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Previously on “Semantic Web Technologies”

• Let's look at that sentence:

– "Madrid is the capital of Spain."

• We can get the following information:

– "Madrid is the capital of Spain." ✔
– "Spain is a state." ✔
– "Madrid is a city." ✔
– "Madrid is located in Spain." ✔
– "Barcelona is not the capital of Spain." ✖
– "Madrid is not the capital of France." ✖
– "Madrid is not a state." ✖
– ...
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Previously on “Semantic Web Technologies”

• What we cannot express (up to now):

– "Every state has exactly one capital"

• Property cardinalities

– "Every city can only be the capital of one state."

• Functional properties

– "A city cannot be a state at the same time."

• Class disjointness

– ...

• For those, we need more expressive languages than RDFS!
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Previously on “Semantic Web Technologies”

• We have learned about ontologies

– and RDF Schema as a language for building simple ontologies

• With RDF Schema, we can express some knowledge about a 
domain

– but not everything, e.g., cardinalities

– we cannot produce contradictions

– we cannot circumvent the Non Unique Naming Assumption 

– we cannot circumvent the Open World Assumption

– ...
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Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web 
Technologies
(This lecture)

here be dragons...
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Web Ontology Language (OWL)

• Hey, wait...
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Web Ontology Language (OWL)

• More powerful than RDF Schema

• W3C Standard (2004), OWL2 (2009)

• Trade-off:

– Expressive power

– Complexity of reasoning

– Decidability

• Solution: different variants of OWL, e.g.,

– OWL Lite, OWL DL, OWL Full

– Profiles in OWL2
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OWL Full

Web Ontology Language (OWL)

• Three variants

– increasing expressive power

– backwards compatible

• each OWL Lite ontology is valid in OWL DL and OWL Full

• each OWL DL ontology is valid in OWL Full

OWL DL

OWL Lite
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OWL and RDF Schema

• both are based on RDF

– OWL ontologies can also be expressed in RDF

– as triples or in XML notation

• Compatibility

– OWL Lite and OWL DL are not fully compatible to RDF Schema

• but reuse some parts of RDF Schema

– OWL Full and RDF Schema are fully compatible
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OWL: Classes

• Basic concept (owl:Class)

• Subclasses as we know them from RDFS: rdfs:subClassOf
– In particular, the following holds:

owl:Class rdfs:subClassOf rdfs:Class .

• Two predefined classes:

– owl:Thing

– owl:Nothing

• For each class c, the following axioms hold:

– c rdfs:subClassOf owl:Thing .

– owl:Nothing rdfs:subClassOf c .
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OWL: Classes

• Classes can be intersections of others:

:SwimmingMammals owl:intersectionOf
(:SwimmingAnimals :Mammals) .

• There are also set unions and set differences

– but not in OWL Lite
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OWL: Properties

• RDF Schema does not distinguish literal and object valued 
properties:

:name a rdf:Property .
:name rdfs:range xsd:string .

:knows a rdf:Property .
:knows rdfs:range foaf:Person .

• Without specifying the range, “dual use” of an RDF property 
is not forbidden:

:peter :knows :john .
:peter :knows “mary” .
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OWL: Properties

• RDF Schema does not distinguish literal and object valued 
properties:

:name a rdf:Property .
:name rdfs:range xsd:string .

:knows a rdf:Property .
:knows rdfs:range foaf:Person .

• In contrast, OWL distinguishes

– owl:DatatypeProperty

– owl:ObjectProperty

• The following axioms hold:

– owl:DatatypeProperty rdfs:subClassOf rdf:Property .

– owl:ObjectProperty rdfs:subClassOf rdf:Property .
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OWL: Properties

• As in RDF Schema, there can be hierarchies and domains/ranges:

:capitalOf rdfs:subPropertyOf :locatedIn .

• Domain

– only classes for OWL Lite, classes or restrictions* for OWL DL/Full

:name rdfs:domain foaf:Person .

• Range 

– XML Datatypes for owl:DatatypeProperty
:name rdfs:range xsd:string .

– Classes or restrictions* for owl:ObjectProperty
:knows rdfs:range foaf:Person .

* we'll get there soon
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Equality and Inequality (1)

• Equality between individuals

– Allows using multiple definitions/descriptions of an entity

– in other datasets as well

– solves some problems of the Non unique naming assumption

:Muenchen owl:sameAs :Munich .

• We have seen this used for Linked Open Data

– as a means to establish links between datasets

myDataset:Mannheim owl:sameAs dbpedia:Mannheim .
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Equality and Inequality (2)

• Equality between classes and properties

– allows for relations between datasets on the schema level

– gives way to more complex constructs

:UniversityTeachers owl:equivalentClass :Lecturers .
:teaches owl:equivalentProperty :lecturerFor .

• Also useful for Linked Open Data:

dc:creator owl:equivalentProperty foaf:maker .
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Equality and Inequality (3)

• Inequality between individuals

– Allows some useful reasoning

– as we will see soon

:Muenchen owl:differentFrom :Hamburg .

• Shorthand notation for multiple entities:

owl:AllDifferent owl:distinctMembers 
  (:Munich :Hamburg :Berlin :Darmstadt :Mannheim) .
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Why owl:sameAs, owl:equivalentClass, etc.?

• In OWL (Lite+DL), we must not mix 
classes, properties, and instances

• owl:sameAs has owl:Thing as domain/range

• owl:equivalentClass has rdfs:Class as domain/range

– recap: owl:Class rdfs:subClassOf rdfs:Class

• owl:equivalentProperty has rdf:Property 
as domain/range

– owl:ObjectProperty rdfs:subClassOf rdf:Property

– owl:DatatypeProperty rdfs:subClassOf rdf:Property
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Special Properties in OWL

• Symmetric Properties

:sitsOppositeOf a owl:SymmetricProperty .
:Tom :sitsOppositeOf :Sarah .

→:Sarah :sitsOppositeOf :Tom .

• Inverse Properties

:supervises owl:inverseOf :supervisedBy .
:Tom :supervises :Julia .

→:Julia :supervisedBy :Tom .

• Transitive Properties

:hasOfficeMate a owl:TransitiveProperty .
:Tom :hasOfficeMate :Jon . :Jon :hasOfficeMate :Kim .

→:Tom :hasOfficeMate :Kim .



11/5/20 Heiko Paulheim 20 

Special Properties introduced with OWL2

• Reflexive, irreflexive, and asymmetric properties

• Everybody is a relative of him/herself

:relativeOf a owl:ReflexiveProperty .

• Nobody can be his/her own parent

:parentOf a owl:IrreflexiveProperty .

• If I am taller than you, you cannot be taller than me

:tallerThan a owl:AsymmetricProperty .
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Restrictions on Property Types

• Only ObjectProperties may be transitive, symmetric, inverse, and 
reflexive

– DataProperties may not be

• Why?

• Previously on RDF:

– "Literals can only be objects, never subjects or predicates."
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Restrictions on Property Types

• Assuming that

:samePerson a owl:DatatypeProperty .
:samePerson rdfs:range xsd:string .
:samePerson a owl:SymmetricProperty .

:Peter :samePerson "Peter" .

→"Peter" :samePerson :Peter .
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Restrictions on Property Types

• Assuming that

:hasName a owl:DatatypeProperty .
:hasName rdfs:range xsd:string .
:hasName owl:inverseOf :nameOf .

:Peter :hasName "Peter" .

→"Peter" :nameOf :Peter .
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Restrictions on Property Types

• owl:TransitiveProperty is also restricted to ObjectProperties

:hasPseudonym a owl:DatatypeProperty .
:hasPseudonym rdfs:range xsd:string .
:hasPseudonym a owl:TransitiveProperty .

:Thomas :hasPseudonym "Dr. Evil" .

+ ?

→:Thomas :hasPseudonym "Skullhead" .

• Which statement would we need here to make the conclusion via 
the owl:TransitiveProperty?

"Dr. Evil" :hasPseudonym "Skullhead" .
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Functional Properties

• Usage

:hasCapital a owl:FunctionalProperty .
:Finland :hasCapital :Helsinki .
:Finland :hasCapital :Helsingfors .

→:Helsinki owl:sameAs :Helsingfors .

• Interpretation

– if A and B are related via fp

– and A and C are related via fp

– then, B and C are equal

• simply speaking: fp(x) is unique for each x

• “there can only be one”
http://www.allmystery.de/dateien/uh60808,1274716100,highlander-christopher-lambert.jpg



11/5/20 Heiko Paulheim 26 

Inverse Functional Properties

• Usage

:capitalOf a owl:InverseFunctionalProperty .
:Helsinki :capitalOf :Finland .
:Helsingfors :capitalOf :Finland .

→:Helsinki owl:sameAs :Helsingfors .

• Interpretation

– if A and C are in relation ifp

– and B and C are in relation ifp

– then, A and B are the same

• Simply speaking: ifp(x) is a unique identifier for x

– like a primary key in a database
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Pooh!

• OWL is, in fact, more powerful

• ...but we can achieve lots with what we 
already learned

• Let's get back to the example...
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Previously on “Semantic Web Technologies”

• Let's look at that sentence:

– "Madrid is the capital of Spain."

• We can get the following information:

– "Madrid is the capital of Spain." ✔
– "Spain is a state." ✔
– "Madrid is a city." ✔
– "Madrid is located in Spain." ✔
– "Barcelona is not the capital of Spain." ✖
– "Madrid is not the capital of France." ✖
– "Madrid is not a state." ✖
– ...



11/5/20 Heiko Paulheim 29 

Expressive Ontologies using OWL

• "Barcelona is not the capital of Spain." ✖
• Why not?

– Countries have exactly one capital

– Barcelona and Madrid are not the same

• In OWL:

:capitalOf a owl:InverseFunctionalProperty .
:Madrid :capitalOf :Spain .
:Madrid owl:differentFrom :Barcelona .

ASK { :Barcelona :capitalOf :Spain . } → false
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Expressive Ontologies using OWL

• "Madrid is not the capital of France." ✖
• Why not?

– A city can only be the capital of one country

– Spain and France are not the same

• Also:

:capitalOf a owl:FunctionalProperty .
:Madrid :capitalOf :Spain .
:Spain owl:differentFrom :France .

ASK { :Madrid :capitalOf :France . } → false
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Restrictions 

• Define characteristics of a class

– A powerful and important concept in OWL

– Example: Vegan recipes only contain vegetables as ingredients

:VeganRecipe rdfs:subClassOf :Recipe .
:VeganRecipe rdfs:subClassOf [
a owl:Restriction .
owl:onProperty :hasIngredient .
owl:allValuesFrom :Vegetable .

] .
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Further Examples for Restrictions

• Every human as exactly one mother

:Human rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasMother ;
owl:cardinality 1^^xsd:integer .

] .

• Bicycles are vehicles without a motor

:Bicycle rdfs:subClassOf :Vehicle . 
:Bicycle rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasMotor ;
owl:cardinality 0^^xsd:integer .

] .
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Restrictions vs. Ranges

• Restrictions are local to a class

:VeganRecipe rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasIngredient ;
owl:allValuesFrom :Vegetable .

] .

– other classes may use hasIngredient with meat or fish

• Range: a global restriction

:hasIngredient rdfs:range :Food .

– this holds once and for all whenever hasIngredient is used
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The Anatomy of a Restriction

• onProperty

– defines the property on which the restriction should hold

• Restriction of values

– owl:allValuesFrom – all values must be in this class

– owl:someValuesFrom – at least one value must be in this class

• Restriction of cardinalities

– owl:minCardinality – at least n values

– owl:maxCardinality – at most n values

– owl:cardinality – exactly n values

• Both cannot be combined

OWL Lite: only n=0 
or n=1
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Further Examples for Restrictions

• All ball sports require a ball

:BallSports rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :requires ;
owl:someValuesFrom :Ball .

] .

• All sports for which a ball is required are ball sports

:BallSports owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :requires ;
owl:someValuesFrom :Ball .

] .

• Where is the difference?
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Further Examples for Restrictions

• Given:

:BallSports owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :requires ;
owl:someValuesFrom :Ball .

] .

:Soccer :requires :soccerBall .
:soccerBall a :Ball.

• A reasoner may conclude that soccer is a ball sports

• This would not work with subClassOf

• Caveat: gymnastics with a ball are also recognized as ball sports...
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Qualified Restrictions in OWL2

• In OWL, cardinalities and value restrictions may not be combined

• i.e., use either all/someValuesFrom or min/maxCardinality

• OWL 2 introduces qualified restrictions

• Example: a literate person has to have read at least 1,000 books 
(newspapers and magazines do not count!)

:LiteratePerson rdfs:subClassOf [

a owl:Restriction ;
owl:onProperty :hasRead;
owl:minQualifiedCardinality "1000"^^xsd:integer ;
owl:onClass :Book ] .

Analogously, there are also
owl:maxQualifiedCardinality and

owl:qualifiedCardinality
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Using Restriction Classes as Ranges

• Restrictions can also be used in other contexts

• Example: books, newspapers, and posters can be read

– essentially: everything that contains letters

• Range of the predicate reads:

:reads rdfs:range [
a owl:Restriction ;
owl:onProperty :containsLetter ;
owl:minCardinality 1^^xsd:integer .

] .
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Using Restrictions as Domains

• If it works for ranges, it also works for domains

• e.g.: to think about something, a brain is required

• Domain of the thinksAbout property:

:thinksAbout rdfs:domain [
a owl:Restriction ;
owl:onProperty :hasBodyPart ;
owl:someValuesFrom :Brain .

] .

• Note: only in OWL DL/Full
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Nesting Restrictions

• It is always possible to make things more complex

• e.g.: grandparents have children who themselves have at least one 
child

:GrandParent owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom [

a owl:Restriction ;
owl:onProperty :hasChild ;
owl:minCardinality 1^^xsd:integer .

] .
] .
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Web Ontology Language (OWL)

• What we have seen up to now

– the vocabulary of OWL Lite

– useful in many cases

– "A little semantics goes a long way."

• OWL DL and OWL Full are more powerful

– but also harder to handle

OWL Full

OWL DL

OWL Lite
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OWL DL

• DL stands for "Description Logics"

– a subset of first order logics

– we will get back to that next week

• OWL DL introduces

– the full set of cardinality restrictions (OWL Lite allows only 0 and 1)

– more set operators

– closed classes

– value based restrictions

– restrictions on datatypes

– ...
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Complex Set Definitions

• Set union

:FacultyMembers owl:unionOf 
  (:Students, :Professors) .

• Complement set

:LivingThings owl:complementOf :InanimateThings .

• Disjoint sets

:EdibleMushrooms owl:disjointWith   
  :PoisonousMushrooms .
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Previously on “Semantic Web Technologies”

• Let's look at that sentence:

– "Madrid is the capital of Spain."

• We can get the following information:

– "Madrid is the capital of Spain." ✔
– "Spain is a state." ✔
– "Madrid is a city." ✔
– "Madrid is located in Spain." ✔
– "Barcelona is not the capital of Spain." ✔
– "Madrid is not the capital of France." ✔
– "Madrid is not a state." ✖
– ...
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Previously on “Semantic Web Technologies”

• "Madrid is not a state." ✖
• Why not?

– Madrid is a city
– Nothing can be a city and a state at the same time.

• In OWL:

:Madrid a :City .
 :City owl:disjointWith :State .

ASK { :Madrid a :State . } → false
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Complex Set Definitions

• We can combine class definitions and restrictions:

:VegetarianRecipe rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :hasIngredient ;
owl:allValuesFrom [

a owl:Class .
owl:complementOf [

owl:unionOf (:Meat :Fish)
]

]

] .
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A Tale from the Road

• ALIS: EU funded research project (2006-2009)

• Automated Legal Intelligent System

– automatic search for relevant European laws

– given a legal case at hand

– using ontologies, reasoning, etc.

– use case: copyright law
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A Tale from the Road

• One important differentiation (among others):

– Single Author Work

– Multi Author Work

http://geekandpoke.typepad.com/geekandpoke/2006/10/copyright_and_a.html
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A Tale from the Road

• Naive Solution in OWL DL:

:hasAuthor a owl:ObjectProperty;
           rdfs:domain :Work ;
           rdfs:range :Author .

:SingleAuthorWork rdfs:subClassOf 
   :Work,
   [ a owl:Restriction;
     owl:onProperty :hasAuthor ;
     owl:cardinality 1^^xsd:integer ] .

:MultiAuthorWork rdfs:subClassOf 
   :Work,
   [ a owl:Restriction;
     owl:onProperty :hasAuthor ;
     owl:minCardinality 2^^xsd:integer ] .
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A Tale from the Road

• Result:

– not such a good idea

– why not?

http://geekandpoke.typepad.com/geekandpoke/2006/10/copyright_and_a.html
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A Tale from the Road

• Given

:DataMining :hasAuthor :IanWitten, :EibeFrank .

• what can we derive from that?

• OK, so we need

   :DataMining :hasAuthor :IanWitten, :EibeFrank .
   :IanWitten owl:differentFrom :EibeFrank .

→  :DataMining a :MultiAuthorWork .
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A Tale from the Road

• Given:

:Faust :hasAuthor :Goethe .

• what can we derive from that?

• Since it worked for Multi Author Work, how about

:Work owl:disjointUnionOf 
  (:SingleAuthorWork,:MultiAuthorWork) .

?

• Note: we can classify :Faust neither as Single nor as Multi Author 
Work
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Recap: Principles of RDF

• Basic semantic principles of the Semantic Web

• AAA: Anybody can say Anything about Anything

• Non-unique name assumption

– we can control it with owl:sameAs and owl:differentFrom

• Open World Assumption

– so far, we have to live with it
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Closed Classes

• The Open World Assumption says:

– everything we do not know could be true

• Example:

:Tim a :PeopleInOfficeD219 .

:John a :PeopleInOfficeD219 .

:Mary a :PeopleInOfficeD219 .

• This does not mean that there cannot be more people in D219

:Mike a :PeopleInD219 .

• Sometimes, this is exactly what we want to say
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Closed Classes

• Works with owl:oneOf in OWL DL

• Example:

:PeopleInOfficeD219 owl:oneOf (:Tim :John :Mary) .

• Now, what is the meaning of

:Mike a :PeopleInD219 .

?
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Back to a Tale from the Road

• Solution:

:Faust a [ a owl:Restriction ;
           owl:onProperty :hasAuthor ;
           owl:allValuesFrom [

     a owl:Class ;
             owl:oneOf (:Goethe) 
       ] 
     ].
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OWL DL: Restrictions with Single Values

• For ObjectProperties:

:AfricanStates owl:subClassOf [

a owl:Restriction ;
owl:onProperty :locatedOnContinent
owl:hasValue :Africa ] .

• For DatatypeProperties:

:AlbumsFromTheEarly80s owl:subClassOf [

a owl:Restriction ;
owl:onProperty :year
owl:dataRange 
  (1980^^xsd:integer 
   1981^^xsd:integer 
   1982^^xsd:integer) ] .
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OWL Lite/DL vs. OWL Full

• OWL Lite/DL: a resource is either an instance or a class or a 
property

• OWL Full does not have such restrictions:

:Elephant a owl:Class .
:Elephant a :Species .
:Elephant :livesIn :Africa .
:Species a owl:Class .

• OWL Lite/DL: classes are only instances of owl:Class

• OWL Lite/DL: classes and properties can only have a predefined 
set of relations (e.g., rdfs:subClassOf).
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And Now for Something Completely Different

• Can we use OWL to solve a Sudoku?
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Sudoku Solving in OWL

• What is our domain about?

• First of all, a closed class of numbers

:Number a owl:Class ;

  owl:oneOf (:1 :2 :3 :4 :5 :6 :7 :8 :9) .
  :1 owl:differentFrom (:2 :3 :4 :5 :6 :7 :8 :9) .
  :2 owl:differentFrom (:3 :4 :5 :6 :7 :8 :9) .
  ...

• ...and a lot of fields

– that we want to fill with numbers

– simplification: numbers are fields as well

– we want to know which field equals which number
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Sudoku Solving in OWL

• 81 Fields:

c1_11 a :Number .
c1_21 a :Number .
…
c1_33 a :Number .
c2_11 a :Number .
…
c9_33 a :Number .

c1_11 c1_12 c2_11 c2_12

c1_21

c4_11
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Sudoku Solving in OWL

• Fields in a quadrant are different

c1_11 owl:differentFrom
  c1_12, c1_13, …, c1_33 .
c1_12 owl:differentFrom
  c1_13, c1_21, …, c1_33 .
…
c1_32 owl:differentFrom
  c1_33 .
c2_11 owl:differentFrom
  c2_12, c2_13, …, c1_33 .
…
c9_32 owl:differentFrom
  c9_33 .

c1_11 c1_12 c2_11 c2_12

c1_21

c4_11
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Sudoku Solving in OWL

• Fields in a row are different

c1_11 owl:differentFrom
  c1_12, c1_13, …, c3_13 .
…

c1_11 c1_12 c2_11 c2_12

c1_21

c4_11
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Sudoku Solving in OWL

• Fields in a column are different

c1_11 owl:differentFrom
  c1_21, c1_31, …, c3_31 .

… c1_11 c1_12 c2_11 c2_12

c1_21

c4_11
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Sudoku Solving in OWL

• Last step: enter known numbers

c1_11 owl:sameAs :5 .
c1_12 owl:sameAs :3 .
c1_21 owl:sameAs :6 .

…
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Running this Example in Protégé

• We use a reasoner to infer implicit facts

• Here: number c_11 (top left)
4

3

2

1

Defined conditions
(horizontal, vertical, 

square)

Inferred: this is a 3
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Summary

• OWL allows defining more complex ontologies

• Flavors: OWL Lite, DL, Full

• Definitions of sets, restrictions, property characteristics

• In our example, we can now use the full set of conclusions:

– "Barcelona is not the capital of Spain." ✔
– "Madrid is not the capital of France." ✔
– "Madrid is not a state." ✔
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Coming Up Next

• Changes in OWL 2

• How does reasoning with OWL actually work?
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Questions?
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