Semantic Web Technologies
Public Knowledge Graphs

Heiko Paulheim
Previously on “Semantic Web Technologies”

• Linked Open Data
 – We know the principles
 – We have seen examples for some datasets

• Today
 – A closer look on actual examples
 – Some useful, large-scale resources
Growing Interest in Knowledge Graphs

Introducing the Knowledge Graph: things, not strings

Amit Singhal
SVP, Engineering

Published May 16, 2012

Search is a lot about discovery—the basic human need to learn and broaden your horizons. But searching still requires a lot of hard work by you, the user. So today I’m really excited to launch the Knowledge Graph, which will help you discover new information quickly and easily.

Take a query like [taj mahal]. For more than four decades, search has essentially been about matching keywords to queries. To a search engine the words [taj mahal] have been just that—two words.

But we all know that [taj mahal] has a much richer meaning. You might think of one of the world’s most beautiful monuments, or a Grammy Award-winning musician, or possibly even a casino in Atlantic City, NJ.

Sources: Google
Introduction

• Knowledge Graphs on the Web
• Everybody talks about them, but what *is* a Knowledge Graph?
 – I don’t have a definition either...

“Please define what a knowledge graph is – and what it is not.”
Definitions

- Knowledge graphs could be envisaged as a network of all kind things which are relevant to a specific domain or to an organization. They are not limited to abstract concepts and relations but can also contain instances of things like documents and datasets. (Blumauer, 2014)

- We define a Knowledge Graph as an RDF graph. (Färber and Rettinger, 2015)

- Knowledge graphs are large networks of entities, their semantic types, properties, and relationships between entities. (Kroetsch and Weikum, 2016)

- [...] systems exist, [...], which use a variety of techniques to extract new knowledge, in the form of facts, from the web. These facts are interrelated, and hence, recently this extracted knowledge has been referred to as a knowledge graph. (Pujara et al., 2013)

Ehrlinger and Wöß: Towards a Definition of Knowledge Graphs. 2016
Definitions

• My working definition: a Knowledge Graph
 – *mainly* describes instances and their relations in a graph
 • Unlike an ontology
 • Unlike, e.g., WordNet
 – Defines possible classes and relations in a *schema* or *ontology*
 • Unlike schema-free output of some IE tools
 – Allows for interlinking *arbitrary* entities with each other
 • Unlike a relational database
 – Covers *various* domains
 • Unlike, e.g., Geonames

*Paulheim: Knowledge graph refinement:
A survey of approaches and evaluation methods, 2017.*
Introduction

• Knowledge Graphs out there (not guaranteed to be complete)

<table>
<thead>
<tr>
<th>Name</th>
<th>Instances</th>
<th>Facts</th>
<th>Types</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBpedia (English)</td>
<td>4,806,150</td>
<td>176,043,129</td>
<td>735</td>
<td>2,813</td>
</tr>
<tr>
<td>YAGO</td>
<td>4,595,906</td>
<td>25,946,870</td>
<td>488,469</td>
<td>77</td>
</tr>
<tr>
<td>Freebase</td>
<td>49,947,845</td>
<td>3,041,722,635</td>
<td>26,507</td>
<td>37,781</td>
</tr>
<tr>
<td>Wikidata</td>
<td>15,602,060</td>
<td>65,993,797</td>
<td>23,157</td>
<td>1,673</td>
</tr>
<tr>
<td>NELL</td>
<td>2,006,896</td>
<td>432,845</td>
<td>285</td>
<td>425</td>
</tr>
<tr>
<td>OpenCyc</td>
<td>118,499</td>
<td>2,413,894</td>
<td>45,153</td>
<td>18,526</td>
</tr>
<tr>
<td>Google’s Knowledge Graph</td>
<td>570,000,000</td>
<td>18,000,000,000</td>
<td>1,500</td>
<td>35,000</td>
</tr>
<tr>
<td>Google’s Knowledge Vault</td>
<td>45,000,000</td>
<td>271,000,000</td>
<td>1,100</td>
<td>4,469</td>
</tr>
<tr>
<td>Yahoo! Knowledge Graph</td>
<td>3,443,743</td>
<td>1,391,054,990</td>
<td>250</td>
<td>800</td>
</tr>
</tbody>
</table>

Knowledge Graph Creation: CyC

• The beginning
 – Encyclopedic collection of knowledge
 – Started by Douglas Lenat in 1984
 – Estimation: 350 person years and 250,000 rules should do the job
 of collecting the essence of the world’s knowledge

• The present (as of June 2017)
 – ~1,000 person years, $120M total development cost
 – 21M axioms and rules
 – Used to exist until 2017
Knowledge Graph Creation: CyC
Knowledge Graph Creation

- Lesson learned no. 1:
 - Trading efforts against accuracy
Knowledge Graph Creation: Freebase

- The 2000s
 - Freebase: collaborative editing
 - Schema not fixed

- Present
 - Acquired by Google in 2010
 - Powered first version of Google’s Knowledge Graph
 - Shut down in 2016
 - Partly lives on in Wikidata (see in a minute)

coming up soon: was it a good deal or not?
Knowledge Graph Creation: Freebase

- Community based
- Like Wikipedia, but more structured

Arnold Schwarzenegger

Discuss "Arnold Schwarzenegger" Show Empty Fields

- Types: Person (People), US Politician (Government), Film actor (Film), Film producer (Film), Pro Athlete (Sports), Sports Award Winner (Sports)
- Also known as: Arnold Alois Schwarzenegger, The Governor
- Gender: Male
- Date of Birth: Jul 30, 1947
- Place of Birth: Thal, Austria
- Country Of Nationality: United States
- Profession: Politician, Bodybuilder, Entrepreneur, Actor
- Religion: Roman Catholicism
- Parents: Aurelia Jadmy Schwarzenegger, Gustav Schwarzenegger
- Children: Christopher Schwarzenegger, Patrick Schwarzenegger, Christina Schwarzenegger, Katherine Schwarzenegger
- Siblings: Meinhard Schwarzenegger
- Spouse (or domestic partner): Maria Shriver • Apr 26, 1986
- Height: 1.88 m
- IMDB Entry: http://www.imdb.com/name/nm0000216/
- Career Start: 1968
- Career End: 1980
Knowledge Graph Creation

• Lesson learned no. 2:
 – Trading formality against number of users

Max. user involvement

Max. degree of formality
Knowledge Graph Creation: Wikidata

• The 2010s
 – Wikidata: launched 2012
 – Goal: centralize data from Wikipedia languages
 – Collaborative
 – Imports other datasets

• Present
 – One of the largest public knowledge graphs (see later)
 – Includes rich provenance
Knowledge Graph Creation: Wikidata

- Collaborative editing
Knowledge Graph Creation: Wikidata

- Provenance
Wikidata
Knowledge Graph Creation

• Lesson learned no. 3:
 – There is not one truth (but allowing for plurality adds complexity)
Knowledge Graph Creation: DBpedia & YAGO

• The 2010s
 – DBpedia: launched 2007
 – YAGO: launched 2008
 – Extraction from Wikipedia using mappings & heuristics

• Present
 – Two of the most used knowledge graphs
 – ...with Wikidata catching up
DBpedia

Lehmann et al.: *DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia*. 2014
DBpedia
YAGO

• Wikipedia categories for types
 – Plus WordNet as upper structure

• Manual mappings for properties

https://www.cs.princeton.edu/courses/archive/spring07/cos226/assignments/wordnet.html
Knowledge Graph Creation

• Lesson learned no. 4:
 – Heuristics help increasing coverage (at the cost of accuracy)
Knowledge Graph Creation: NELL

• The 2010s
 – NELL: Never ending language learner
 – Input: ontology, seed examples, text corpus
 – Output: facts, text patterns
 – Large degree of automation, occasional human feedback

• Until 2018
 – Continuously ran for ~8 years
 – New release every few days

http://rtw.ml.cmu.edu/rtw/overview
Knowledge Graph Creation: NELL

- Extraction of a Knowledge Graph from a Text Corpus

Nine Inch Nails singer Trent Reznor, born 1965, says Slipknot singer Corey Taylor, 44, in the interview. "X singer Y" ➔ band_member(X, Y)

patterns

facts

band_member(Nine_Inch_Nails, Trent_Reznor)
band_member(Filter, Richard_Patrick)
band_member(Slipknot, Corey_Taylor)
Knowledge Graph Creation: NELL
Knowledge Graph Creation

• Lesson learned no. 5:
 – Quality cannot be maximized without human intervention

Min. human intervention

Max. accuracy
Summary of Trade Offs

- (Manual) effort vs. accuracy and completeness
- User involvement (or usability) vs. degree of formality
- Simplicity vs. support for plurality and provenance

→ all those decisions influence the shape of a knowledge graph!
Non-Public Knowledge Graphs

• Many companies have their own private knowledge graphs
 – Google: Knowledge Graph, Knowledge Vault
 – Yahoo!: Knowledge Graph
 – Microsoft: Satori
 – Facebook: Entities Graph
 – Thomson Reuters: permid.org (partly public)

• However, we usually know only little about them
Non-Public Knowledge Graphs

• Knowledge Graphs are used...
• ...in companies and organizations
 – collect, organize, and integrate knowledge
 – link isolated information sources
 – make information searchable and findable

Masuch, 2014
Comparison of Knowledge Graphs

• Release cycles

Instant updates: DBpedia live, Freebase, Wikidata

Days: NELL

Months: DBpedia

Years: YAGO, Cyc

Caution!

• Size and density

Table 1: Global Properties of the Knowledge Graphs compared in this paper

<table>
<thead>
<tr>
<th>Version</th>
<th>DBpedia</th>
<th>YAGO</th>
<th>Wikidata</th>
<th>OpenCyc</th>
<th>NELL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016-04</td>
<td>YAGO3</td>
<td>2016-08-01</td>
<td>2016-09-05</td>
<td>08m.995</td>
</tr>
<tr>
<td># instances</td>
<td>5,109,890</td>
<td>5,130,031</td>
<td>17,581,152</td>
<td>118,125</td>
<td>1,974,297</td>
</tr>
<tr>
<td># axioms</td>
<td>397,831,457</td>
<td>1,435,808,056</td>
<td>1,633,309,138</td>
<td>2,413,894</td>
<td>3,402,971</td>
</tr>
<tr>
<td>avg. indegree</td>
<td>13.52</td>
<td>17.44</td>
<td>9.83</td>
<td>10.03</td>
<td>5.33</td>
</tr>
<tr>
<td>avg. outdegree</td>
<td>47.55</td>
<td>101.86</td>
<td>41.25</td>
<td>9.23</td>
<td>1.25</td>
</tr>
<tr>
<td># classes</td>
<td>754</td>
<td>576,331</td>
<td>30,765</td>
<td>116,822</td>
<td>290</td>
</tr>
<tr>
<td># relations</td>
<td>3,555</td>
<td>93,659</td>
<td>11,053</td>
<td>165</td>
<td>1,334</td>
</tr>
</tbody>
</table>

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
Comparison of Knowledge Graphs

• What do they actually contain?
• Experiment: pick 25 classes of interest
 – And find them in respective ontologies
• Count instances (coverage)
• Determine in and out degree (level of detail)
Comparison of Knowledge Graphs

(a) Number of instances
(b) Average indegree
(c) Average outdegree

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
Comparison of Knowledge Graphs

• Summary findings:
 – Persons: more in Wikidata (twice as many persons as DBpedia and YAGO)
 – Countries: more details in Wikidata
 – Places: most in DBpedia
 – Organizations: most in YAGO
 – Events: most in YAGO
 – Artistic works:
 • Wikidata contains more movies and albums
 • YAGO contains more songs
Caveats

• Reading the diagrams right…

So, Wikidata contains more persons
 – but less instances of all the interesting subclasses?

There are classes like Actor in Wikidata
 – but they are hardly used
 – rather: modeled using profession relation
Caveats

• Reading the diagrams right… (ctd.)

• So, Wikidata contains more data on countries, but less countries?
• First: Wikidata only counts current, actual countries
 – DBpedia and YAGO also count historical countries
• “KG1 contains less of X than KG2” can mean
 – it actually contains less instances of X
 – it contains equally many or more instances, but they are not typed with X (see later)
• Second: we count single facts about countries
 – Wikidata records some time indexed information, e.g., population
 – Each point in time contributes a fact
Overlap of Knowledge Graphs

- How largely do knowledge graphs overlap?
- They are interlinked, so we can simply count links
 - For NELL, we use links to Wikipedia as a proxy

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017
Overlap of Knowledge Graphs

• How largely do knowledge graphs overlap?
• They are interlinked, so we can simply count links
 – For NELL, we use links to Wikipedia as a proxy

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017
Overlap of Knowledge Graphs

• Links between Knowledge Graphs are incomplete
 – The Open World Assumption also holds for interlinks

• But we can estimate their number

• Approach:
 – find link set automatically with different heuristics
 – determine precision and recall on existing interlinks
 – estimate actual number of links

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
Overlap of Knowledge Graphs

• Idea:
 – Given that the link set F is found
 – And the (unknown) actual link set would be C

• Precision P: Fraction of F which is actually correct
 – i.e., measures how much $|F|$ is over-estimating $|C|$

• Recall R: Fraction of C which is contained in F
 – i.e., measures how much $|F|$ is under-estimating $|C|$

• From that, we estimate
$$|C| = |F| \cdot P \cdot \frac{1}{R}$$
Overlap of Knowledge Graphs

• Mathematical derivation:
 – Definition of recall: \[R = \frac{|F_{\text{correct}}|}{|C|} \]
 – Definition of precision: \[P = \frac{|F_{\text{correct}}|}{|F|} \]
• Resolve both to \(|F_{\text{correct}}| \), substitute, and resolve to \(|C| \)

\[|C| = |F| \cdot P \cdot \frac{1}{R} \]

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017
Overlap of Knowledge Graphs

• Experiment:
 – We use the same 25 classes as before
 – Measure 1: overlap relative to smaller KG (i.e., potential gain)
 – Measure 2: overlap relative to explicit links (i.e., importance of improving links)

• Link generation with 16 different metrics and thresholds
 – Intra-class correlation coefficient for |C|: 0.969
 – Intra-class correlation coefficient for |F|: 0.646

• Bottom line:
 – Despite variety in link sets generated, the overlap is estimated reliably
 – The link generation mechanisms do not need to be overly accurate

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017
Overlap of Knowledge Graphs

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017

(a) Overlap as potential gain
(b) Overlap relative to existing links
Overlap of Knowledge Graphs

• Summary findings:
 – DBpedia and YAGO cover roughly the same instances (not much surprising)
 – NELL is the most complementary to the others
 – Existing interlinks are insufficient for out-of-the-box parallel usage

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017
Intermezzo: Knowledge Graph Creation Cost

- There are quite a few metrics for evaluating KGs:
 - size, degree, interlinking, quality, licensing, ...

Table 2

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Alt. Metric</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>A1</td>
<td>accessibility of the SPARQL endpoint and the server</td>
<td>checking whether the server responds to a SPARQL query [18]</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>accessibility of the RDF dumps</td>
<td>checking whether an RDF dump is provided and can be downloaded [18]</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>dereferenceability of the URI</td>
<td>checking if a URI is valid, i.e., does it point to a valid resource</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>no misreported content types</td>
<td>detect whether the HTTP response contains the correct content type</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>dereferenced forward links</td>
<td>dereferencedforward links: all available triples where the local URI is mentioned in the subject (i.e., the description of the resource) [31]</td>
</tr>
<tr>
<td>Licensing</td>
<td>L1</td>
<td>machine-readable indication of a license</td>
<td>detection of the indication of a license in the VoID description or the dataset itself [18,31]</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>human-readable indication of a license</td>
<td>detection of a license in the documentation of the dataset [18, 31]</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>specifying the correct license</td>
<td>detection of whether the dataset is attributed under the same license as the original [18]</td>
</tr>
<tr>
<td>Interlinking</td>
<td>I1</td>
<td>detection of good quality interlinks</td>
<td>(i) detection of (a) interlinking degree, (b) clustering coefficient, (c) centrality, (d) open sameAs chains and (e) description richness through sameAs by using network measures [25], (ii) via crowdsourcing [1,65]</td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td>existence of links to external data providers</td>
<td>detection of the existence and usage of external URIs (e.g., using callcounters links) [31]</td>
</tr>
<tr>
<td></td>
<td>I3</td>
<td>dereferenced back-links</td>
<td>detection of all local in-links or back-links: all triples from a dataset that have the resource’s URI as the object [31]</td>
</tr>
<tr>
<td>Security</td>
<td>S1</td>
<td>usage of digital signatures</td>
<td>by signing a document containing an RDF serialization, a SPARQL result set or signing an RDF graph [13,18]</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>authenticity of the dataset</td>
<td>verifying authenticity of the dataset based on a provenance vocabulary as author and his contributors, the publisher of the data and its sources (if present in the dataset) [18]</td>
</tr>
<tr>
<td>Performance</td>
<td>P1</td>
<td>usage of static-URIs</td>
<td>checking for usage of static URIs where large amounts of data is provided [18]</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>low latency</td>
<td>(minimum) delay between submission of a request by the user and reception of the response from the system [18]</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>high throughput</td>
<td>(maximum) no. of answered HTTP-requests per second [18]</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>scalability of a data source</td>
<td>detection of whether the time to answer an amount of ten requests divided by ten is not longer than the time it takes to answer one request [18]</td>
</tr>
</tbody>
</table>

Table 14

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Metric</th>
<th>DBpedia</th>
<th>Freebase</th>
<th>OpenCyc</th>
<th>Wikidata</th>
<th>YAGO</th>
<th>Example of User Weighting w_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>recall</td>
<td>0.994</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.624</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>precision</td>
<td>0.994</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.624</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>F-measure</td>
<td>0.994</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.624</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>transitivity</td>
<td>0.5</td>
<td>0.5</td>
<td>0.755</td>
<td>0.755</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>consistency</td>
<td>0.875</td>
<td>0.999</td>
<td>0.333</td>
<td>0.333</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Completeness</td>
<td>0.991</td>
<td>0.45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tolerance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\text{Ease of understanding}$</td>
<td>0.965</td>
<td>0.362</td>
<td>0.955</td>
<td>0.955</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Irreversibility</td>
<td>0.402</td>
<td>0.425</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Accessibility</td>
<td>0.5</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Usability</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Färber et al.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. SWJ 9(1), 2018
Intermezzo: Knowledge Graph Creation Cost

• ...but what is the cost of a single statement?

Some back of the envelope calculations...
Paulheim: How much is a triple?
Estimating the Cost of Knowledge Graph Creation, 2018
Intermezzo: Knowledge Graph Creation Cost

• Case 1: manual curation
 – Cyc: created by experts
 Total development cost: $120M
 Total #statements: 21M
 → $5.71 per statement
 – Freebase: created by laymen
 Assumption: adding a statement to Freebase
 equals adding a sentence to Wikipedia
 • English Wikipedia up to April 2011: 41M working hours
 (Geiger and Halfaker, 2013),
 size in April 2011: 3.6M pages, avg. 36.4 sentences each
 • Using US minimum wage: $2.25 per sentence
 → $2.25 per statement
 (Footnote: total cost of creating Freebase would be $6.75B)
Intermezzo: Knowledge Graph Creation Cost

• Case 2: automatic/heuristic creation
 – DBpedia: 4.9M LOC, 2.2M LOC for mappings
 software project development: ~37 LOC per hour (Devanbu et al., 1996)
 we use German PhD salaries as a cost estimate
 → 1.85c per statement
 – YAGO: made from 1.6M LOC
 uses WordNet: 117k synsets, we treat each synset like a Wiki page
 → 0.83c per statement
 – NELL: 103k LOC
 → 14.25c per statement
• Compared to manual curation: saving factor 16-250
Intermezzo: Knowledge Graph Creation Cost

- Graph error rate against cost
 - we can pay for accuracy
 - NELL is a bit of an outlier
New Kids on the Block

Subjective age: Measured by the fraction of the audience that understands a reference to your young days’ pop culture...
Further Sources of Knowledge in Wikipedia

- show: list pages, categories, tables, ...

Track Listing

Original Release

All tracks written by Trent Reznor.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Mr. Self Destruct"</td>
<td>4:30</td>
</tr>
<tr>
<td>2</td>
<td>"Piggy"</td>
<td>4:24</td>
</tr>
<tr>
<td>3</td>
<td>"Heresy"</td>
<td>3:54</td>
</tr>
<tr>
<td>4</td>
<td>"March of the Pigs"</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>"Closer"</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>"Ruiner"</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>"The Becoming"</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>"I Do Not Want This"</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>"Big Man with a Gun"</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>"A Warm Place"</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>"Eraser"</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>"Reptile"</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>"The Downward Spiral"</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>"Hurt"</td>
<td></td>
</tr>
</tbody>
</table>

Awards

For a more comprehensive list, see List of awards and nominations received by Nine Inch Nails.

<table>
<thead>
<tr>
<th>Year</th>
<th>Nominee/work</th>
<th>Award</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>"Wish"</td>
<td>Best Metal Performance</td>
<td>Won</td>
</tr>
<tr>
<td>1995</td>
<td>The Downward Spiral</td>
<td>Best Alternative Music Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>1995</td>
<td>Happiness in Slavery (from Woodstock '94 compilation)</td>
<td>Best Metal Performance</td>
<td>Won</td>
</tr>
<tr>
<td>1997</td>
<td>"Hurt"</td>
<td>Best Rock Song</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>"The Perfect Drug"</td>
<td>Best Hard Rock Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>1999</td>
<td>The Fridge</td>
<td>Best Metal Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>1999</td>
<td>"Starfuckers, Inc."</td>
<td>Best Metal Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>2000</td>
<td>Info the Void</td>
<td>Best Male Rock Vocal Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>2005</td>
<td>"The Hand That Feeds"</td>
<td>Best Hard Rock Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>2006</td>
<td>"Every Day Is Exactly the Same"</td>
<td>Best Hard Rock Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>2009</td>
<td>"34 Ghosts IV"</td>
<td>Best Rock Instrumental Performance</td>
<td>Nominated</td>
</tr>
<tr>
<td>2009</td>
<td>Ghosts I-IV</td>
<td>Best Boxed Set or Limited Edition Package</td>
<td>Nominated</td>
</tr>
<tr>
<td>2013</td>
<td>Hesitation Marks</td>
<td>Best Alternative Music Album</td>
<td>Nominated</td>
</tr>
</tbody>
</table>

Categories

- 1994 albums
- Albums produced by Flood (producer)
- Albums produced by Trent Reznor
- Concept albums
- Interscope Records albums
- Nine Inch Nails albums
- Nothing Records albums
- Obscenity controversies in music
CaLiGraph Idea

- Entities co-occur in surface patterns
 - e.g., enumerations, table columns, …
- Co-occurring entities share semantic patterns
 - e.g., types, relations, attribute values
- Existing entities co-occur with new entities
CaLiGraph Idea

- Surface patterns and semantic patterns also exist outside of Wikipedia
CaLiGraph – Current State

- Significant coverage enhancements of DBpedia Properties
CaLiGraph – Current State

- Significant instance set enhancements by list extraction
From DBpedia to DBkWik

• Wikipedia-based Knowledge Graphs will remain an essential building block of Semantic Web applications
• But they suffer from...
 – ...a coverage bias
 – ...limitations of the creating heuristics
From DBpedia to DBkWik

- One (but not the only!) possible source of coverage bias
 - Articles about long-tail entities become deleted
From DBpedia to DBkWik

- Why stop at Wikipedia?
- Wikipedia is based on the MediaWiki software
 - ...and so are thousands of Wikis
 - Fandom by Wikia: >385,000 Wikis on special topics
 - WikiApiary: reports >20,000 installations of MediaWiki on the Web
From DBpedia to DBkWik

• Collecting Data from a Multitude of Wikis

Trent Reznor

- Instruments: Vocals, Guitar, Keyboards, Bass, Marimba, Saxophone, Small Percussion
- Years: 1988–present
- Tours: VIVIsectVI–present

Role: Composer

Born: May 17, 1965
Mercer, Pennsylvania, USA

1 Nomination / 1 Win

Trent Reznor

Born: May 17, 1965
New Castle, Pennsylvania, United States

Other David Lynch Projects
Lost Highway (Soundtrack - "Videodrones; Questions," "Driver Down")
"Came Back Haunted" (Music video)
From DBpedia to DBkWik

- The DBpedia Extraction Framework consumes MediaWiki dumps
- Experiment
 - Can we process dumps from arbitrary Wikis with it?
 - Are the results somewhat meaningful?
From DBpedia to DBkWik

• Example from Harry Potter Wiki

http://dbkwik.webdatacommons.org/HarryPotter/resource/Gryffindor

http://dbkwik.org/
From DBpedia to DBkWik

• Differences to DBpedia
 – DBpedia has manually created mappings to an ontology
 – Wikipedia has one page per subject
 – Wikipedia has global infobox conventions (more or less)

• Challenges
 – On-the-fly ontology creation
 – Instance matching
 – Schema matching

Hertling & Paulheim: *DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis*. ICBK 2018
From DBpedia to DBkWik

- Heuristics
 - Ontology induction
 - Instance/Schema Matching

Hertling & Paulheim: *DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis*. ICBK 2018
From DBpedia to DBkWik

• Downloaded ~15k Wiki dumps from Fandom
 – 52.4GB of data, roughly the size of the English Wikipedia

• Prototype: extracted data for ~250 Wikis
 – 4.3M instances, ~750k linked to DBpedia
 – 7k classes, ~1k linked to DBpedia
 – 43k properties, ~20k linked to DBpedia
 – ...including duplicates!

• Link quality
 – Good for classes, OK for properties (F1 of .957 and .852)
 – Needs improvement for instances (F1 of .641)
Solving the Integration Problems in DBkWik

- A new task at OAEI since 2018
 - Benchmark for schema-instance matching tools
 - Turned out to be non-trivial
WebIsALOD

- Background: Web table interpretation
- Most approaches need typing information
 - DBpedia etc. have too little coverage on the long tail
 - Wanted: extensive type database

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017
WebIsALOD

- Extraction of type information using Hearst-like patterns, e.g.,
 - T, such as X
 - X, Y, and other T
- Text corpus: common crawl
 - ~2 TB crawled web pages
 - Fast implementation: regex over text
 - “Expensive” operations only applied once regex has fired
- Resulting database
 - 400M hypernymy relations

Seitner et al.: A large DataBase of hypernymy relations extracted from the Web. LREC 2016
WebIsALOD

Example:

http://webisa.webdatacommons.org/

10/30/20 Heiko Paulheim 72
WebIsALOD

- Initial effort: transformation to a LOD dataset
 - including rich provenance information

Hertling & Paulheim: *WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data*. ISWC 2017
Hertling & Paulheim: **WebIsALOD**: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017
WebIsALOD

• Main challenge
 – Original dataset is quite noisy (<10% correct statements)
 – Recap: coverage vs. accuracy
 – Simple thresholding removes too much knowledge

• Approach
 – Train RandomForest model for predicting correct vs. wrong statements
 – Using all the provenance information we have
 – Use model to compute confidence scores

Hertling & Paulheim: *WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data*. ISWC 2017
WebIsALOD

- Current challenges and works in progress
 - Distinguishing instances and classes
 - i.e.: subclass vs. instance of relations
 - Splitting instances
 - Bauhaus is a goth band
 - Bauhaus is a German school
 - Knowledge extraction from pre and post modifiers
 - Bauhaus is a goth band → genre(Bauhaus, Goth)
 - Bauhaus is a German school → location(Bauhaus, Germany)

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted from the Web as Linked Open Data. ISWC 2017
Summary

- We have seen a couple of Knowledge Graphs
 - How they are built
 - What they contain

- For your project
 - Have a look at the fit for your domain
 - Try different options

- For a master’s thesis later
 - Work on recent developments in our group
Questions?