?X) ← Bird(?X)  ∧ habitat(?X,Air)

• Define class:

NotAirHabitat owl:equivalentClass [
   a owl:Restriction ;
   owl:onProperty :habitat ;
   owl:allValuesFrom [
     owl:complementOf [ owl:oneOf (:Air) ] ] ]

FlightlessBird(?X) ← Bird(?X)   NotAirHabitat(?X)∧
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Unbound Variables

• All variables appearing in the rule head
must also appear in the body

– those are bound variables

• Example: every human has a (human) father

– Human(?Y)   hasFather(?X,?Y) ← Human(?X)∧

• In that case, the reasoner would have to create new instances for Y

– Possible issue: termination

– No easy solution in SWRL+OWL
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SWRL Extensions and Built-Ins

• Comparison

– olderThan(?X,?Y) ← hasBirthdate(?X,?BX)   hasBirthdate(?Y,?BY) ∧   ∧
  swrlb:lessThan(?BX,?BY)

• Arithmetics

– twiceAsOld(?X,?Y) ← hasAge(?X,?AX)   hasAge(?Y,?AY)  ∧ ∧
    swrlb:multiply(?AX,?AY,2)

• String operations

– PeopleWithS(?X) ← hasName(?X,?N)   swrlb:startsWith(?N,”S”)∧
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SWRL Extensions and Built-Ins

• Some reasoners also allow for custom built-ins

• E.g., for wiring a reasoner to external systems

Customer
Database

ReasonerAdapterImpl
.java

   my:adapter(?x)
 → Customer(?x)

Configuration:
my:adapter 

 AdapterImpl→ 

SELECT id FROM customer …
for each(id in results)
   add "http://.../"+id to bindings
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SWRL Extensions and Built-Ins

• More use cases for custom built-ins

• Live data

– Weather

– Stock exchange

– Product availability

• Complex computations

– Trip duration from A to B (e.g., Google Maps API)

– Simulations and predictions

– ...
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Monotonic Reasoning with SWRL

• Recap: monotonous vs. non-monotonous reasoning

– monotonous: every consequence derived is true forever

– non-monotonous: consequences may be revoked

• SWRL is monotonous

– i.e., consequences of all rules add up

– allows for efficient reasoning

– may lead to contradictions
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Safety of Rules

• Termination guarantee of reasoning

• So far

– no new instances, classes, and properties are generated

• This constrains the set of consequences which can be derived:

– C*I type assertions

– I*O*I object property assertions

– I*D*L datatype property assertions

→ in monotonous reasoning, the reasoner eventually terminates
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Safety of Rules

• Consider this example:

:Person rdfs:subClassOf [ 
  a owl:Restriction ; 
  owl:onProperty :hasFather ; 
  owl:cardinality 1^^xsd:integer ] . 
:hasFather rdfs:range :Person .

:Grandchild rdfs:subClassOf :Person .

hasFather(?x,?y)   hasFather(?y,?z) → Grandchild(?x)∧

• Given

:Peter a :Person .

• Do we derive GrandChild(Peter)?
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Safety of Rules

• Possible solution:

– We know that each person has a father

– therefore:

:Peter :hasFather _:p0 . _:p0 :hasFather _:p1 . :p1 … 

– and thus

:Peter a :Grandchild .

• What is the price of that solution?

– We allow for the creation of new instances

– i.e., we sacrifice guaranteed termination
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Safety of Rules

• DL safe rules:

– Variables are only bound to existing instances

– No new instances are created

• Thus, we cannot derive

:Peter a :Grandchild .

• Once more: trading off

– expressivity

– decidability
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Production Rules

• Sometimes, monotonous rules are not desirable

– consider: if a student passes SWT, his/her credit increases by 6 ECTS

• A first attempt with SWRL + built-ins:

Student(?X)  hasPassed(?X,:SWT) ∧
 hasCredits(?X,?C)  swrlb:add(?NC,?C,6) ∧ ∧

→ hasCredits(?X,?NC) .
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Production Rules

• Consider:

:Peter a :Student . 
:Peter :hasCredits 26^^xsd:integer . 
:Peter :hasPassed :SWT .

• After applying the rule:

:Peter :hasCredits 32^^xsd:integer .

• But rules are monotonous, so the following holds as well:

:Peter :hasCredits 26^^xsd:integer .

• ...and the reasoner is done yet
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Production Rules

• What happens:

:Peter :hasCredits 26^^xsd:integer . 
:Peter :hasCredits 32^^xsd:integer . 
:Peter :hasCredits 38^^xsd:integer . 
:Peter :hasCredits 44^^xsd:integer . 
:Peter :hasCredits 50^^xsd:integer . 
...

• We need to

– revoke/overwrite statements

• in contrast to monotonous reasoning!

– define new criteria for termination
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Rule Interchange Format

• Rule Interchange Format (RIF)

• Unification of

– Basic Logic Rules (such as SWRL)

– Production Rules (e.g., JENA rules)

• Standardized by W3C in 2010

RIF Core

RIF Basic 
Logic Dialect

RIF Production 
Rule Dialect
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Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...
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Other Semantic Web Languages

• What else is out there?

Cardoso (2006): The Semantic Web Vision – Where are We?

>50% 
non W3C 
languages



11/11/19 Heiko Paulheim 31 

Other Semantic Web Languages

• There is a wild mix

– of old and new languages

– of different paradigms

– of sophisticated languages and pure, low-level logic

• We will look at one example of a radically different language
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F-Logic

• Main concept: frames

– collection of properties of a class

– similar to class and database models

Person Mother 
(Person)

Father 
(Person)

Age 
(int)

:Paul :Martha :Hans 24

:Martha :Johanna :Karl 47

... ... ... ...
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F-Logic: A First Glance

• First observation:

– relations are bound to class

– in RDFS/OWL: first class citizens

• Inheritance

– Relations are inherited to subclasses

– Domain and range cannot be restricted any further

• Semantics

– Closed world semantics

– Negation can be used
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F-Logic: Rules

• Almost everything is expressed in rules

• e.g., property chains:

uncleOf(?X,?Z) :- 
             ?X:Man[siblingOf->?Y] 

     and ?Z[childOf->?Y] .

• Datalog-like syntax
• :- is used for implication ←
• Variables are denoted with ?
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F-Logic: Quantifiers

• There are extensional and universal quantifiers

• Authors are persons who have written at least one book

?X:Author :- ?X:Person 
  AND (EXIST ?Y ?Y:Book and ?X[hasWritten->?Y]).

• A non-author is a person who has not written any book

?X:NonAuthor :- ?X:Person 
  AND NOT(EXIST ?Y ?Y:Book and ?X[hasWritten ->?Y]).

• A star author is an author who as only written bestsellers

?X[isStarAuthor->true] :- ?X:Author AND 
  (FORALL ?Y 

(?X[hasWritten->?Y] --> ?Y:Bestseller) ) .
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F-Logic: Negation

• Negation may have unwanted consequences
• Consider this example:
• ?X[hates->?Y] :- 

  not(?X[likes->?Y] or ?X[doesntCare->?Y])) . 
?X[likes->?Y] :- ?X[knows->?Y] and not(?X[hates->?Y]) .

• Assume, the reasoner wants to prove ?X[likes->Stefan] .

• Possible plan:

?X[likes->Stefan] .

?X[knows->Stefan] and not(?X[hates->Stefan])) .

?X[knows->Stefan] and not(not(?X[likes->Stefan] or 
                              ?X[doesntCare->Stefan)) .

?X[knows->Stefan] and not(not(?X[knows->Stefan] and ...



11/11/19 Heiko Paulheim 37 

F-Logic: Decidability and Stratification

• F-Logic ontologies with negations can be undecidable
• Underyling problem:

– Cycles of rules containing negations

• Simplest case

– p(X) :- not(p(X)) .

• Test: Stratification

– lat. Stratum (pl.: Strata): Layer

• Divide ontology into layers
• Each predicate is assigned to a layer

– Classes are treated as unary predicates
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F-Logic: Decidability and Stratification

• Assign a layer S(p) to each predicate p

• Two conditions must be fulfilled:

– for all rules which have p in their head 
and a non-negated predicate q in the body:

S(q)≤S(p) 

– for all rules which have p in their head
and a negated predicate q in their body

S(q)<S(p)

• If such an assignment can be found, the ontology is decidable
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F-Logic: Decidability and Stratification

• Simple case:
• ?X[hates->?Y] :- not(?X[likes->?Y]) . 

?X[knows->?Y] :- ?X[likes->?Y] .

• We have to ensure

– S(likes) < S(hates)

– S(likes) ≤ S(knows)

• For those two rules, we can assign

– S(likes) = 0

– S(hates) = 1

– S(knows) = 0
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F-Logic: Decidability and Stratification

• We obtain the following layers

• Trivial observation

– For ontologies without negation, one layer is enough!

?X[knows->?Y] :- ?X[likes->?Y] .

?X[hates->?Y] :- not(?X[likes->?Y]) . Layer 1

Layer 0
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F-Logic: Decidability and Stratification

• Back to the original example

?X[hates->?Y] :- 
  not(?X[likes->?Y] or ?X[doesntCare->?Y])) . 
?X[likes->?Y] :- ?X[knows->?Y] and not(?X[hates->?Y]) 
.

• Can we find a stratification?

• We would need

– S(likes) < S(hates)

– S(hates) < S(likes)

• This is not possible!

→ The ontology cannot be stratified, i.e., it is undecidable!
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Recap: Russell's Paradox

• A classic paradox by 
Bertrand Russell, 1918

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?
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F-Logic: Decidability and Stratification

• Russell’s paradox in F-Logic:

theBarber[shaves->?X] :- not(?X[shaves->?X]) .

• We would need

S(shaves) < S(shaves)
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Validating Datasets with RDF Shapes

• Ontology reasoning is good for semantic validation

– but sometimes problematic due to semantic properties

– i.e., closed world assumption, non unique name assumption

• To validate data quality

– we want to ensure certain data is there

• e.g., every person has a name

– we want to ensure that data is not duplicated

• e.g., every person has exactly one birth place

– etc.



11/11/19 Heiko Paulheim 45 

Validating Datasets with RDF Shapes

• Example dataset:

:Mary a :Person .
:Mary :birthPlace :Mannheim .
:Mary :birthPlace :Berlin .

• Constraints in OWL:

Person rdfs:subClassOf [
a owl:Restriction .

   owl:onProperty :name .
   owl:minCardinality 1 . ]

Person rdfs:subClassOf [
  a owl:Restriction .
  owl:onProperty :birthPlace .
  owl:maxCardinality 1 . ]
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Shapes Constraint Language (SHACL)

• A W3C Standard since 2017

• For RDF validation

• Differences to reasoning

– Closed world evaluation

– Counting is possible

– More fine-grained checks (see later)
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Shapes Constraint Language (SHACL)

• Example dataset:

:Mary a :Person . 
:Mary :birthPlace :Mannheim . 
:Mary :birthPlace :Berlin .

• Constraints in SHACL:

:PersonShape

a sh:NodeShape ;

sh:targetClass :Person ;

sh:property [
sh:path :name ;

sh:minCount 1 ;

sh:datatype xsd:string ] ;

sh:property [ 
sh:path :birthPlace ;
sh:maxCount 1 ;

sh:class :City ] .
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Shapes Constraint Languages

• Further possibilities

– Dependencies between attributes

• e.g., given name and first name are equivalent

– Complex expressions involving paths and even SPARQL queries

– Checking strings against regex patterns (e.g., phone numbers)

– ...
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RDF Embeddings

• One of the current hot topics in Semantic Web research:

– Embeddings
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RDF Embeddings

• Challenge in RDF/OWL etc.:

– How similar are two entities?

– e.g., is Mannheim more similar to Karlsruhe than to Heidelberg?

• Application scenarios:

– Recommender systems

– Information retrieval



11/11/19 Heiko Paulheim 51 

Excursion: word2vec

• Such approaches exist for words

– aka, word embeddings

– each word becomes a vector in a low-dimensional vector space

– similar words are close in that vector space

– semantic relations have a similar direction and length

• allows for arithmetics, e.g., King – Man + Woman = Queen
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word2vec

• General idea: similar words appear in similar contexts

• Training set: sequences from a text corpus

• Training method: neural network

• Training variants:

– Continuous bag of words (CBOW): predict a word from its context

– Skip-Gram: predict context from a word

Xin Rong: word2vec parameter learning explained
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From word2vec to RDF2vec

• Generating sequences from an RDF dataset

– by starting random walks from each entity

• Example:

– dbr:Germany dbo:capital dbr:Berlin dbo:mayor dbr:Michael_Mueller

• Those are fed into a word2vec training engine

• Variants (Cochez et al., 2017)

– replace “random” by “semi-random” walk

– e.g., weight edges by frequency, PageRank, ...
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From word2vec to RDF2vec

• Observation: similar properties hold for RDF2vec

Ristoski & Paulheim: RDF2vec: RDF Graph Embeddings for Data Mining, 2016
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TransE and Descendants

• In RDF2vec, relation preservation is a by-product

• TransE: direct modeling

– Formulates RDF embedding as an optimization problem

– Find mapping of entities and relations to Rn so that

• across all triples <s,p,o>

Σ ||s+p-o|| is minimized
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Limitations of TransE

• TransE works fine if we have 1:1 relations

– But what in case of 1:n or n:m relations?

• Example below:

– We have to miminize 
||Malia + father – Barack|| + ||Sasha + father – Barack||

– This is minimized if ||Malia|| = ||Sasha||

– i.e., they become indistinguishable

MaliaSasha

Barack

father father
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￻

Extension: TransH

• In TransH, there is a hyperplane per relation

– Subject and object are projected to that hyperplane

– On each hyperplane, a TransE-like optimization is conducted

• Sasha and Malia become indistinguishable on father hyperplane

– But are still distinguishable in the vector space

Malia

Sasha

Barack

Hyperplane for 
father relation
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Limitations of TransE

• Transitive Properties

– we have to minimize
||Miami + partOf – Florida|| and ||Florida + partOf – USA||, but also
||Miami + partOf – USA|| 

– ideally, Miami + partOf = Florida, Florida + partOf = USA, 
Miami + partOf = USA

• Again: all three become infinitely close

• partOf becomes 0 vector

Florida

Miami

USA
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Extension: TransE-DT (2017)

• Entities and relations can be hyperplanes

– Represented as the vector of the hyperplane plus an individual vector

– Relations can hold between a point and a hyperplane or two 
hyperplanes

– Relations may be hyperplanes themselves

￻

Miami

USA
Florida
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Limitations of TransE

• Symmetric properties

– we have to minimize
||Barack + spouse – Michelle|| and ||Michelle + spouse – Barack||
simultaneously

– ideally, Barack + spouse = Michelle and Michelle + spouse = Barack 

• Michelle and Barack become infinitely close

• spouse becomes 0 vector

Michelle

Barack
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Extension: RotatE (2019)

• Relations are not represented as straight vectors, but rotations

– This allows for symmetric relations

– Also works for reflexive relations (they become a rotation by 360°)

Michelle

Barack
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2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
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TransE

RDF2Vec
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DistMult

RESCAL

NTN

TransR

TransH

TransD

KG2E

ComplEx

Limitations of TransE

• Numerous variants of TransE have been proposed 
to overcome limitations (e.g., TransH, TransR, TransD, …)

• Plus: embedding approaches based on tensor factorization etc.
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A Look Back

• This is where we embarked on our Semantic Web Technologies 
journey in September:

<html>
  …
  <b>Dr. Mark Smith</b>
  <i>Physician</i>
  Main St. 14
  Smalltown
  Mon-Fri 9-11 am
  Wed 3-6 pm
  …
</html>

Print in bold: „hmf298hmmhudsa“
Print in italics: „mj2i9ji0“
Print normal: „fdsah 
02hfadsh0um2m0adsmf0ihm
asdfjköfdsa298ndsfmij32mio
lk2mjpoimjiofdpmsajiomjm“

Dr. Mark Smith
Physician
Main St. 14
Smalltown
Mon-Fri 9-11 am
Wed 3-6 pm

In the eyes of a
human

in the eyes of a
computer
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A Look Back

• Formal Semantics

– Every entity has classes and relations to other entities

– Those are defined in an ontology

– Humans and computers can interpret those semantics

– Computers give justification on reasoning results

• Embeddings

– Every entity is an n-dimensional vector

– We do not know about the meaning of the dimensions

– Results are often good, but hard to justify
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The 2009 Semantic Web Layer Cake
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The 2018 Semantic Web Layer Cake

Embeddings
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Towards Semantic Vector Space Embeddings

cartoon

su
pe

rh
er

o
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The Holy Grail

• Combine semantics and embeddings

– e.g., directly create meaningful dimensions

– e.g., learn interpretation of dimensions a posteriori

– ...
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Summary

• OWL and OWL 2 are not the end

– Rules create more possibilities

• Other (non W3C standard) languages have also been also 
proposed

– different semantic paradigms (e.g., F-Logic)

– different problem setting (e.g., SHACL)

• Recent trend

– using vector space embeddings

– challenge: combine interpretable semantics and embeddings
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Questions?
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