
Semantic Web Technologies
Web Ontology Language (OWL)

Heiko Paulheim

11/5/20 Heiko Paulheim 2

Previously on “Semantic Web Technologies”

• Let's look at that sentence:

– "Madrid is the capital of Spain."

• We can get the following information:

– "Madrid is the capital of Spain." ✔
– "Spain is a state." ✔
– "Madrid is a city." ✔
– "Madrid is located in Spain." ✔
– "Barcelona is not the capital of Spain." ✖
– "Madrid is not the capital of France." ✖
– "Madrid is not a state." ✖
– ...

11/5/20 Heiko Paulheim 3

Previously on “Semantic Web Technologies”

• What we cannot express (up to now):

– "Every state has exactly one capital"

• Property cardinalities

– "Every city can only be the capital of one state."

• Functional properties

– "A city cannot be a state at the same time."

• Class disjointness

– ...

• For those, we need more expressive languages than RDFS!

11/5/20 Heiko Paulheim 4

Previously on “Semantic Web Technologies”

• We have learned about ontologies

– and RDF Schema as a language for building simple ontologies

• With RDF Schema, we can express some knowledge about a
domain

– but not everything, e.g., cardinalities

– we cannot produce contradictions

– we cannot circumvent the Non Unique Naming Assumption

– we cannot circumvent the Open World Assumption

– ...

11/5/20 Heiko Paulheim 5

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

11/5/20 Heiko Paulheim 6

Web Ontology Language (OWL)

• Hey, wait...

11/5/20 Heiko Paulheim 7

Web Ontology Language (OWL)

• More powerful than RDF Schema

• W3C Standard (2004), OWL2 (2009)

• Trade-off:

– Expressive power

– Complexity of reasoning

– Decidability

• Solution: different variants of OWL, e.g.,

– OWL Lite, OWL DL, OWL Full

– Profiles in OWL2

11/5/20 Heiko Paulheim 8

OWL Full

Web Ontology Language (OWL)

• Three variants

– increasing expressive power

– backwards compatible

• each OWL Lite ontology is valid in OWL DL and OWL Full

• each OWL DL ontology is valid in OWL Full

OWL DL

OWL Lite

11/5/20 Heiko Paulheim 9

OWL and RDF Schema

• both are based on RDF

– OWL ontologies can also be expressed in RDF

– as triples or in XML notation

• Compatibility

– OWL Lite and OWL DL are not fully compatible to RDF Schema

• but reuse some parts of RDF Schema

– OWL Full and RDF Schema are fully compatible

11/5/20 Heiko Paulheim 10

OWL: Classes

• Basic concept (owl:Class)

• Subclasses as we know them from RDFS: rdfs:subClassOf
– In particular, the following holds:

owl:Class rdfs:subClassOf rdfs:Class .

• Two predefined classes:

– owl:Thing

– owl:Nothing

• For each class c, the following axioms hold:

– c rdfs:subClassOf owl:Thing .

– owl:Nothing rdfs:subClassOf c .

11/5/20 Heiko Paulheim 11

OWL: Classes

• Classes can be intersections of others:

:SwimmingMammals owl:intersectionOf
(:SwimmingAnimals :Mammals) .

• There are also set unions and set differences

– but not in OWL Lite

11/5/20 Heiko Paulheim 12

OWL: Properties

• RDF Schema does not distinguish literal and object valued
properties:

:name a rdf:Property .
:name rdfs:range xsd:string .

:knows a rdf:Property .
:knows rdfs:range foaf:Person .

• Without specifying the range, “dual use” of an RDF property
is not forbidden:

:peter :knows :john .
:peter :knows “mary” .

11/5/20 Heiko Paulheim 13

OWL: Properties

• RDF Schema does not distinguish literal and object valued
properties:

:name a rdf:Property .
:name rdfs:range xsd:string .

:knows a rdf:Property .
:knows rdfs:range foaf:Person .

• In contrast, OWL distinguishes

– owl:DatatypeProperty

– owl:ObjectProperty

• The following axioms hold:

– owl:DatatypeProperty rdfs:subClassOf rdf:Property .

– owl:ObjectProperty rdfs:subClassOf rdf:Property .

11/5/20 Heiko Paulheim 14

OWL: Properties

• As in RDF Schema, there can be hierarchies and domains/ranges:

:capitalOf rdfs:subPropertyOf :locatedIn .

• Domain

– only classes for OWL Lite, classes or restrictions* for OWL DL/Full

:name rdfs:domain foaf:Person .

• Range

– XML Datatypes for owl:DatatypeProperty
:name rdfs:range xsd:string .

– Classes or restrictions* for owl:ObjectProperty
:knows rdfs:range foaf:Person .

* we'll get there soon

11/5/20 Heiko Paulheim 15

Equality and Inequality (1)

• Equality between individuals

– Allows using multiple definitions/descriptions of an entity

– in other datasets as well

– solves some problems of the Non unique naming assumption

:Muenchen owl:sameAs :Munich .

• We have seen this used for Linked Open Data

– as a means to establish links between datasets

myDataset:Mannheim owl:sameAs dbpedia:Mannheim .

11/5/20 Heiko Paulheim 16

Equality and Inequality (2)

• Equality between classes and properties

– allows for relations between datasets on the schema level

– gives way to more complex constructs

:UniversityTeachers owl:equivalentClass :Lecturers .
:teaches owl:equivalentProperty :lecturerFor .

• Also useful for Linked Open Data:

dc:creator owl:equivalentProperty foaf:maker .

11/5/20 Heiko Paulheim 17

Equality and Inequality (3)

• Inequality between individuals

– Allows some useful reasoning

– as we will see soon

:Muenchen owl:differentFrom :Hamburg .

• Shorthand notation for multiple entities:

owl:AllDifferent owl:distinctMembers
 (:Munich :Hamburg :Berlin :Darmstadt :Mannheim) .

11/5/20 Heiko Paulheim 18

Why owl:sameAs, owl:equivalentClass, etc.?

• In OWL (Lite+DL), we must not mix
classes, properties, and instances

• owl:sameAs has owl:Thing as domain/range

• owl:equivalentClass has rdfs:Class as domain/range

– recap: owl:Class rdfs:subClassOf rdfs:Class

• owl:equivalentProperty has rdf:Property
as domain/range

– owl:ObjectProperty rdfs:subClassOf rdf:Property

– owl:DatatypeProperty rdfs:subClassOf rdf:Property

11/5/20 Heiko Paulheim 19

Special Properties in OWL

• Symmetric Properties

:sitsOppositeOf a owl:SymmetricProperty .
:Tom :sitsOppositeOf :Sarah .

→:Sarah :sitsOppositeOf :Tom .

• Inverse Properties

:supervises owl:inverseOf :supervisedBy .
:Tom :supervises :Julia .

→:Julia :supervisedBy :Tom .

• Transitive Properties

:hasOfficeMate a owl:TransitiveProperty .
:Tom :hasOfficeMate :Jon . :Jon :hasOfficeMate :Kim .

→:Tom :hasOfficeMate :Kim .

11/5/20 Heiko Paulheim 20

Special Properties introduced with OWL2

• Reflexive, irreflexive, and asymmetric properties

• Everybody is a relative of him/herself

:relativeOf a owl:ReflexiveProperty .

• Nobody can be his/her own parent

:parentOf a owl:IrreflexiveProperty .

• If I am taller than you, you cannot be taller than me

:tallerThan a owl:AsymmetricProperty .

11/5/20 Heiko Paulheim 21

Restrictions on Property Types

• Only ObjectProperties may be transitive, symmetric, inverse, and
reflexive

– DataProperties may not be

• Why?

• Previously on RDF:

– "Literals can only be objects, never subjects or predicates."

11/5/20 Heiko Paulheim 22

Restrictions on Property Types

• Assuming that

:samePerson a owl:DatatypeProperty .
:samePerson rdfs:range xsd:string .
:samePerson a owl:SymmetricProperty .

:Peter :samePerson "Peter" .

→"Peter" :samePerson :Peter .

11/5/20 Heiko Paulheim 23

Restrictions on Property Types

• Assuming that

:hasName a owl:DatatypeProperty .
:hasName rdfs:range xsd:string .
:hasName owl:inverseOf :nameOf .

:Peter :hasName "Peter" .

→"Peter" :nameOf :Peter .

11/5/20 Heiko Paulheim 24

Restrictions on Property Types

• owl:TransitiveProperty is also restricted to ObjectProperties

:hasPseudonym a owl:DatatypeProperty .
:hasPseudonym rdfs:range xsd:string .
:hasPseudonym a owl:TransitiveProperty .

:Thomas :hasPseudonym "Dr. Evil" .

+ ?

→:Thomas :hasPseudonym "Skullhead" .

• Which statement would we need here to make the conclusion via
the owl:TransitiveProperty?

"Dr. Evil" :hasPseudonym "Skullhead" .

11/5/20 Heiko Paulheim 25

Functional Properties

• Usage

:hasCapital a owl:FunctionalProperty .
:Finland :hasCapital :Helsinki .
:Finland :hasCapital :Helsingfors .

→:Helsinki owl:sameAs :Helsingfors .

• Interpretation

– if A and B are related via fp

– and A and C are related via fp

– then, B and C are equal

• simply speaking: fp(x) is unique for each x

• “there can only be one”
http://www.allmystery.de/dateien/uh60808,1274716100,highlander-christopher-lambert.jpg

11/5/20 Heiko Paulheim 26

Inverse Functional Properties

• Usage

:capitalOf a owl:InverseFunctionalProperty .
:Helsinki :capitalOf :Finland .
:Helsingfors :capitalOf :Finland .

→:Helsinki owl:sameAs :Helsingfors .

• Interpretation

– if A and C are in relation ifp

– and B and C are in relation ifp

– then, A and B are the same

• Simply speaking: ifp(x) is a unique identifier for x

– like a primary key in a database

11/5/20 Heiko Paulheim 27

Pooh!

• OWL is, in fact, more powerful

• ...but we can achieve lots with what we
already learned

• Let's get back to the example...

11/5/20 Heiko Paulheim 28

Previously on “Semantic Web Technologies”

• Let's look at that sentence:

– "Madrid is the capital of Spain."

• We can get the following information:

– "Madrid is the capital of Spain." ✔
– "Spain is a state." ✔
– "Madrid is a city." ✔
– "Madrid is located in Spain." ✔
– "Barcelona is not the capital of Spain." ✖
– "Madrid is not the capital of France." ✖
– "Madrid is not a state." ✖
– ...

11/5/20 Heiko Paulheim 29

Expressive Ontologies using OWL

• "Barcelona is not the capital of Spain." ✖
• Why not?

– Countries have exactly one capital

– Barcelona and Madrid are not the same

• In OWL:

:capitalOf a owl:InverseFunctionalProperty .
:Madrid :capitalOf :Spain .
:Madrid owl:differentFrom :Barcelona .

ASK { :Barcelona :capitalOf :Spain . } → false

11/5/20 Heiko Paulheim 30

Expressive Ontologies using OWL

• "Madrid is not the capital of France." ✖
• Why not?

– A city can only be the capital of one country

– Spain and France are not the same

• Also:

:capitalOf a owl:FunctionalProperty .
:Madrid :capitalOf :Spain .
:Spain owl:differentFrom :France .

ASK { :Madrid :capitalOf :France . } → false

11/5/20 Heiko Paulheim 31

Restrictions

• Define characteristics of a class

– A powerful and important concept in OWL

– Example: Vegan recipes only contain vegetables as ingredients

:VeganRecipe rdfs:subClassOf :Recipe .
:VeganRecipe rdfs:subClassOf [
a owl:Restriction .
owl:onProperty :hasIngredient .
owl:allValuesFrom :Vegetable .

] .

11/5/20 Heiko Paulheim 32

Further Examples for Restrictions

• Every human as exactly one mother

:Human rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasMother ;
owl:cardinality 1^^xsd:integer .

] .

• Bicycles are vehicles without a motor

:Bicycle rdfs:subClassOf :Vehicle .
:Bicycle rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasMotor ;
owl:cardinality 0^^xsd:integer .

] .

11/5/20 Heiko Paulheim 33

Restrictions vs. Ranges

• Restrictions are local to a class

:VeganRecipe rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasIngredient ;
owl:allValuesFrom :Vegetable .

] .

– other classes may use hasIngredient with meat or fish

• Range: a global restriction

:hasIngredient rdfs:range :Food .

– this holds once and for all whenever hasIngredient is used

11/5/20 Heiko Paulheim 34

The Anatomy of a Restriction

• onProperty

– defines the property on which the restriction should hold

• Restriction of values

– owl:allValuesFrom – all values must be in this class

– owl:someValuesFrom – at least one value must be in this class

• Restriction of cardinalities

– owl:minCardinality – at least n values

– owl:maxCardinality – at most n values

– owl:cardinality – exactly n values

• Both cannot be combined

OWL Lite: only n=0
or n=1

11/5/20 Heiko Paulheim 35

Further Examples for Restrictions

• All ball sports require a ball

:BallSports rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :requires ;
owl:someValuesFrom :Ball .

] .

• All sports for which a ball is required are ball sports

:BallSports owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :requires ;
owl:someValuesFrom :Ball .

] .

• Where is the difference?

11/5/20 Heiko Paulheim 36

Further Examples for Restrictions

• Given:

:BallSports owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :requires ;
owl:someValuesFrom :Ball .

] .

:Soccer :requires :soccerBall .
:soccerBall a :Ball.

• A reasoner may conclude that soccer is a ball sports

• This would not work with subClassOf

• Caveat: gymnastics with a ball are also recognized as ball sports...

11/5/20 Heiko Paulheim 37

Qualified Restrictions in OWL2

• In OWL, cardinalities and value restrictions may not be combined

• i.e., use either all/someValuesFrom or min/maxCardinality

• OWL 2 introduces qualified restrictions

• Example: a literate person has to have read at least 1,000 books
(newspapers and magazines do not count!)

:LiteratePerson rdfs:subClassOf [

a owl:Restriction ;
owl:onProperty :hasRead;
owl:minQualifiedCardinality "1000"^^xsd:integer ;
owl:onClass :Book] .

Analogously, there are also
owl:maxQualifiedCardinality and

owl:qualifiedCardinality

11/5/20 Heiko Paulheim 38

Using Restriction Classes as Ranges

• Restrictions can also be used in other contexts

• Example: books, newspapers, and posters can be read

– essentially: everything that contains letters

• Range of the predicate reads:

:reads rdfs:range [
a owl:Restriction ;
owl:onProperty :containsLetter ;
owl:minCardinality 1^^xsd:integer .

] .

11/5/20 Heiko Paulheim 39

Using Restrictions as Domains

• If it works for ranges, it also works for domains

• e.g.: to think about something, a brain is required

• Domain of the thinksAbout property:

:thinksAbout rdfs:domain [
a owl:Restriction ;
owl:onProperty :hasBodyPart ;
owl:someValuesFrom :Brain .

] .

• Note: only in OWL DL/Full

11/5/20 Heiko Paulheim 40

Nesting Restrictions

• It is always possible to make things more complex

• e.g.: grandparents have children who themselves have at least one
child

:GrandParent owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom [

a owl:Restriction ;
owl:onProperty :hasChild ;
owl:minCardinality 1^^xsd:integer .

] .
] .

11/5/20 Heiko Paulheim 41

Web Ontology Language (OWL)

• What we have seen up to now

– the vocabulary of OWL Lite

– useful in many cases

– "A little semantics goes a long way."

• OWL DL and OWL Full are more powerful

– but also harder to handle

OWL Full

OWL DL

OWL Lite

11/5/20 Heiko Paulheim 42

OWL DL

• DL stands for "Description Logics"

– a subset of first order logics

– we will get back to that next week

• OWL DL introduces

– the full set of cardinality restrictions (OWL Lite allows only 0 and 1)

– more set operators

– closed classes

– value based restrictions

– restrictions on datatypes

– ...

11/5/20 Heiko Paulheim 43

Complex Set Definitions

• Set union

:FacultyMembers owl:unionOf
 (:Students, :Professors) .

• Complement set

:LivingThings owl:complementOf :InanimateThings .

• Disjoint sets

:EdibleMushrooms owl:disjointWith
 :PoisonousMushrooms .

11/5/20 Heiko Paulheim 44

Previously on “Semantic Web Technologies”

• Let's look at that sentence:

– "Madrid is the capital of Spain."

• We can get the following information:

– "Madrid is the capital of Spain." ✔
– "Spain is a state." ✔
– "Madrid is a city." ✔
– "Madrid is located in Spain." ✔
– "Barcelona is not the capital of Spain." ✔
– "Madrid is not the capital of France." ✔
– "Madrid is not a state." ✖
– ...

11/5/20 Heiko Paulheim 45

Previously on “Semantic Web Technologies”

• "Madrid is not a state." ✖
• Why not?

– Madrid is a city
– Nothing can be a city and a state at the same time.

• In OWL:

:Madrid a :City .
 :City owl:disjointWith :State .

ASK { :Madrid a :State . } → false

11/5/20 Heiko Paulheim 46

Complex Set Definitions

• We can combine class definitions and restrictions:

:VegetarianRecipe rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasIngredient ;
owl:allValuesFrom [

a owl:Class .
owl:complementOf [

owl:unionOf (:Meat :Fish)
]

]

] .

11/5/20 Heiko Paulheim 47

A Tale from the Road

• ALIS: EU funded research project (2006-2009)

• Automated Legal Intelligent System

– automatic search for relevant European laws

– given a legal case at hand

– using ontologies, reasoning, etc.

– use case: copyright law

11/5/20 Heiko Paulheim 48

A Tale from the Road

• One important differentiation (among others):

– Single Author Work

– Multi Author Work

http://geekandpoke.typepad.com/geekandpoke/2006/10/copyright_and_a.html

11/5/20 Heiko Paulheim 49

A Tale from the Road

• Naive Solution in OWL DL:

:hasAuthor a owl:ObjectProperty;
 rdfs:domain :Work ;
 rdfs:range :Author .

:SingleAuthorWork rdfs:subClassOf
 :Work,
 [a owl:Restriction;
 owl:onProperty :hasAuthor ;
 owl:cardinality 1^^xsd:integer] .

:MultiAuthorWork rdfs:subClassOf
 :Work,
 [a owl:Restriction;
 owl:onProperty :hasAuthor ;
 owl:minCardinality 2^^xsd:integer] .

11/5/20 Heiko Paulheim 50

A Tale from the Road

• Result:

– not such a good idea

– why not?

http://geekandpoke.typepad.com/geekandpoke/2006/10/copyright_and_a.html

11/5/20 Heiko Paulheim 51

A Tale from the Road

• Given

:DataMining :hasAuthor :IanWitten, :EibeFrank .

• what can we derive from that?

• OK, so we need

 :DataMining :hasAuthor :IanWitten, :EibeFrank .
 :IanWitten owl:differentFrom :EibeFrank .

→ :DataMining a :MultiAuthorWork .

11/5/20 Heiko Paulheim 52

A Tale from the Road

• Given:

:Faust :hasAuthor :Goethe .

• what can we derive from that?

• Since it worked for Multi Author Work, how about

:Work owl:disjointUnionOf
 (:SingleAuthorWork,:MultiAuthorWork) .

?

• Note: we can classify :Faust neither as Single nor as Multi Author
Work

11/5/20 Heiko Paulheim 53

Recap: Principles of RDF

• Basic semantic principles of the Semantic Web

• AAA: Anybody can say Anything about Anything

• Non-unique name assumption

– we can control it with owl:sameAs and owl:differentFrom

• Open World Assumption

– so far, we have to live with it

11/5/20 Heiko Paulheim 54

Closed Classes

• The Open World Assumption says:

– everything we do not know could be true

• Example:

:Tim a :PeopleInOfficeD219 .

:John a :PeopleInOfficeD219 .

:Mary a :PeopleInOfficeD219 .

• This does not mean that there cannot be more people in D219

:Mike a :PeopleInD219 .

• Sometimes, this is exactly what we want to say

11/5/20 Heiko Paulheim 55

Closed Classes

• Works with owl:oneOf in OWL DL

• Example:

:PeopleInOfficeD219 owl:oneOf (:Tim :John :Mary) .

• Now, what is the meaning of

:Mike a :PeopleInD219 .

?

11/5/20 Heiko Paulheim 56

Back to a Tale from the Road

• Solution:

:Faust a [a owl:Restriction ;
 owl:onProperty :hasAuthor ;
 owl:allValuesFrom [

 a owl:Class ;
 owl:oneOf (:Goethe)
]
].

11/5/20 Heiko Paulheim 57

OWL DL: Restrictions with Single Values

• For ObjectProperties:

:AfricanStates owl:subClassOf [

a owl:Restriction ;
owl:onProperty :locatedOnContinent
owl:hasValue :Africa] .

• For DatatypeProperties:

:AlbumsFromTheEarly80s owl:subClassOf [

a owl:Restriction ;
owl:onProperty :year
owl:dataRange
 (1980^^xsd:integer
 1981^^xsd:integer
 1982^^xsd:integer)] .

11/5/20 Heiko Paulheim 58

OWL Lite/DL vs. OWL Full

• OWL Lite/DL: a resource is either an instance or a class or a
property

• OWL Full does not have such restrictions:

:Elephant a owl:Class .
:Elephant a :Species .
:Elephant :livesIn :Africa .
:Species a owl:Class .

• OWL Lite/DL: classes are only instances of owl:Class

• OWL Lite/DL: classes and properties can only have a predefined
set of relations (e.g., rdfs:subClassOf).

11/5/20 Heiko Paulheim 59

And Now for Something Completely Different

• Can we use OWL to solve a Sudoku?

11/5/20 Heiko Paulheim 60

Sudoku Solving in OWL

• What is our domain about?

• First of all, a closed class of numbers

:Number a owl:Class ;

 owl:oneOf (:1 :2 :3 :4 :5 :6 :7 :8 :9) .
 :1 owl:differentFrom (:2 :3 :4 :5 :6 :7 :8 :9) .
 :2 owl:differentFrom (:3 :4 :5 :6 :7 :8 :9) .
 ...

• ...and a lot of fields

– that we want to fill with numbers

– simplification: numbers are fields as well

– we want to know which field equals which number

11/5/20 Heiko Paulheim 61

Sudoku Solving in OWL

• 81 Fields:

c1_11 a :Number .
c1_21 a :Number .
…
c1_33 a :Number .
c2_11 a :Number .
…
c9_33 a :Number .

c1_11 c1_12 c2_11 c2_12

c1_21

c4_11

11/5/20 Heiko Paulheim 62

Sudoku Solving in OWL

• Fields in a quadrant are different

c1_11 owl:differentFrom
 c1_12, c1_13, …, c1_33 .
c1_12 owl:differentFrom
 c1_13, c1_21, …, c1_33 .
…
c1_32 owl:differentFrom
 c1_33 .
c2_11 owl:differentFrom
 c2_12, c2_13, …, c1_33 .
…
c9_32 owl:differentFrom
 c9_33 .

c1_11 c1_12 c2_11 c2_12

c1_21

c4_11

11/5/20 Heiko Paulheim 63

Sudoku Solving in OWL

• Fields in a row are different

c1_11 owl:differentFrom
 c1_12, c1_13, …, c3_13 .
…

c1_11 c1_12 c2_11 c2_12

c1_21

c4_11

11/5/20 Heiko Paulheim 64

Sudoku Solving in OWL

• Fields in a column are different

c1_11 owl:differentFrom
 c1_21, c1_31, …, c3_31 .

… c1_11 c1_12 c2_11 c2_12

c1_21

c4_11

11/5/20 Heiko Paulheim 65

Sudoku Solving in OWL

• Last step: enter known numbers

c1_11 owl:sameAs :5 .
c1_12 owl:sameAs :3 .
c1_21 owl:sameAs :6 .

…

11/5/20 Heiko Paulheim 66

Running this Example in Protégé

• We use a reasoner to infer implicit facts

• Here: number c_11 (top left)
4

3

2

1

Defined conditions
(horizontal, vertical,

square)

Inferred: this is a 3

11/5/20 Heiko Paulheim 67

Summary

• OWL allows defining more complex ontologies

• Flavors: OWL Lite, DL, Full

• Definitions of sets, restrictions, property characteristics

• In our example, we can now use the full set of conclusions:

– "Barcelona is not the capital of Spain." ✔
– "Madrid is not the capital of France." ✔
– "Madrid is not a state." ✔

11/5/20 Heiko Paulheim 68

Coming Up Next

• Changes in OWL 2

• How does reasoning with OWL actually work?

11/5/20 Heiko Paulheim 69

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Questions?

