Hello

• Prof. Dr. Heiko Paulheim
 – Chair for Data Science
• Research Interests:
 – Knowledge Graphs on the Web and their Applications
 – Data Quality and Data Cleaning on Knowledge Graphs
 – Using Knowledge Graphs in Data Mining
 – Societal Impact of Artificial Intelligence
• Room: B6 26, B0.22
• Consultation: Tuesdays 9-10
 – Please make an appointment with Bianca Lermer upfront
• Heiko will teach the lectures
Hello

- M.Sc. Sven Hertling
- Graduate Research Associate
- Research Interests:
 - Semantic Technologies / Semantic Web
 - Linked Data
 - Knowledge Graphs
- eMail: sven@informatik.uni-mannheim.de
- Sven will teach the exercises and co-supervise the projects.
Introduction and Course Outline

• Administration
• Introduction
 – Vision of the Semantic Web
 – Building blocks of the Semantic Web
 – Technical foundations
Course Organization

• Lecture
 – Semantic Web standards and languages
 – Programming for the semantic web
 – Creating semantic web data

• Exercise
 – Understand semantic web principles, play with real data

• Project Work
 – teams of 3-4 students build a Semantic Web application
 – teams may choose their own data sets and tasks
 (in addition, we will propose some pointers for ideas)
 – write summary about project, present project results
 – not graded, but mandatory

• Final exam
 – final grades are only based on written exam
Course Organization

• Registration
 – you have registered via Portal2
 – you should have access to ILIAS
 – the course is fully booked
 • if you decide not to attend, please write to Ms. Czanderle
Course Contents and Schedule

• Today: Introduction
• 05.10.: Knowledge Representation with RDF
• 12.10.: Simple ontologies with RDF Schema
• 19.10.: Linked Open Data, Programming the Semantic Web
• 26.10.: SPARQL, Intro to student projects
• 02.11.: Knowledge Graphs
• 09.11.: Complex Ontologies with OWL
• 16.11.: Reasoning with complex ontologies
• 23.11.: Ontology engineering, top level ontologies
• 30.11.: Semantic Web Data Quality and Interlinking
• 07.12.: Project Presentations
Deadlines

• Submission of project work proposal
 – Sunday, November 1st 23:59

• Submission of final project work report
 – Wednesday, December 9th, 23:59
Course Organization

• Lecture Webpage: Slides, Announcements, Web Links
 – hint: look at version tags of slides!

• Additional Material

• Time and Location
 – Lecture: Monday, 13.45 – 15.15, Room WIM-ZOOM-03
 – Exercise: Friday, 12.00 - 13.30, Room WIM-ZOOM-03
Further Reading and Software

• Follow the links on the website
 – Most material is available online

• Programming environment
 – JENA framework (Java)
 – RDFlib (Python)

• Ontology engineering environment
 – Protégé
 – http://protege.stanford.edu/
Warning

• This lecture contains
 – cartoons
 – Java and Python code
 – some digressions to philosophy

• Having said that:
 – have fun! :-)
Questions?
Semantic Web Technologies
Introduction

Heiko Paulheim
What is the Semantic Web?

• 2001 article by Tim Berners-Lee, Jim Hendler, and Ora Lassila:

„The Web is the killer app of the Internet. The Semantic Web is another killer app of that magnitude.“

Web vs. Internet?

<table>
<thead>
<tr>
<th>OSI Model</th>
<th>TCP/IP Model (DoD Model)</th>
<th>TCP/IP – Internet Protocol Suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Application</td>
<td>Telnet, SMTP, POP3, FTP, NNTP, HTTP, SNMP, DNS, SSH, ...</td>
</tr>
<tr>
<td>Presentation</td>
<td>Transport</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>Session</td>
<td>Internet</td>
<td>IP, ICMP, ARP, DHCP</td>
</tr>
<tr>
<td>Transport</td>
<td>Network Access</td>
<td>Ethernet, PPP, ADSL</td>
</tr>
<tr>
<td>Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The “Classic” Web

• Uses HTTP protocol and URLs
• HTML as a markup language
 – plus CSS, JavaScript, …
 – plus a few other, more or less standardized formats (GIF, JPEG, Flash, …)
• Browser as a universal client
The “Classic” Web

- Hypertext: linked documents

The World Wide Web

The World Wide Web was established in the 90s by **Tim Berners-Lee** at **CERN**.

CERN

The CERN is a European research center, located close to Geneva.

Tim Berners-Lee

Tim Berners-Lee (born 1955) is one of the inventors of the **World Wide Web**.
A Short History of the Web

- 1974: TCP/IP Standard
- 1979: First Multi User Game
- 1985: First domain registered
 1,000 computers online
- 1989: Hypertext concept
 by Tim Berners-Lee
- 1991: First HTML version (20 elements)
- 1992: ~1,000,000 computers online
- 1993: Mosaic-Browser,
 around 500 web servers world wide
- 1994: Full text search engines (WebCrawler, Lycos)
 Web catalogues (Yahoo!, AltaVista)
 Foundation of the W3C
A Short History of the Web

- 1995: Internet Explorer
- 1996: HTTP Standard
- 1998: Foundation of Google
- 2000: Dotcom Bubble, Stock Market Crash, GPRS (mobile Web)
- 2003: Foundation of Skype
- 2004: First version of Firefox
- 2006: Foundation of Twitter and WikiLeaks
- 2007: Netflix starts streaming movies
- 2009: First LTE mobile network
- 2011: UN declares disconnection of people from the internet a human rights violation
- 2014: 1,000,000,000 computers online
Growth of the Web

https://commons.wikimedia.org/wiki/File:Internet_Hosts_Count_log.svg
The Dotcom Bubble and Stock Market Crash

Evolution of the Web

http://www.phdcomics.com/comics.php?n=1456
The “Classic” Web

In the eyes of a human

Dr. Mark Smith
Physician
Main St. 14
Smalltown
Mon-Fri 9-11 am
Wed 3-6 pm

in the eyes of a computer

Print in bold: “hmf298hmmhudsas”
Print in italics: “mj2i9ji0”
Print normal: “fdsah
02hfadsh0um2m0adsmf0ihtm
asdfjkofdsas298ndsfmij32mio
lk2mjpoimjiofdpmsajiomjm”

<html>
...
Dr. Mark Smith
<i>Physician</i>
Main St. 14
Smalltown
Mon-Fri 9-11 am
Wed 3-6 pm
...
</html>
Searching for Information on the Web

Full text search by keywords (e.g., Google):

- „Mark Smith“
- „Physician in Smalltown“
- „Doctor in Smalltown“
- „Doctor in Smalltown with opening hours on Wednesday afternoon“
- „Somebody in Smalltown who can fix a broken leg“

→ “classic” Web is too inflexible for useful search
→ hard to use for intelligent agents
Problems of the “Classic” Web

• Finding information
 – Keyword based search instead of natural language questions
 – Different natural languages
 – Synonyms, homonyms and polysemous words
 – Ambiguity of natural language

• Processing information
 – Formats and encodings

• Making use of information
 – Distributed across pages
 – e.g., a book's author on the publishers site, address on his/her personal page

Homonyms and Polysemous Words
Untyped Links

Bush Era Law Could Get You 20 Years in Prison For Clearing Your Browser History
Example: Wolfram Alpha

Multiple interpretations of “Mannheim” and “Karlsruhe”

Multiple interpretations of “distance”
Example: Wolfram Alpha
Example: Google Knowledge Graph

- Paradigm shift in Web Search (2012)
 - “Things, not strings”
- Contains structured data for many entities
- Displayed to the user in a uniform way
- Connect entities via named links

Note: these are typed links!
Example: Enterprise Knowledge Graphs

- Many companies use knowledge graphs
 - As a unified access point to their data
 - To allow joint reasoning over different data sources

https://dl.acm.org/citation.cfm?id=3332266
Solutions

Lectures: Web Mining, Information Extraction

Extract information from the Web

Create machine interpretable information

Lecture: Semantic Web Technologies

WWW
The Semantic Web Idea

• Provide information in machine interpretable form

• Make (semantic) links between (data) documents usable

• Allow reasoning

• Facilitate useful (!) complex queries
Semantic Web – Architecture

here be dragons...

Semantic Web Technologies (This lecture)

Technical Foundations

User Interface and Applications

Trust

Proof

Unifying Logic

Ontology: OWL

Rules: RIF

Schema: RDF-S

Data Interchange: RDF

Data Interchange: XML

URI

Unicode

Query: SPARQL

Berners-Lee (2009): Semantic Web and Linked Data
Uniform Resource Identifiers (URIs)

- Proposed by Tim-Berners-Lee as „Universal Resource Identifier“ (IETF RFC 1630)
- Used for naming and finding resources on the Web

URI = scheme "://" hier-part ["?" query]["#" fragment]

http://example.com:8042/over/there?name=ferret#nose
URIs vs. URLs

• Uniform Resource Locators (IETF RFC 1738, 1994) are a *subset* of URIs

• URIs can refer to *arbitrary* things
• A URL refers to a resource on the Web

• Typical URL prefixes
 – http
 – ftp
 – mailto
 – telnet
 – file
 – ...
URLs on the Web

- Most common usage: Hyperlinks in HTML documents
- Links usually do not carry any meta information

The World Wide Web

The World Wide Web was initiated in the 90s by Tim Berners-Lee at CERN.

Tim Berners-Lee

Tim Berners-Lee (born 1955) is one of the inventors of the World Wide Web.
Character Sets on the Web

• ASCII („American Standard Code for Information Interchange“)
 ISO 646 (1963), 127 characters, 95 of which are printable:
 !"#$%&'()*+,-./0123456789:;<=>?
 @ABCDEFGHIJKLMNOPQRSTUVWXYZ\[\]^_`
 `abcdefghijklmnopqrstuvwxyz{|}~

• Extension to 8 Bit: ISO 8859-1 to -16 (1998)
 – covers major European languages
 – most well known: 8859-1 („Latin-1“)

• The Web, however, speaks many more languages...
The Multilingual Web

TOWER OF BABEL

HOW DARE YOU!!! FROM NOW ON YOU’LL TALK....

...UNICODE!

HE WAS NOT AMUSED

Unicode

• ISO 10646
 – first version 1991 (Europe, Near East, India)
 – Unicode 13.0 (March 2020)
 – defines ~144,000 characters
 – covers even very exotic languages
 – Plus: currency symbols, emojis, sign language, ...
Information Representation in XML

XML (eXtensible Markup Language)

- A W3C standard since 1998
- Universal format for data exchange

```xml
<physician>
  <name>Dr. Mark Smith</name>
  <address>
    <street>Main St.</street>
    <number>14</number>
    <city>Smalltown</city>
  </address>
  <telephone>
    <number>+44 123 456789</number>
  </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    ...
  </hours>
</physician>
```
XML: Basic Concepts

• Tags (arbitrarily definable):
 – Form pairs:
 <physician> … </physician>
 – …or empty element tags
 <young />

• Attributes:
 <physician location="Smalltown">

• Tags are nested (with exactly one root element):
 <physician>
 <address> … </address>
 </physician>
XML: Well-formed Documents

<physician>
 <name>Dr. Mark Smith</name>
 <address>
 <street>Main St.</street>
 <number>14</number>
 <city>Smalltown</city>
 </address>
 <telephone>
 <number>+44 123 456789</number>
 </telephone>
 <hours>
 <monday>9-11 am</monday>
 <tuesday>9-11 am</tuesday>
 ...
 </hours>
</physician>
HTML and XML

- HTML documents look like XML documents
 - ...but they are usually not well-formed!

<p>Look at this!

- XHTML: HTML as well-formed XML documents
- A W3C standard since 2000

<p>Look at this!
</p>
XPath: Accessing Information in XML

- Query language for XML
- A W3C standard since 1999 (Version 2.0: 2010)

```
/physician[name='Dr. Mark Smith']/telephone/number
```

```
<physician>
  <name>Dr. Mark Smith</name>
  <address>
    <street>Main St.</street>
    <number>14</number>
    <city>Smalltown</city>
  </address>
  <telephone>
    <number>+44 123 456789</number>
  </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    ...
  </hours>
</physician>
```
XSLT: Transformation of XML Documents

• Stylesheet based processing of XML documents
• A W3C standard since 1999
• Uses XPath

<physician>
 <name>Dr. Mark Smith</name>
 <address>
 <street>Main St.</street>
 <number>14</number>
 <city>Smalltown</city>
 </address>
 <telephone>
 <number>+44 123 456789</number>
 </telephone>
 <hours>
 <monday>9-11 am</monday>
 <tuesday>9-11 am</tuesday>
 ...
 </hours>
</physician>

<xsl:template match="/physician">

 <xsl:value-of select="name"/>

</xsl:template>

Dr. Mark Smith
Namespaces in XML

• Elements with the same name can occur in different places
 – ...but the contents and semantics may differ
• How can we tell them apart?

```xml
<physician>
  <name>Dr. Mark Smith</name>
  <address>
    <street>Main St.</street>
    <number>14</number>
    <city>Smalltown</city>
  </address>
  <telephone>
    <number>+44 123 456789</number>
  </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    ...
  </hours>
</physician>
```
Namespaces in XML

- Namespace definition using prefixes (Notation: `prefix:name`)
- Each namespace itself is a URI
- Default namespaces may be defined

```xml
<physician xmlns="http://www.med.com/physician"
            xmlns:addr="http://www.med.com/addr">
  <name>Dr. Mark Smith</name>
  <addr:address>
    <addr:street>Main St.</addr:street>
    <addr:number>14</addr:number>
    <addr:city>Smalltown</addr:city>
  </addr:address>
  <telephone>
    <number>+44 123 456789</number>
  </telephone>
  <hours>
    <monday>9-11 am</monday>
    <tuesday>9-11 am</tuesday>
    ...
  </hours>
</physician>
```
XML: Document Type Definition (DTD)

• Defines valid elements for a class of XML documents
 – Names
 – allowed attributes
 – allowed nested child elements

• DTD is a part of the W3C's XML specification

• XML documents matching a DTD are called “valid”
XML: Document Type Definition (DTD)

<!-- DOCTYPE physician [
 <!ELEMENT physician (name,
 address*,
 telephone?,
 fax?,
 hours)>]

<!ELEMENT address (street,
 number,
 city)>}

<!ELEMENT street (#PCDATA)>
 ...
]>

<!-- DOCTYPE physician SYSTEM "physician.dtd"-->

<physician>
 <name>Dr. Mark Smith</name>
 <address>
 <street>Main St.</street>
 <number>14</number>
 <city>Smalltown</city>
 </address>
 <telephone>
 <number>+44 123 456789</number>
 </telephone>
 <hours>
 <monday>9-11 am</monday>
 <tuesday>9-11 am</tuesday>
 ...
 </hours>
</physician>
XML: Document Type Definition (DTD)

• Definition of child elements and their order
  ```xml
  <!ELEMENT address(street,no,line*,zip,city,state?)>
  ```
 - ?, + and * mark optional and possible multiple elements

• Definition of attribute lists
  ```xml
  <!ATTLIST person title CDATA>
  ```
 - Allowed modifiers: #REQUIRED, #FIXED, #IMPLIED, “...“
 - Enumerating allowed values: (dr|prof)

• Definition of entities:
  ```xml
  <!ENTITY sw “Semantic Web“>
  ```
 - May be used as shortcuts in the XML document: &sw;
XML Schema

- W3C-Standard (since 2004)
- XML schemas are XML files themselves

- More flexible than DTDs:
 - Minimum and maximum number of elements
 - Combinations of elements (either/or, combinations w/out fixed order, …)
 - Data types (Numbers, dates, …), own types may be defined
 - Support for namespaces
 - Possibility to create modular schemas
<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="physician">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 ...<xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

<physician xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="physician.xsd">
 <name>Dr. Mark Smith</name>
 <address>
 <street>Main St.</street>
 <number>14</number>
 <city>Smalltown</city>
 </address>
 <telephone>
 <number>+44 123 456789</number>
 </telephone>
 <hours>
 <monday>9-11 am</monday>
 <tuesday>9-11 am</tuesday>
 ...</hours>
</physician>
XML Schema – Modular Schemas

```xml
<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:addr="http://www.address.com/">

<xs:import
namespace="http://www.address.com/"
schemaLocation="address.xsd"/>

<xs:element name="physician">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="name"
type="xs:string">
        <xs:element ref="addr:address"/>
      </xs:element>
      ...
    </xs:sequence>
  </xs:complexType>
</xs:element>
</xs:schema>
```
Example: Modular Schemas in XHTML

```html
<html xmlns="http://www.w3.org/1999/xhtml"
     xmlns:svg="http://www.w3.org/2000/svg">
<body>
<h1>SVG embedded inline in XHTML:</h1>
<svg:svg width="300px" height="200px">
  <svg:circle cx="150" cy="100" r="50"
             fill="#ff0000"/>
</svg:svg>
</body>
</html>
```

https://developer.mozilla.org/En/SVG:Namespaces_Crash_Course
So, what does a DTD/Schema Define?

- **Syntax** – σύνταξις ("together" + "order")
 - Which elements are there?
 - How are they arranged?
 - Which combinations are allowed?

- **...as opposed to: Semantics** - σημαίνειν ("denote")
 - How to interpret the contents of an element?
 - What is their relation?
Syntax and Semantics: The Linguists' View

• Syntax: how are correct sentences formed?
 „This sentence no verb.“
 „The dreaming lamp give gives a freshly cut juices juice to the tire tired sink."

• Semantics: what does a word and sentence mean?

• Notes
 – syntactic correctness does not guarantee semantic interpretability
 – semantic interpretability does not require syntactic correctness
 (for humans)
Syntax and Semantics: The Linguists' View

Definition of knowledge noun from the Oxford Advanced Learner's Dictionary

knowledge noun

1 (uncountable, singular) the information, understanding and skills that you gain through education or experience
 • practical/medical/scientific knowledge
 • knowledge of/about something He has a wide knowledge of painting and music.
 • There is a lack of knowledge about the tax system.
 ➔ See related entries: Teaching and learning

2 (uncountable) the state of knowing about a particular fact or situation
 • She sent the letter without my knowledge.
 • The film was made with the Prince's full knowledge and approval.
 • She was impatient in the knowledge that time was limited.
 • I went to sleep secure in the knowledge that I was not alone in the house.
 • They could relax safe in the knowledge that they had the funding for the project.
 • He denied all knowledge of the affair.

3 knowledge economy/industry/worker working with information rather than producing goods
 • the emergence of consultancy as a knowledge industry
 • the shift toward a knowledge economy
So, what does a DTD/Schema Define?

Employee catalog of the hospital

<physician>
 <name>Dr. Mark Smith</name>
 <address>
 <street>Main St.</street>
 <number>14</number>
 <city>Smalltown</city>
 </address>
 <telephone>
 <number>+44 123 456789</number>
 </telephone>
 <hours>
 <monday>9-11 am</monday>
 <tuesday>9-11 am</tuesday>
 ...
 </hours>
</physician>

(probably)
the private address

Yellow Pages

<physician>
 <name>Dr. Mark Smith</name>
 <address>
 <street>Main St.</street>
 <number>14</number>
 <city>Smalltown</city>
 </address>
 <telephone>
 <number>+44 123 456789</number>
 </telephone>
 <hours>
 <monday>9-11 am</monday>
 <tuesday>9-11 am</tuesday>
 ...
 </hours>
</physician>

(probably)
the work address
So, what does a DTD/Schema Define?

- XML Schema / DTD defines the *syntax* of an XML document, but no its *semantics*

- Tag names are not interpretable by machines
 - i.e., they do not ease the information retrieval process...
 - Semantics of the data is hidden – usually hard wired in the application

- The Semantic Web is meant as a remedy to that problem
 - *Semantic Web is/can do more than XML!*

```xml
<2nf3oiü>*
  <34f0>Dr. Mark Smith</34f0>
  <rmd4935r>
    <e2m4>Main St.</e2m4>
    <dur3>14</dur3>
    <jfa34>Smalltown</jfa34>
  </rmd4935r>
  <d24r3fmö>
    <deß5>+44 123 456789</deß5>
  </d24r3fmö>
  <vsfif>
    <f02>9-11 am</f02>
    <fj9>9-11 am</fj9>
  ...
</vsfif>
</2nf3oiü>*
```
A Note on Web Services

• Original vision
 – Describe functions of services as XML
 – e.g., stock market ticker, calculator, travel booking…

• ...so that an intelligent agent can combine them
 – and dynamically create a system for a given purpose

• Standards
 – WSDL, UDDI, SOAP, ...

• Problem
 – The semantics is missing!
Wrap Up

• Problems of the classic web
 – Not usable for machines / intelligent agents

• URIs
 – Unique identifiers for resource
 – URLs are dereferencable on the Web

• Unicode
 – A character set for all languages

• XML
 – XPath
 – XSLT
 – DTD
 – XML Schema
Semantic Web – Architecture

here be dragons...

Semantic Web Technologies (This lecture)

Technical Foundations

User Interface and Applications

Trust

Proof

Unifying Logic

Query: SPARQL

Ontology: OWL

Rules: RIF

Schema: RDF-S

Data Interchange: RDF

Data Interchange: XML

URI

Unicode

Berners-Lee (2009): *Semantic Web and Linked Data*
Questions?