
Semantic Web Technologies
Web Ontology Language (OWL)

Part II

Heiko Paulheim

11/11/20 Heiko Paulheim 2

Previously on “Semantic Web Technologies”

• We have got to know

– OWL, a more powerful ontology language than RDFS

– Simple ontologies and some reasoning

– Sudoku solving

• Today

– New constructs in OWL2

– Russell's paradox

– Reasoning in OWL

– Complexity of ontologies

– A peek at rule languages
for the Semantic Web

11/11/20 Heiko Paulheim 3

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

11/11/20 Heiko Paulheim 4

OWL2 – New Constructs and More

• Five years after the first OWL standard

• OWL2: 2009

– Syntactic sugar

– New language constructs

– OWL profiles

• We have already encountered some, e.g.,

– Qualified relations

– Reflexive, irreflexive, and antisymmetric properties

11/11/20 Heiko Paulheim 5

OWL2: Syntactic Sugar

• Disjoint classes and disjoint unions

– OWL 1:

:Wine owl:equivalentClass [
 a owl:Class ;
 owl:unionOf (:RedWine :RoséWine :WhiteWine)] .

:RedWine owl:disjointWith :RoséWine, :WhiteWine .
:RoséWine owl:disjointWith :WhiteWine .

– OWL 2:

:Wine owl:disjointUnionOf
 (:RedWine :RoséWine :WhiteWine).

– Also possible:

_:x a owl:AllDisjointClasses ;
 owl:members (:RedWine :RoséWine WhiteWine).

11/11/20 Heiko Paulheim 6

OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertation

• Allow negated statements

• e.g.: Paul is not Peter's father

_x [a owl:NegativeObjectPropertyAssertion;
 owl:sourceIndividual :Paul ;

 owl:targetIndividual :Peter ;
 owl:assertionProperty :fatherOf] .

• If that's syntactic sugar, it must also be possible differently

– But how?

11/11/20 Heiko Paulheim 7

OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertion

• Replaces less intuitive set constructs

• Paul is not Peter's father

Paul a [owl:complementOf [
a owl:Restriction ;
owl:onProperty :fatherOf ;
owl:hasValue :Peter

]
].

11/11/20 Heiko Paulheim 8

OWL2: Reflexive Class Restrictions

• Using hasSelf

• Example: defining the set of all autodidacts:

:AutoDidact owl:equivalentClass [
 a owl:Restriction ;
 owl:onProperty :teaches ;
 owl:hasSelf "true"^^xsd:boolean] .

11/11/20 Heiko Paulheim 9

OWL2: Property Chains

• Typically used for defining rule-like constructs, e.g.

– hasParent(X,Y) and hasParent(Y,Z) →
hasGrandParent(X,Z)

• OWL Syntax:

– :hasGrandparent owl:propertyChainAxiom
(:hasParent :hasParent) .

hasParent hasParent

hasGrandParent

11/11/20 Heiko Paulheim 10

OWL2: Property Chains

• Can be combined with inverse properties and others

– hasParent(X,Y) and hasParent(Z,Y) → hasSibling(X,Z)

• This is not a proper chain yet, so we have to rephrase it to

– hasParent(X,Y) and hasParent-1(Y,Z) → hasSibling(X,Z)

• OWL Syntax:

– :hasGrandparent owl:propertyChainAxiom
(:hasParent [owl:inverseOf :hasParent]) .

hasParent hasParent

hasSibling

11/11/20 Heiko Paulheim 11

OWL2: Profiles

• Profiles are subsets of OWL2 DL

– EL, RL und QL

– Similar to complexity classes

• Different runtime and memory complexity

• Depending on requirements

11/11/20 Heiko Paulheim 12

OWL2 Profile

• OWL2 EL (Expressive Language)

– Fast reasoning on many standard ontologies

– Restrictions, e.g.:

• someValuesFrom, but not allValuesFrom

• No inverse and symmetric properties

• No unionOf and complementOf

• OWL2 QL (Query Language)

– Fast query answering on relational databases

– Restrictions, e.g.:

• No unionOf, allValuesFrom, hasSelf, …

• No cardinalities and functional properties

11/11/20 Heiko Paulheim 13

OWL2 Profile

• OWL2 RL (Rule Language)

– Subset similar to rule languages such as datalog

• subClassOf is translated to a rule (Person ← Student)

– Restrictions, e.g.:

• Only qualified restrictions with 0 or 1

• Some restrictions for head and body

• The following holds for all three profiles:

– Reasoning can be implemented in polynomial time for each of the three

– Reasoning on the union of two profiles only possible in exponential time

11/11/20 Heiko Paulheim 14

OWL2 Example: Russell's Paradox

• A classic paradox by
Bertrand Russell, 1918

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?

11/11/20 Heiko Paulheim 15

OWL2 Example: Russell's Paradox

• Class definitions

:People owl:disjointUnionOf
(:PeopleWhoShaveThemselves
 :PeopleWhoDoNotShaveThemselves) .

• Relation definitions:

:shavedBy rdfs:domain :People .
:shavedBy rdfs:range :People .
:shaves owl:inverseOf :shavedBy .

• Every person is shaved by exactly one person:

:People rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :shavedBy ;
owl:cardinality "1"^^xsd:integer] .

11/11/20 Heiko Paulheim 16

OWL2 Example: Russell's Paradox

• Then, we define the barber:

:Barbers rdfs:subClassOf :People ;
 owl:equivalentClass [
 rdf:type owl:Class ;

 owl:oneOf (:theBarber)
] .

11/11/20 Heiko Paulheim 17

OWL2 Example: Russell's Paradox

• Definition of people shaving themselves:

:PeopleWhoShaveThemselves owl:equivalentClass [
 rdf:type owl:Class ;
 owl:intersectionOf
 (:People
 [
 a owl:Restriction ;
 owl:onProperty :shavedBy ;
 owl:hasSelf "true"^^xsd:boolean
]
)
] .

11/11/20 Heiko Paulheim 18

OWL2 Example: Russell's Paradox

• Definition of people who do not shave themselves:

:PeopleWhoDoNotShaveThemselves owl:equivalentClass [
 a owl:Class ;
 owl:intersectionOf (
 :People
 [a owl:Restriction
 owl:onProperty :shavedBy ;
 owl:allValuesFrom :Barbers
]
)
] .

11/11/20 Heiko Paulheim 19

OWL2 Example: Russell's Paradox

11/11/20 Heiko Paulheim 20

OWL2 Example: Russell's Paradox

11/11/20 Heiko Paulheim 21

Reasoning in OWL DL

• We have seen reasoning for RDFS

– Forward chaining algorithm

– Derive axioms from other axioms

• Reasoning for OWL DL is more difficult

– Forward chaining may have scalability issues

– Conjunction (e.g., unionOf) is not supported by forward chaining

– Different approach: Tableau Reasoning

– Underlying idea: find contradictions in ontology

• i.e., both a statement and its opposite
can be derived from the ontology

11/11/20 Heiko Paulheim 22

Typical Reasoning Tasks

• What do we want to know from a reasoner?

– Subclass relations

• e.g., Are all birds flying animals?

– Equivalent classes

• e.g., Are all birds flying animals and vice versa?

– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?

– Class consistency

• e.g., Can there be mammals that lay eggs?

– Class instantiation

• e.g., Is Flipper a dolphin?

– Class enumeration

• e.g., List all dolphins

11/11/20 Heiko Paulheim 23

Example: A Simple Contradiction

• Given:

:Human a owl:Class .

:Animal a owl:Class .

:Human owl:disjointWith :Animal .

:Jimmy a :Animal .
:Jimmy a :Human .

11/11/20 Heiko Paulheim 24

Example: A Simple Contradiction

• We can derive:

– :Human  :Animal = 

owl:Nothing owl:intersectionOf (:Human :Animal) .

– :Jimmy  (:Human  :Animal)

:Jimmy a [a owl:Class; owl:intersectionOf
 (:Human :Animal)] .

• i.e.:

– :Jimmy  

:Jimmy a owl:Nothing .

– That means: the instance must not exist

– but it does

11/11/20 Heiko Paulheim 25

Reasoning Tasks Revisited

• Subclass Relations

Student  Person  „Every student is a person“Every student is a person“

• Proof method: Reductio ad absurdum

– "Invent" an instance i

– Define Student(i) and Person(i)

– Check for contradictions

• If there is one: Student  Person has to hold

• If there is none: Student  Person cannot be derived
– Note: it may still hold!

11/11/20 Heiko Paulheim 26

Example: Subclass Relations

• Ontology:

:Student owl:subClassOf :UniversityMember .
:UniversityMember owl:subClassOf :Person .

• Invented instance:

:i a :Student .

:i a [owl:complementOf :Person] .

• We have
:i a :Student .
:Student owl:subClassOf :UniversityMember .

Thus

:i a :UniversityMember .

• And from

:UniversityMember owl:subClassOf :Person .

• We further derive that

:i a Person .

11/11/20 Heiko Paulheim 27

Example: Subclass Relations

• Now, we have

:i a :Person .
:i a [owl:complementOf :Person] .

i.e.,

:i a [owl:intersectionOf (:Person
 [owl:complementOf :Person
])] .

• from which we derive

:i a owl:Nothing .

11/11/20 Heiko Paulheim 28

Reasoning Tasks Revisited

• Class equivalence
– Person  Human

• Split into
– Person  Human and

– Human  Person

• i.e., show subclass relation twice
– We have seen that

• Class disjointness
– Are C and D disjoint?

– "Invent" an instance i

– Define C(i) and D(i)

• We have done set (the Jimmy example)

11/11/20 Heiko Paulheim 29

Class Consistency

• Can a class have instances?

– e.g., married bachelors

:Bachelor owl:subClassOf :Man .
:Bachelor owl:subClassOf
 [a owl:Restriction;
 owl:onProperty :marriedTo;
 owl:cardinality 0] .
:MarriedPerson owl:subClassOf [
 a owl:Restriction;
 owl:onProperty :marriedTo;
 owl:cardinality 1] .

:MarriedBachelor owl:intersectionOf
 (:Bachelor :MarriedPerson) .

• Now: invent an instance of the class

– And check for contradictions

11/11/20 Heiko Paulheim 30

Reasoning Tasks Revisited

• Class Instantiation

– Is Flipper a dolphin?

• Check:

– define Dolphin(Flipper)

– Check for contradiction

• Class enumeration

– Repeat class instantiation for all known instances

11/11/20 Heiko Paulheim 31

Typical Reasoning Tasks Revisited

• What do we want to know from a reasoner?

– Subclass relations

• e.g., Are all birds flying animals?

– Equivalent classes

• e.g., Are all birds flying animals and vice versa?

– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?

– Class consistency

• e.g., Can there be mammals that lay eggs?

– Class instantiation

• e.g., Is Flipper a dolphin?

– Class enumeration

• e.g., List all dolphins

11/11/20 Heiko Paulheim 32

Typical Reasoning Tasks Revisited

• We have seen

– All reasoning tasks can be reduced to the same basic task

– i.e., consistency checking

• This means: for building a reasoner that can solve those tasks,

– we only need a reasoner capable of consistency checking

11/11/20 Heiko Paulheim 33

Ontologies in Description Logics Notation

• Classes and Instances

– C(x) ↔ x a C .

– R(x,y) ↔ x R y .

– C ⊑ D ↔ C rdfs:subClassOf D

– C ≡ D ↔ C owl:equivalentClass D

– C ⊑ D ↔ C owl:disjointWith D

– C ≡ D ↔ C owl:complementOf D

– C ≡ D ⊓ E ↔ C owl:intersectionOf (D E) .

– C ≡ D ⊔ E ↔ C owl:unionOf (D E) .

– T ↔ owl:Thing

–  ↔ owl:Nothing

11/11/20 Heiko Paulheim 34

Ontologies in Description Logics Notation

• Domains, ranges, and restrictions

– R.T ⊑ C ↔ R rdfs:domain C .

– R.C ↔ R rdfs:range C .

– C ⊑ R.D ↔ C owl:subClassOf
 [a owl:Restriction;
 owl:onProperty R;
 owl:allValuesFrom D] .

– C ⊑ R.D ↔ C owl:subClassOf
 [a owl:Restriction;
 owl:onProperty R;
 owl:someValuesFrom D] .

– C ⊑ nR ↔ C owl:subClassOf
 [a owl:Restriction;
 owl:onProperty R;
 owl:minCardinality n] .

11/11/20 Heiko Paulheim 35

Global Statements in Description Logic

• So far, we have seen mostly statements about single classes

– e.g., C ⊑ D

• In Description Logics, we can also make global statements

– e.g., D ⊔ E

– This means: every single instance is a member of D or E (or both)

• Those global statements are heavily used in the reasoning process

11/11/20 Heiko Paulheim 36

Negation Normal Form (NNF)

• Transforming ontologies to Negation Normal Form:

– ⊑ und ≡ are not used

– Negation only for atomic classes and axioms

• A simplified notation of ontologies

• Used by tableau reasoners

11/11/20 Heiko Paulheim 37

Negation Normal Form (NNF)

• Eliminating ⊑:
• Replace C ⊑ D by C ⊔ D
• Note: this is a shorthand notation for x: C(x) ⋁ D(x)

• Why does this hold?
• C ⊑ D is equivalent to C(x) D(x)→ D(x)

C(x) D(x) C(x) → D(x) C(x) ⋁ D(x)

true true true true

true false false false

false true true true

false false true true

11/11/20 Heiko Paulheim 38

Negation Normal Form (NNF)

• Eliminating ≡:
• Replace C ≡ D by C ⊑ D and D ⊑ C

• Proceed as before

• i.e.: C ≡ D becomes

C ⊑ D

D ⊑ C

– and thus

C ⊔ D

D ⊔ C

11/11/20 Heiko Paulheim 39

Negation Normal Form (NNF)

• Further transformation rules

– NNF(C) = C (for atomic C)

– NNF(C) = C (for atomic C)

– NNF( C) = C

– NNF(C ⊔ D) = NNF(C) ⊔ NNF(D)

– NNF(C ⊓ D) = NNF(C) ⊓ NNF(D)

– NNF((C ⊓ D)) = NNF(C) ⊔ NNF(D)

– NNF((C ⊔ D)) = NNF(C) ⊓ NNF(D)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)

– NNF(R.C) = R.NNF(C)

11/11/20 Heiko Paulheim 40

The Basic Tableau Algorithm

• Tableau: Collection of derived axioms

– Is subsequently extended

– As for forward chaining

• In case of conjunction

– Split the tableau

C(a), D(a)

C(a), E(a)
C(a) D(a) ⊔ E(a)

11/11/20 Heiko Paulheim 41

When is an Ontology Free of Contradictions?

• Tableau is continuously extended and split

• Free of contradictions if...

– No further axioms can be created

– At least one partial tableau is free of contradictions

– A partial tableau has a contradiction if it contains
both an axiom and its negation

• e.g.. Person(Peter) und Person(Peter)
• The partial tableau is then called closed

11/11/20 Heiko Paulheim 42

The Basic Tableau Algorithm

• Given: an ontology O in NNF

While not all partial tableaus are closed

* Choose a non-closed partial tableau T and an A ∊ O ∪ T
 If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

 else
Extend the tableau with consequences from A
back to *

11/11/20 Heiko Paulheim 43

The Basic Tableau Algorithm

• Extending a tableau with consequences

Nr Axiom Action

1 C(a) Add C(a)

2 R(a,b) Add R(a,b)

3 C Choose an individual a, add C(a)

4 (C ⊓ D)(a) Add C(a) and D(a)

5 (C ⊔ D)(a) Split tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b

7 (R.C)(a) For all b with R(a,b) T: add C(b)∊ T: add C(b)

11/11/20 Heiko Paulheim 44

A Simple Example

• Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .

• Is this knowledge base consistent?

11/11/20 Heiko Paulheim 45

A Simple Example

• Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .

– The same ontology in DL-NNF:

Animal ⊔ Human
Animal ⊔ (Mammal ⊓ Bird ⊓ Fish ⊓ Insect ⊓ Reptile)
Animal ⊔ (Mammal ⊔ Bird ⊔ Fish ⊔ Insect ⊔ Reptile)
Human(Seth)
Insect(Seth)

• Let's try how reasoning works now!

11/11/20 Heiko Paulheim 46

A Simple Example

Human(Seth), Insect(Seth)

Nr Axiom Action

1 C(a) Add C(a)

11/11/20 Heiko Paulheim 47

A Simple Example

Human(Seth), Insect(Seth),
(Animal ⊔ Human)(Seth)

Nr Axiom Action

3 C Choose an individual a, add C(a)

11/11/20 Heiko Paulheim 48

A Simple Example

Human(Seth), Insect(Seth),
Animal(Seth)

Human(Seth), Insect(Seth),
Human(Seth)

Nr Axiom Action

5 (C ⊔ D)(a) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

11/11/20 Heiko Paulheim 49

A Simple Example

Human(Seth), Insect(Seth),
Animal(Seth)
Animal ⊔ (Mammal ⊓ Bird ⊓ Fish ⊓ Insect)(Seth)
Human(Seth), Insect(Seth),
Human(Seth)

Nr Axiom Action

3 C Choose an individual a, add C(a)

11/11/20 Heiko Paulheim 50

A Simple Example

Human(Seth), Insect(Seth),
Animal(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
Animal(Seth)
(Mammal ⊓ Bird ⊓ Fish ⊓ Insect ⊓ Reptile)(Seth)

Human(Seth), Insect(Seth),
Human(Seth)

Nr Axiom Action

5 (C ⊔ D)(a) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

11/11/20 Heiko Paulheim 51

A Simple Example

Human(Seth), Insect(Seth),
Animal(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
Animal(Seth)
(Mammal ⊓ Bird ⊓ Fish ⊓ Insect ⊓ Reptile)(Seth)
Mammal(Seth)
Bird(Seth)
Fish(Seth)
Insect(Seth)
Reptile(Seth)
Human(Seth), Insect(Seth),
Human(Seth)

Nr Axiom Action

4 (C ⊓ D)(a) Add C(a) and D(a)

11/11/20 Heiko Paulheim 52

Another Example

• Again, a simple ontology:

:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassOf :Person .
:hasChild rdfs:domain :Person .
:hasChild rdfs:range :Person .
:Peter :hasChild :Julia .
:Julia a :Woman .
:Peter a :Man .

11/11/20 Heiko Paulheim 53

Another Example

• in DL NNF:
Man ⊔ Person
Woman ⊔ Person
hasChild.T ⊔ Person
hasChild.Person
hasChild(Peter,Julia)
Woman(Julia)
Man(Peter)

11/11/20 Heiko Paulheim 54

Another Example

hasChild(Peter,Julia)

Nr Axiom Action

2 R(a,b) Add R(a,b)

11/11/20 Heiko Paulheim 55

Another Example

hasChild(Peter,Julia), Woman(Julia)

Nr Axiom Action

1 C(a) Add C(a)

11/11/20 Heiko Paulheim 56

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter)

Nr Axiom Action

3 C Choose an individual a, add C(a)

11/11/20 Heiko Paulheim 57

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter),
hasChild.T(Peter)
hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter)

Nr Axiom Action

5 (C ⊔ D)(a) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

11/11/20 Heiko Paulheim 58

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter),
hasChild.T(Peter)
hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0)

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

11/11/20 Heiko Paulheim 59

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter),
hasChild.T(Peter)

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0),
hasChild(Peter,b1),T(b1),
...

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

11/11/20 Heiko Paulheim 60

Introducing Rule Blocking

• Observation

– The tableau algorithm does not necessarily terminate

– We can add arbitrarily many new axioms

• Idea: avoid rule 6 if no new information is created

– i.e., if we already created one instance ba for instance a,
then block using rule 6 for a.

Nr Axiom Action

6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

11/11/20 Heiko Paulheim 61

Tableau Algorithm with Rule Blocking

• Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊ O ∪ T
 If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

 else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

11/11/20 Heiko Paulheim 62

Tableau Algorithm: Wrap Up

• An algorithm for description logic based ontologies

– works for OWL Lite and DL

• We have seen examples for some OWL expressions

– Other OWL DL expressions can be “translated” to DL as well

– And they come with their own expansion rules

– Reasoning may become more difficult

• e.g., dynamic blocking and unblocking

11/11/20 Heiko Paulheim 63

Optimizing Tableau Reasoners

• Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊ O ∪ T
 If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪ T
Add A(i) to T
back to *

 else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

11/11/20 Heiko Paulheim 64

OWL Lite vs DL Revisited

• Recap: OWL Lite has some restrictions

– Those are meant to allow for faster reasoning

• Restrictions only with cardinalities 0 and 1

– Higher cardinalities make blocking more complex

• unionOf, disjointWith, complementOf, closed classes, ...

– they all introduce more disjunctions

– i.e., more splitting operations

11/11/20 Heiko Paulheim 65

Complexity of Ontologies

• Reasoning is usually expensive

• Reasoning performance depends on ontology complexity

– Rule of thumb: the more complexity, the more costly

• Most useful ontologies are in OWL DL

– But there are differences

– In detail: complexity classes

11/11/20 Heiko Paulheim 66

Simple Ontologies: ALC

• ALC: Attribute Language with Complement

• Allowed:

– subClassOf, equivalentClass

– unionOf, complementOf, disjointWith

– Restrictions: allValuesFrom, someValuesFrom

– domain, range

– Definition of individuals

11/11/20 Heiko Paulheim 67

SHIQ, SHOIN & co

• Complexity classes are noted as letter sequences

• Using

– S = ALC plus transitive properties (basis for most ontologies)

– H = Property hierarchies (subPropertyOf)

– O = closed classes (oneOf)

– I = inverse properties (inversePropertyOf)

– N = numeric restrictions (min/maxCardinality)

– F = functional properties

– Q = qualified numerical restrictions (OWL2)

– (D) = Usage of datatype properties

11/11/20 Heiko Paulheim 68

Some Tableau Reasoners

• Fact

– University of Manchester, free

– SHIQ

• Fact++/JFact

– Extension of Fact, free

– SHOIQ(and a little D), OWL-DL + OWL2

• Pellet

– Clark & Parsia, free for academic use

– SHOIN(D), OWL-DL + OWL2

• RacerPro

– Racer Systems, commercial

– SHIQ(D)

11/11/20 Heiko Paulheim 69

Sudoku Revisited

• Recap: we used a closed class

– Plus some disjointness

• Resulting complexity: SO

• Which reasoners do support that?

– Fact: SHIQ :-(

– RacerPro: SHIQ(D) :-(

– Pellet: SHOIN(D) :-)

– HermiT: SHOIQ :-)

11/11/20 Heiko Paulheim 70

Rules: Beyond OWL

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

11/11/20 Heiko Paulheim 71

Limitations of OWL

• Some things are hard or impossible to express in OWL

• Example:

– If A is a woman and the child of B
then A is the daughter of B

Woman

Human

childOf

daughterOf

 subPropertyOf

11/11/20 Heiko Paulheim 72

Limitations of OWL

• Let's try this in OWL:

:Woman rdfs:subClassOf :Human .
:childOf a owl:ObjectProperty ;
 rdfs:domain :Human ;
 rdfs:range :Human .
:daughterOf a owl:ObjectProperty ;
 rdfs:subPropertyOf :childOf ;
 rdfs:domain :Woman .

11/11/20 Heiko Paulheim 73

Limitations of OWL

• What can a reasoner conclude with this ontology?

• Example:

:Julia :daughterOf :Peter .

→ :Julia a :Woman .

• What we would like to have instead:

:Julia :childOf :Peter .
:Julia a :Woman .

→ :Julia :daughterOf :Peter .

11/11/20 Heiko Paulheim 74

Limitations of OWL

• What we would like to have:

daughterOf(X,Y) ← childOf(X,Y) ∧ Woman(X) .

• Rules are flexible

• There are rules in the Semantic Web, e.g.

– Semantic Web Rule Language (SWRL)

– Rule Interchange Format (RIF)

– See lecture in two weeks

• Some reasoners do (partly) support rules

11/11/20 Heiko Paulheim 75

Wrap Up

• OWL comes in many flavours

– OWL Lite, OWL DL, OWL Full

– Detailed complexity classes of OWL DL

– Additions and profiles from OWL2

– However, there are still some things that cannot be expressed...

• Reasoning is typically done using the Tableau algorithm

11/11/20 Heiko Paulheim 76

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Questions?

