
Semantic Web Technologies
The Layer Cake and Beyond

Heiko Paulheim

11/11/19 Heiko Paulheim 2

Previously on Semantic Web Technologies

• What we would like to have:

daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X) .

• Rules are flexible

• There are rules in the Semantic Web, e.g.

– Semantic Web Rule Language (SWRL)

– Rule Interchange Format (RIF)

– Some more

• Some reasoners do (partly) support rules

11/11/19 Heiko Paulheim 3

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

11/11/19 Heiko Paulheim 4

Towards Rules for the Semantic Web

• What we would like to have:

– daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X) .

• OWL only gives an approximation:

Woman

Person

is Child Of

is Daugther Of

 rdfs:subPropertyOf

11/11/19 Heiko Paulheim 5

SWRL

• Semantic Web Rule Language

– a rule language for the Semantic Web

– built to be combined with OWL

• W3C Member Submission (2004)

– not a standard in a strict sense

– but widely adopted

• Tool support

– many reasoners

– Protégé

11/11/19 Heiko Paulheim 6

SWRL Building Blocks

• Classes are defined as unary predicates

– :Peter a :Person . ↔ Person(Peter)

• Properties are defined as binary predicates

– :Peter :hasMother :Julia . ↔ hasMother(Peter,Mary)

– :Peter :hatAge 24^^xsd:integer . ↔ hasAge(Peter,24)

11/11/19 Heiko Paulheim 7

SWRL Rules

• Basic form:

– Head (Consequence) ← Body (Condition)

• Body and head are conjunctions of predicates

• Variables are introduced by ?

• Example:

– daughterOf(?X,?Y) ← childOf(?X,?Y) Woman(?X)∧

• There is no

– disjunction (logical or)

– negation

– undbound variables in the rule head

• ...but there are some ways out

11/11/19 Heiko Paulheim 8

Disjunctions in Rule Body

• There is no disjunction

• Example for disjunction in rule body:

– Female faculty members are students or staff of the faculty

• Intuitive:

– FemaleFacultyMember(?X) ← Woman(?X) Faculty(?Y) ∧ ∧
 (worksAt(?X,?Y) studentAt(?X,?Y))⋁ studentAt(?X,?Y))

11/11/19 Heiko Paulheim 9

Disjunctions in Rule Body

• Solution

– first step: convert body to disjunctive normal form

• i.e., disjunction of conjunctions

– second step: split into individual rules

11/11/19 Heiko Paulheim 10

Disjunctions in Rule Body

• FemaleFacultyMember(?X) ← Woman(?X) Faculty(?Y) ∧ ∧
 (worksAt(?X,?Y) studentAt(?X,?Y))⋁ studentAt(?X,?Y))

• turns into

– FemaleFacultyMember(?X) ←
 (Woman(?X) Faculty(?Y) worksAt (?X,?Y))∧ ∧

 (Woman(?X) ⋁ studentAt(?X,?Y)) ∧ Faculty(?Y) worksAt (?X,?Y))∧

• ...which turns into

– FemaleFacultyMember(?X) ←
Woman(?X) Faculty(?Y) worksAt (?X,?Y)∧ ∧

– FemaleFacultyMember(?X) ←
Woman(?X) Faculty(?Y) studentAt (?X,?Y)∧ ∧

11/11/19 Heiko Paulheim 11

Disjunctions in Rule Head

• Disjunctions in rule head

– are not so easy to get rid off

• Example

– Every faculty member is a student or an employee

Student(?X) Employee(?X) ← FacultyMember(?X)⋁ studentAt(?X,?Y))

• On the other hand: what should a reasoner conclude?

→ disjunction in rule head does not make as much sense!

11/11/19 Heiko Paulheim 12

Disjunctions in Rule Head

• SWRL is meant to be used together with OWL

• Idea: build an artificial class for the rule head

StudentOrEmployee owl:unionOf (Student Employee)

StudentOrEmployee(?X) ← FacultyMember(?X)

• This way, we can conclude that ?X is in the union of both classes

– Further reasoning on other axioms might rule out one option

11/11/19 Heiko Paulheim 13

Negation

• Negation can be simulated with a similar trick

• Example:

– Creatures living in the water are not human.

• Intuitive:

Human(?X) ← Creature(?X) habitat(?X,Water)∧

11/11/19 Heiko Paulheim 14

Simulating Negation

• Again: combining SWRL and OWL

– NonHuman owl:complementOf Human .

• New Rule:

– NonHuman(?X) ← Creature(?X) habitat(?X,Water) ∧

• Now, a reasoner can find a contradiction between

– :Nemo a :Creature; habitat :Water .

• and

– :Nemo a :Human .

11/11/19 Heiko Paulheim 15

Simulating Negation

• Negation in the rule body:

FlightlessBird(?X) ← Bird(?X) ∧ habitat(?X,Air)

• Define class:

NotAirHabitat owl:equivalentClass [
 a owl:Restriction ;
 owl:onProperty :habitat ;
 owl:allValuesFrom [
 owl:complementOf [owl:oneOf (:Air)]]]

FlightlessBird(?X) ← Bird(?X) NotAirHabitat(?X)∧

11/11/19 Heiko Paulheim 16

Unbound Variables

• All variables appearing in the rule head
must also appear in the body

– those are bound variables

• Example: every human has a (human) father

– Human(?Y) hasFather(?X,?Y) ← Human(?X)∧

• In that case, the reasoner would have to create new instances for Y

– Possible issue: termination

– No easy solution in SWRL+OWL

11/11/19 Heiko Paulheim 17

SWRL Extensions and Built-Ins

• Comparison

– olderThan(?X,?Y) ← hasBirthdate(?X,?BX) hasBirthdate(?Y,?BY) ∧ ∧
 swrlb:lessThan(?BX,?BY)

• Arithmetics

– twiceAsOld(?X,?Y) ← hasAge(?X,?AX) hasAge(?Y,?AY) ∧ ∧
 swrlb:multiply(?AX,?AY,2)

• String operations

– PeopleWithS(?X) ← hasName(?X,?N) swrlb:startsWith(?N,”S”)∧

11/11/19 Heiko Paulheim 18

SWRL Extensions and Built-Ins

• Some reasoners also allow for custom built-ins

• E.g., for wiring a reasoner to external systems

Customer
Database

ReasonerAdapterImpl
.java

 my:adapter(?x)
 → Customer(?x)

Configuration:
my:adapter

 AdapterImpl→

SELECT id FROM customer …
for each(id in results)
 add "http://.../"+id to bindings

11/11/19 Heiko Paulheim 19

SWRL Extensions and Built-Ins

• More use cases for custom built-ins

• Live data

– Weather

– Stock exchange

– Product availability

• Complex computations

– Trip duration from A to B (e.g., Google Maps API)

– Simulations and predictions

– ...

11/11/19 Heiko Paulheim 20

Monotonic Reasoning with SWRL

• Recap: monotonous vs. non-monotonous reasoning

– monotonous: every consequence derived is true forever

– non-monotonous: consequences may be revoked

• SWRL is monotonous

– i.e., consequences of all rules add up

– allows for efficient reasoning

– may lead to contradictions

11/11/19 Heiko Paulheim 21

Safety of Rules

• Termination guarantee of reasoning

• So far

– no new instances, classes, and properties are generated

• This constrains the set of consequences which can be derived:

– C*I type assertions

– I*O*I object property assertions

– I*D*L datatype property assertions

→ in monotonous reasoning, the reasoner eventually terminates

11/11/19 Heiko Paulheim 22

Safety of Rules

• Consider this example:

:Person rdfs:subClassOf [
 a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:cardinality 1^^xsd:integer] .
:hasFather rdfs:range :Person .

:Grandchild rdfs:subClassOf :Person .

hasFather(?x,?y) hasFather(?y,?z) → Grandchild(?x)∧

• Given

:Peter a :Person .

• Do we derive GrandChild(Peter)?

11/11/19 Heiko Paulheim 23

Safety of Rules

• Possible solution:

– We know that each person has a father

– therefore:

:Peter :hasFather _:p0 . _:p0 :hasFather _:p1 . :p1 …

– and thus

:Peter a :Grandchild .

• What is the price of that solution?

– We allow for the creation of new instances

– i.e., we sacrifice guaranteed termination

11/11/19 Heiko Paulheim 24

Safety of Rules

• DL safe rules:

– Variables are only bound to existing instances

– No new instances are created

• Thus, we cannot derive

:Peter a :Grandchild .

• Once more: trading off

– expressivity

– decidability

11/11/19 Heiko Paulheim 25

Production Rules

• Sometimes, monotonous rules are not desirable

– consider: if a student passes SWT, his/her credit increases by 6 ECTS

• A first attempt with SWRL + built-ins:

Student(?X) hasPassed(?X,:SWT) ∧
 hasCredits(?X,?C) swrlb:add(?NC,?C,6) ∧ ∧

→ hasCredits(?X,?NC) .

11/11/19 Heiko Paulheim 26

Production Rules

• Consider:

:Peter a :Student .
:Peter :hasCredits 26^^xsd:integer .
:Peter :hasPassed :SWT .

• After applying the rule:

:Peter :hasCredits 32^^xsd:integer .

• But rules are monotonous, so the following holds as well:

:Peter :hasCredits 26^^xsd:integer .

• ...and the reasoner is done yet

11/11/19 Heiko Paulheim 27

Production Rules

• What happens:

:Peter :hasCredits 26^^xsd:integer .
:Peter :hasCredits 32^^xsd:integer .
:Peter :hasCredits 38^^xsd:integer .
:Peter :hasCredits 44^^xsd:integer .
:Peter :hasCredits 50^^xsd:integer .
...

• We need to

– revoke/overwrite statements

• in contrast to monotonous reasoning!

– define new criteria for termination

11/11/19 Heiko Paulheim 28

Rule Interchange Format

• Rule Interchange Format (RIF)

• Unification of

– Basic Logic Rules (such as SWRL)

– Production Rules (e.g., JENA rules)

• Standardized by W3C in 2010

RIF Core

RIF Basic
Logic Dialect

RIF Production
Rule Dialect

11/11/19 Heiko Paulheim 29

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

11/11/19 Heiko Paulheim 30

Other Semantic Web Languages

• What else is out there?

Cardoso (2006): The Semantic Web Vision – Where are We?

>50%
non W3C
languages

11/11/19 Heiko Paulheim 31

Other Semantic Web Languages

• There is a wild mix

– of old and new languages

– of different paradigms

– of sophisticated languages and pure, low-level logic

• We will look at one example of a radically different language

11/11/19 Heiko Paulheim 32

F-Logic

• Main concept: frames

– collection of properties of a class

– similar to class and database models

Person Mother
(Person)

Father
(Person)

Age
(int)

:Paul :Martha :Hans 24

:Martha :Johanna :Karl 47

...

11/11/19 Heiko Paulheim 33

F-Logic: A First Glance

• First observation:

– relations are bound to class

– in RDFS/OWL: first class citizens

• Inheritance

– Relations are inherited to subclasses

– Domain and range cannot be restricted any further

• Semantics

– Closed world semantics

– Negation can be used

11/11/19 Heiko Paulheim 34

F-Logic: Rules

• Almost everything is expressed in rules

• e.g., property chains:

uncleOf(?X,?Z) :-
 ?X:Man[siblingOf->?Y]

 and ?Z[childOf->?Y] .

• Datalog-like syntax
• :- is used for implication ←
• Variables are denoted with ?

11/11/19 Heiko Paulheim 35

F-Logic: Quantifiers

• There are extensional and universal quantifiers

• Authors are persons who have written at least one book

?X:Author :- ?X:Person
 AND (EXIST ?Y ?Y:Book and ?X[hasWritten->?Y]).

• A non-author is a person who has not written any book

?X:NonAuthor :- ?X:Person
 AND NOT(EXIST ?Y ?Y:Book and ?X[hasWritten ->?Y]).

• A star author is an author who as only written bestsellers

?X[isStarAuthor->true] :- ?X:Author AND
 (FORALL ?Y

(?X[hasWritten->?Y] --> ?Y:Bestseller)) .

11/11/19 Heiko Paulheim 36

F-Logic: Negation

• Negation may have unwanted consequences
• Consider this example:
• ?X[hates->?Y] :-

 not(?X[likes->?Y] or ?X[doesntCare->?Y])) .
?X[likes->?Y] :- ?X[knows->?Y] and not(?X[hates->?Y]) .

• Assume, the reasoner wants to prove ?X[likes->Stefan] .

• Possible plan:

?X[likes->Stefan] .

?X[knows->Stefan] and not(?X[hates->Stefan])) .

?X[knows->Stefan] and not(not(?X[likes->Stefan] or
 ?X[doesntCare->Stefan)) .

?X[knows->Stefan] and not(not(?X[knows->Stefan] and ...

11/11/19 Heiko Paulheim 37

F-Logic: Decidability and Stratification

• F-Logic ontologies with negations can be undecidable
• Underyling problem:

– Cycles of rules containing negations

• Simplest case

– p(X) :- not(p(X)) .

• Test: Stratification

– lat. Stratum (pl.: Strata): Layer

• Divide ontology into layers
• Each predicate is assigned to a layer

– Classes are treated as unary predicates

11/11/19 Heiko Paulheim 38

F-Logic: Decidability and Stratification

• Assign a layer S(p) to each predicate p

• Two conditions must be fulfilled:

– for all rules which have p in their head
and a non-negated predicate q in the body:

S(q)≤S(p)

– for all rules which have p in their head
and a negated predicate q in their body

S(q)<S(p)

• If such an assignment can be found, the ontology is decidable

11/11/19 Heiko Paulheim 39

F-Logic: Decidability and Stratification

• Simple case:
• ?X[hates->?Y] :- not(?X[likes->?Y]) .

?X[knows->?Y] :- ?X[likes->?Y] .

• We have to ensure

– S(likes) < S(hates)

– S(likes) ≤ S(knows)

• For those two rules, we can assign

– S(likes) = 0

– S(hates) = 1

– S(knows) = 0

11/11/19 Heiko Paulheim 40

F-Logic: Decidability and Stratification

• We obtain the following layers

• Trivial observation

– For ontologies without negation, one layer is enough!

?X[knows->?Y] :- ?X[likes->?Y] .

?X[hates->?Y] :- not(?X[likes->?Y]) . Layer 1

Layer 0

11/11/19 Heiko Paulheim 41

F-Logic: Decidability and Stratification

• Back to the original example

?X[hates->?Y] :-
 not(?X[likes->?Y] or ?X[doesntCare->?Y])) .
?X[likes->?Y] :- ?X[knows->?Y] and not(?X[hates->?Y])
.

• Can we find a stratification?

• We would need

– S(likes) < S(hates)

– S(hates) < S(likes)

• This is not possible!

→ The ontology cannot be stratified, i.e., it is undecidable!

11/11/19 Heiko Paulheim 42

Recap: Russell's Paradox

• A classic paradox by
Bertrand Russell, 1918

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?

11/11/19 Heiko Paulheim 43

F-Logic: Decidability and Stratification

• Russell’s paradox in F-Logic:

theBarber[shaves->?X] :- not(?X[shaves->?X]) .

• We would need

S(shaves) < S(shaves)

11/11/19 Heiko Paulheim 44

Validating Datasets with RDF Shapes

• Ontology reasoning is good for semantic validation

– but sometimes problematic due to semantic properties

– i.e., closed world assumption, non unique name assumption

• To validate data quality

– we want to ensure certain data is there

• e.g., every person has a name

– we want to ensure that data is not duplicated

• e.g., every person has exactly one birth place

– etc.

11/11/19 Heiko Paulheim 45

Validating Datasets with RDF Shapes

• Example dataset:

:Mary a :Person .
:Mary :birthPlace :Mannheim .
:Mary :birthPlace :Berlin .

• Constraints in OWL:

Person rdfs:subClassOf [
a owl:Restriction .

 owl:onProperty :name .
 owl:minCardinality 1 .]

Person rdfs:subClassOf [
 a owl:Restriction .
 owl:onProperty :birthPlace .
 owl:maxCardinality 1 .]

11/11/19 Heiko Paulheim 46

Shapes Constraint Language (SHACL)

• A W3C Standard since 2017

• For RDF validation

• Differences to reasoning

– Closed world evaluation

– Counting is possible

– More fine-grained checks (see later)

11/11/19 Heiko Paulheim 47

Shapes Constraint Language (SHACL)

• Example dataset:

:Mary a :Person .
:Mary :birthPlace :Mannheim .
:Mary :birthPlace :Berlin .

• Constraints in SHACL:

:PersonShape

a sh:NodeShape ;

sh:targetClass :Person ;

sh:property [
sh:path :name ;

sh:minCount 1 ;

sh:datatype xsd:string] ;

sh:property [
sh:path :birthPlace ;
sh:maxCount 1 ;

sh:class :City] .

11/11/19 Heiko Paulheim 48

Shapes Constraint Languages

• Further possibilities

– Dependencies between attributes

• e.g., given name and first name are equivalent

– Complex expressions involving paths and even SPARQL queries

– Checking strings against regex patterns (e.g., phone numbers)

– ...

11/11/19 Heiko Paulheim 49

RDF Embeddings

• One of the current hot topics in Semantic Web research:

– Embeddings

11/11/19 Heiko Paulheim 50

RDF Embeddings

• Challenge in RDF/OWL etc.:

– How similar are two entities?

– e.g., is Mannheim more similar to Karlsruhe than to Heidelberg?

• Application scenarios:

– Recommender systems

– Information retrieval

11/11/19 Heiko Paulheim 51

Excursion: word2vec

• Such approaches exist for words

– aka, word embeddings

– each word becomes a vector in a low-dimensional vector space

– similar words are close in that vector space

– semantic relations have a similar direction and length

• allows for arithmetics, e.g., King – Man + Woman = Queen

11/11/19 Heiko Paulheim 52

word2vec

• General idea: similar words appear in similar contexts

• Training set: sequences from a text corpus

• Training method: neural network

• Training variants:

– Continuous bag of words (CBOW): predict a word from its context

– Skip-Gram: predict context from a word

Xin Rong: word2vec parameter learning explained

11/11/19 Heiko Paulheim 53

From word2vec to RDF2vec

• Generating sequences from an RDF dataset

– by starting random walks from each entity

• Example:

– dbr:Germany dbo:capital dbr:Berlin dbo:mayor dbr:Michael_Mueller

• Those are fed into a word2vec training engine

• Variants (Cochez et al., 2017)

– replace “random” by “semi-random” walk

– e.g., weight edges by frequency, PageRank, ...

11/11/19 Heiko Paulheim 54

From word2vec to RDF2vec

• Observation: similar properties hold for RDF2vec

Ristoski & Paulheim: RDF2vec: RDF Graph Embeddings for Data Mining, 2016

11/11/19 Heiko Paulheim 55

TransE and Descendants

• In RDF2vec, relation preservation is a by-product

• TransE: direct modeling

– Formulates RDF embedding as an optimization problem

– Find mapping of entities and relations to Rn so that

• across all triples <s,p,o>

Σ ||s+p-o|| is minimized

11/11/19 Heiko Paulheim 56

Limitations of TransE

• TransE works fine if we have 1:1 relations

– But what in case of 1:n or n:m relations?

• Example below:

– We have to miminize
||Malia + father – Barack|| + ||Sasha + father – Barack||

– This is minimized if ||Malia|| = ||Sasha||

– i.e., they become indistinguishable

MaliaSasha

Barack

father father

11/11/19 Heiko Paulheim 57

￻

Extension: TransH

• In TransH, there is a hyperplane per relation

– Subject and object are projected to that hyperplane

– On each hyperplane, a TransE-like optimization is conducted

• Sasha and Malia become indistinguishable on father hyperplane

– But are still distinguishable in the vector space

Malia

Sasha

Barack

Hyperplane for
father relation

11/11/19 Heiko Paulheim 58

Limitations of TransE

• Transitive Properties

– we have to minimize
||Miami + partOf – Florida|| and ||Florida + partOf – USA||, but also
||Miami + partOf – USA||

– ideally, Miami + partOf = Florida, Florida + partOf = USA,
Miami + partOf = USA

• Again: all three become infinitely close

• partOf becomes 0 vector

Florida

Miami

USA

11/11/19 Heiko Paulheim 59

Extension: TransE-DT (2017)

• Entities and relations can be hyperplanes

– Represented as the vector of the hyperplane plus an individual vector

– Relations can hold between a point and a hyperplane or two
hyperplanes

– Relations may be hyperplanes themselves

￻

Miami

USA
Florida

11/11/19 Heiko Paulheim 60

Limitations of TransE

• Symmetric properties

– we have to minimize
||Barack + spouse – Michelle|| and ||Michelle + spouse – Barack||
simultaneously

– ideally, Barack + spouse = Michelle and Michelle + spouse = Barack

• Michelle and Barack become infinitely close

• spouse becomes 0 vector

Michelle

Barack

11/11/19 Heiko Paulheim 61

Extension: RotatE (2019)

• Relations are not represented as straight vectors, but rotations

– This allows for symmetric relations

– Also works for reflexive relations (they become a rotation by 360°)

Michelle

Barack

11/11/19 Heiko Paulheim 62

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

TransE

RDF2Vec

HolE

DistMult

RESCAL

NTN

TransR

TransH

TransD

KG2E

ComplEx

Limitations of TransE

• Numerous variants of TransE have been proposed
to overcome limitations (e.g., TransH, TransR, TransD, …)

• Plus: embedding approaches based on tensor factorization etc.

11/11/19 Heiko Paulheim 63

A Look Back

• This is where we embarked on our Semantic Web Technologies
journey in September:

<html>
 …
 Dr. Mark Smith
 <i>Physician</i>
 Main St. 14
 Smalltown
 Mon-Fri 9-11 am
 Wed 3-6 pm
 …
</html>

Print in bold: „hmf298hmmhudsa“
Print in italics: „mj2i9ji0“
Print normal: „fdsah
02hfadsh0um2m0adsmf0ihm
asdfjköfdsa298ndsfmij32mio
lk2mjpoimjiofdpmsajiomjm“

Dr. Mark Smith
Physician
Main St. 14
Smalltown
Mon-Fri 9-11 am
Wed 3-6 pm

In the eyes of a
human

in the eyes of a
computer

11/11/19 Heiko Paulheim 64

A Look Back

• Formal Semantics

– Every entity has classes and relations to other entities

– Those are defined in an ontology

– Humans and computers can interpret those semantics

– Computers give justification on reasoning results

• Embeddings

– Every entity is an n-dimensional vector

– We do not know about the meaning of the dimensions

– Results are often good, but hard to justify

11/11/19 Heiko Paulheim 65

The 2009 Semantic Web Layer Cake

11/11/19 Heiko Paulheim 66

The 2018 Semantic Web Layer Cake

Embeddings

11/11/19 Heiko Paulheim 67

Towards Semantic Vector Space Embeddings

cartoon

su
pe

rh
er

o

11/11/19 Heiko Paulheim 68

The Holy Grail

• Combine semantics and embeddings

– e.g., directly create meaningful dimensions

– e.g., learn interpretation of dimensions a posteriori

– ...

11/11/19 Heiko Paulheim 69

Summary

• OWL and OWL 2 are not the end

– Rules create more possibilities

• Other (non W3C standard) languages have also been also
proposed

– different semantic paradigms (e.g., F-Logic)

– different problem setting (e.g., SHACL)

• Recent trend

– using vector space embeddings

– challenge: combine interpretable semantics and embeddings

11/11/19 Heiko Paulheim 70

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Questions?

