
Semantic Web Technologies
Ontology Engineering

Heiko Paulheim

11/06/18 Heiko Paulheim 2

Semantic Web – Architecture

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technical
Foundations

Semantic Web
Technologies
(This lecture)

here be dragons...

11/06/18 Heiko Paulheim 3

Ontology Engineering

• Ontologies are a key ingredient for the Semantic Web

• How we have built ontologies so far

– Read the requirements

– Pick a starting point at random

– Start playing around in Protégé

– Trial and error driven

• That was rather "Ontology Hacking" than "Ontology Engineering"

11/06/18 Heiko Paulheim 4

Ontology Engineering

• How to build ontologies?

– Methodologies

• Hot to build good ontologies?

– Best Practices

– Design Patterns

– Anti Patterns

– Top Level Ontologies

11/06/18 Heiko Paulheim 5

Warning

• Today's lecture contains a massive amount of philosophy

(for computer scientists)

11/06/18 Heiko Paulheim 6

Methodologies

• Known, e.g., from
Software Engineering

http://geekandpoke.typepad.com/geekandpoke/2012/01/simply-explained-dp.html

11/06/18 Heiko Paulheim 7

Methontology (Fernández et al., 1997)

Gómez-Pérez et al. (2004): Ontological Engineering

Glossary of
Terms

Concept
Taxonomies

Ad hoc
binary relations

Concept
dictionary

Describe
ad hoc binary

relations

Describe
instance
attributes

Describe
class attributes

Describe
constants

Describe
formal axioms

Describe
rules

Describe
instances

11/06/18 Heiko Paulheim 8

Methontology (Fernández et al., 1997)

• Step by step from less to more formal ontologies

• Stepping back is allowed

• Documentation is produced along the way

• Glossary

– Terms, descriptions, synonyms, antonyms

• Taxonomy

– Sub class relations

• Ad hoc binary relations

– a.k.a. ObjectProperties

• Concept dictionary

– contains: terms, descriptions, relations, instances (optional)

11/06/18 Heiko Paulheim 9

Methontology (Fernández et al., 1997)

• Concept dictionary (example)

Gómez-Pérez et al. (2004): Ontological Engineering

11/06/18 Heiko Paulheim 10

Building Good Ontologies

• Real example SNOMED (a medical ontology)

Finger partOf Hand .
Hand partOf Arm .
partOf a owl:TransitiveProperty .
Surgery rdfs:subClassOf Treatment .
onBodyPart rdfs:domain Treatment .
onBodyPart owl:propertyChain (onBodyPart, partOf) .

• This allows for inferences such as

– An operation of the finger is also an operation of the hand
(and an operation of the arm).

• So far, so good...

Amputation subClassOf Surgery .

11/06/18 Heiko Paulheim 11

OntoClean

• A collection of analysis methods and tests

– Does my class hierarchy make sense?

• Developed ~2000-2004 by Nicola Guarino and Chris Welty

– Based on philosophical foundations

11/06/18 Heiko Paulheim 12

Rigidity

• Consider the following task:

– Build an ontology for public transport

– "Passengers can be people and animals."

• How do you like this solution?

Passenger

Person Animal

11/06/18 Heiko Paulheim 13

Rigidity

• OntoClean distinguishes rigid and non-rigid classes

– If an entity belongs to a rigid class, this holds once and for all

• i.e.: if the entity does not belong to that class anymore,
it ceases to exist

– This does not hold for non-rigid classes

• Examples for rigid classes

– Person, mountain, company

• Examples for non-rigid classes

– Student, stock company, town

– Caterpillar and butterfly

11/06/18 Heiko Paulheim 14

Rigidity in OntoClean

• OntoClean rule

– Rigid classes must not be subclasses of non-rigid classes

• Assume that

– :peter a :Person .

– From that, we conclude that :peter a :Passenger .

– This is probably unwanted

Passenger

Person Animal

11/06/18 Heiko Paulheim 15

Rigidity in OntoClean

• Improved solution

Passenger

Person

Animal hasRole

hasRole

11/06/18 Heiko Paulheim 16

Rigidity in OntoClean

• Other typical rigidity problems

– PhysicalObject > Animal

• An entity may die and thus be no longer an animal
– If we consider “living” as necessary for animals

• The physical object (i.e., the body), however, still exists

11/06/18 Heiko Paulheim 17

Identity

• Consider the following task:
– Build an ontology for recording working times

– "Time intervals are specific durations. A duration may be 1h, 2h, etc., a time
interval may be Monday, 1-2pm, or Tuesday, 3-5pm."

• How do you like this solution?

Duration

Interval

e.g., 1h, 2h

e.g.,
Monday, 1-2pm

11/06/18 Heiko Paulheim 18

Identity

• Let us look at some instances

– :1h a :Duration . :2h a :Duration . …

– :Mo10-11 a :Interval . :Mo11-12 a :Interval . …

• Obviously, there are more instances of Interval
than there are instances of Duration

• What does that mean?

11/06/18 Heiko Paulheim 19

Identity

• How do we know that two entities are the same

– Some classes have criteria for identity

• Immatriculation number of students

• Tax number for citizens and companies

• Country codes

• ...

11/06/18 Heiko Paulheim 20

Identity

• Since the subclass cannot be larger than the superclass,
there must be instances that are the same

• Probably, we would expect a mapping such as

– :Mo10-11 owl:sameAs :1h .

– :Mo11-12 owl:sameAs :1h .

• From that, we conclude that

– :Mo10-11 owl:sameAs :Mo11-12 .

• Do we really want that to hold?

11/06/18 Heiko Paulheim 21

Identity

• We have to extend our ontology

• When are two durations the same?

– If their length is the same

– :1h owl:sameAs :60Min .

Duration

Interval

Length

Start time

e.g., 1h, 2h

e.g.,
Monday, 1-2pm

11/06/18 Heiko Paulheim 22

Identity

• We have to extend our ontology

• When are two intervals the same?

– If they have the same length and the same start time

– :Mo13-14 owl:sameAs :Mo1pm-2pm .

Duration

Interval

Length

Start time

e.g., 1h, 2h

e.g.,
Monday, 1-2pm

11/06/18 Heiko Paulheim 23

Identity in OntoClean

• Observation:

– The identity criteria are of the two classes are different

• OntoClean rule:

– If p is a subclass of q,
then p must not have any identity criteria that q does not have

11/06/18 Heiko Paulheim 24

Identity in OntoClean

• Improved solution:

– Replace subclass relation by another relation

Duration

Interval

 has duration

Length

Start time

e.g., 1h, 2h

e.g.,
Monday, 1-2pm

11/06/18 Heiko Paulheim 25

Identity in OntoClean

• Other typical problems

– GeographicalObject > Country

• Geographical objects and countries have different identity criteria

• Geographical object: position/polygon

• Country: government, constitution

• OntoClean enforces a separation of the geographic and the social
construct of a “country”

– Book > Book edition

• Book: Title, author

• Book edition: ISBN, or title and author plus number of the edition

– Book > Book copy

• Book: ISBN

• Book copy: inventory number

11/06/18 Heiko Paulheim 26

Unity

• For some classes, entities can be decomposed
into instances of the same class

– We call them “anti unity classes”

• Examples:

– An amount of waters into two amount of waters

– A group into two sub groups

• Other classes only have “whole” instances → “unity classes”

– e.g., people, cities

• For "whole" individuals, there is always a relation unambiguosly
relating a part to the whole

– e.g., relating a body part to a person

11/06/18 Heiko Paulheim 27

Unity

• Assume that we defined

Amount of
Matter

Organic
Matter

Animal

Anorganic
Matter

Plant

11/06/18 Heiko Paulheim 28

Unity

• Let us further assume that we defined*:

– if we add two amounts of the same type of matter,
the result is a larger amount of that type of matter

C rdfs:subClassof AmountOfMatter
∧ m1 a C . m2 a C . m3 hasPart m1, m2 .

→ m3 a C .

*pretending this was possible in OWL, or using rules such as SWRL

11/06/18 Heiko Paulheim 29

Unity

• This leads to the following conclusion:

:fluffi a :Animal .
:schnuffi a :Animal .
:SetOfPetersPets hasPart :fluffi, :schnuffi .

→ :SetOfPetersPets a :Animal .

• Do we want that?

11/06/18 Heiko Paulheim 30

Unity in OntoClean

• OntoClean rule:

– Unity classes may only have unity classes as their subclasses

– Anti unity classes may only have anti unity classes as their subclasses

• In our example:

– OrganicMatter is an anti unity class

– Animal is a unity class

11/06/18 Heiko Paulheim 31

Unity in OntoClean

• Solution (again): replace subclass relation by a different relation

Amount of
Matter

Organic
Matter

Animal

Anorganic
Matter

contains
Plant

contains

11/06/18 Heiko Paulheim 32

Unity in OntoClean

• Such refactorings may hint at missing classes

Amount of
Matter

Organic
Matter

Animal

Anorganic
Matter

Plant

contains
Living Thing

11/06/18 Heiko Paulheim 33

Summarizing OntoClean

• A number of tests that can be carried out on ontologies

– Rigidity, Identity, Unity

– Reveal possible mismodeling issues

– Avoid nonsensical reasoning consequences

11/06/18 Heiko Paulheim 34

Ontology Design Patterns

• Origin of the term “design pattern”

– Christopher Alexander (*1936)

– Buch "A Pattern Language" (1977)

• Architecture

– Recurring problems

– Standard solutions

• With certain degrees of freedom

• Example

– Problem: rain falls into the building

– Solution: roof

• Degrees of freedom: shed roof, saddle roof, hip roof...

11/06/18 Heiko Paulheim 35

Types of Ontology Design Patterns

• Presentation Patterns

– e.g., naming conventions

• Logical Patterns

– Domain independent

– Always specific to a language (e.g., OWL DL)

• Content Patterns

– Domain dependent

– Language independent

• Transformation Patterns

– e.g., how to transform an ontology from one language to the other

11/06/18 Heiko Paulheim 36

Presentation Patterns

• Typical ontology naming conventions

• Use CamelCase

– CityInNorthernEurope

• Classes start with capital letters, always use singular nouns

– City, Country

• Properties start with small letters, use a verb,
allow unambiguous reading direction

– isLocatedIn, isCapitalOf

• Instances start with a capital letter

– Paris, France

• Provide labels for each class, property, and instance

• ...

11/06/18 Heiko Paulheim 37

Logical Patterns

• Example: ternary relation

• Statement to express: r(X,Y,Z)

• Pattern:

R a owl:Class .
hasR a owl:ObjectProperty .
rComp1 a owl:ObjectProperty .
rComp2 a owl:ObjectProperty .
X hasR [
 a R ;
 hasComp1 Y ;
 hasComp2 Z] .

11/06/18 Heiko Paulheim 38

Content Pattern

• Example: Roles taken at a time

– e.g.: Gerhard Schröder was the German chancellor
from 1998 to 2005

• Competency Question:

– Who had a certain role at a given time?

• Specializes

– ternary relation

Agent RoleAtTime

Role

Time Interval

11/06/18 Heiko Paulheim 39

Anti-Patterns

• Things that should not be done

– But are often done

– ...and cause some problems

• Possible causes

– Not thought about each and every consequence

– Little/wrong understanding of RDF/OWL principles

11/06/18 Heiko Paulheim 40

Anti Pattern: Rampant Classism

• Typical problem:

– What should be an instance, what should be class?

Writer

Schiller LessingGoethe

11/06/18 Heiko Paulheim 41

Anti Pattern: Rampant Classism

• This is an extreme case...

:Goethe rdfs:subClassOf :Writer .
:Faust rdfs:subClassOf :Drama .
:Goethe :authorOf :Faust .

• What can we conclude from that?

• Nothing with a DL reasoner,
because this is not proper DL!

11/06/18 Heiko Paulheim 42

Anti Pattern: Rampant Classism

• How to distinguish classes and instances

• For every classes, there must be (one or more) instance(s)

– What should be instances of Goethe?

– Are there any sentences like “X is a Goethe”?

• Sub class relations must make sense

– Pattern: “Every X is a Y”

– “Every Goethe is a Writer”?

11/06/18 Heiko Paulheim 43

Anti Pattern: Exclusivity

• Given the following specification:

– Cities bordering an ocean are coastal cities.

• Modeled in OWL, e.g.

City

Coastal City
bordering:

some Ocean
equivalent

Class

11/06/18 Heiko Paulheim 44

Anti Pattern: Exclusivity

• In OWL:

:CoastalCity
 rdfs:subClassOf :City ;
 owl:equivalentClass [
 a owl:Restriction ;
 owl:onProperty :bordering ;
 owl:someValuesFrom :Ocean] .

City

Coastal City
bordering:

some Ocean
equivalent

Class

11/06/18 Heiko Paulheim 45

Anti Pattern: Exclusivity

• Now with instances:

:Hamburg a :City .
:Hamburg :bordering :AtlanticOcean .
:AtlanticOcean a :Ocean .

→ :Hamburg a :CoastalCity .

• So far, so good.

:Germany a :Country .
:Germany :bordering :AtlanticOcean .
:AtlanticOcean a :Ocean .

→ :Germany a :CoastalCity .

→ :Germany a :City .

11/06/18 Heiko Paulheim 46

Anti Pattern: Exclusivity

• What is happening here?

– Ontology was built exclusively for a domain

– e.g., cities

– Breaks if used in another context (here: countries)

• Recap: Semantic Web Principles

– AAA (Anybody can say Anything about Anything)

– i.e., statements should work in different contexts

• Another example:

– Every person is married to at most one other person

11/06/18 Heiko Paulheim 47

Anti-Patterns: Exclusivity

• Possible Solution:

:CoastalCity
 owl:intersectionOf
 (:City
 [a owl:Restriction ;
 owl:onProperty :bordering ;
 owl:someValuesFrom :Ocean]) .

City

CoastalCity
intersection

of
bordering:

some Ocean

11/06/18 Heiko Paulheim 48

Classification of Ontologies

Top-Level
Ontology

Domain
Ontology

Task
Ontology

Application
Ontology

general

specific

not reusable

reusable

Guarino: Formal Ontology and Information Systems (1998)

11/06/18 Heiko Paulheim 49

Top Level Ontologies

• Top Level Ontologies

– Domain independent

– Task independent

– Very general

• Goal

– Reuse

– Semantic clarity

– Modeling guidance (i.e., avoid bad modeling)

– Interoperability

11/06/18 Heiko Paulheim 50

History

Porphyry, Greek philosopher, ca. 234-305

11/06/18 Heiko Paulheim 51

History

• One of the oldest top level ontologies

– Aristotle (384-322)

• Four basic categories of existence

11/06/18 Heiko Paulheim 52

Aristotle's Ontological Square

not substantial substantial

universal Category II
the color “white”

Category III
the category of white
coffee mugs

particular Category I
the white color of a
particular coffee mug

Category IV
a particular white
coffee mug

• Example: „white coffee mugs“

11/06/18 Heiko Paulheim 53

Basic Categories for Top Level Ontologies

• Abstract vs. concrete entities

• Abstract entities do neither have a temporal nor a spatial dimension

– Numbers

– Units of measure

• Concrete entities do at least have a temporal dimension,
i.e., a time span at which they exist

– Things (books, tables, …)

– Events (lectures, tournaments, ...)

11/06/18 Heiko Paulheim 54

Basic Categories for Top Level Ontologies

• 3D vs. 4D view

• 3D view

– Things extend in space

– At every point in time, they are completely present

• 4D view

– Things extend in time and space

– At a given point in time, they can also be partially present

• Actual vs. possible entities

– Actualism: only existing entities are included in an ontology

– Possibilism: all possible entities are included in an ontology

11/06/18 Heiko Paulheim 55

Basic Categories for Top Level Ontologies

• Co-location

– Can multiple entities exist in the same place?

• This should be easy...

– 3D view: no

– 4D view: yes, but not at the same time

• ...but it is not that trivial

– Example: a statue and the amount of clay from which it was made

• Do statues even exist?
– Or is there only clay in the shape of a statue?

– ...and if both exist, should they belong to the same category?

– Another example: a hole in a piece of Swiss cheese

• Do holes even exist?
– Or are there only perforated objects?

11/06/18 Heiko Paulheim 56

John Sowa's Top Level Ontology

• An “older” top level ontology (1990s)

• Three distinctions form twelve basic categories

– Physical vs. Abstract

• Things that exist in time (and potentially in space)

• Things that do not

– Continuant vs. Occurent

• Things that exist as a whole at each point in time

• Things that partially exist at each point in time

– Independent vs. Relative vs. Mediating

• Things that can exist on their own

• Things that require other things to exist

• “Third” things that relate two others

11/06/18 Heiko Paulheim 57

John Sowa's Top Level Ontology

• These three distinctions create twelve basic classes of objects

– All of them are disjoint

Physical Abstract

Continuant Occurent Continuant Occurent

Independent Object Process Schema Script

Relative Juncture Participation Description History

Mediating Structure Situation Reason Purpose

John F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations (1999)

11/06/18 Heiko Paulheim 58

Think Aloud

• Which categories do those entities belong to?

– The building B6 23-25

– Today's Semantic Web Technologies Lecture

– The semester break between HWS2018 and FSS2019

– Your motivation to be here today

11/06/18 Heiko Paulheim 60

DOLCE

• Descriptive Ontology for Linguistic and Cognitive Engineering

• One of the most well known top level ontologies

– Developed in the EU WonderWeb project (2002-2004)

– Strong philosophical foundation

• Modular design

– Basic ontologies: 37 classes, 70 relations

– All modules: ~120 classes, ~300 relations

11/06/18 Heiko Paulheim 61

Basic Distinctions in DOLCE

• Particulars, universals, and quantities

• Universals (think: categories): can have instances

– “City”, “University”

• Particulars (think: individuals): cannot have instances

– "Mannheim", "Mannheim University"

• Qualities: describe an instance

– e.g., color of a book, height of a person

– Are neither particulars nor universals

– Cannot exist without an instance

11/06/18 Heiko Paulheim 62

DOLCE: Basic Assumptions

• A top level ontology of particulars

– For both actual and possible entities (possibilistic view)

• 4D

– Some entities may have a temporal dimension

• Co-location

– Is allowed

– restriction: not two entities of the same kind at the same
spatial and temporal location

• Not: two statues

• But: a statue and an amount of clay

11/06/18 Heiko Paulheim 63

Top Hierarchy of DOLCE

owl:Thing

Endurant Perdurant Quality Abstract

• Four pairwise disjoint classes

Masolo et al. (2003): Ontology Library (final). WonderWeb Deliverable D18.

11/06/18 Heiko Paulheim 64

Endurants vs. Perdurants

• Endurants exist in time

– Think: things like people, books, ...

• May also be non-physical: organizations, pieces of information

– Are always fully present at each point in time during their existence

• Perdurants "happen" in time

– Think: events and processes

– Only exist partially at each point in time during their existence

• i.e., previous and future parts of the perdurant
may not (yet|anymore) exist at a given point in time

• Qualities are attached to endurants and perdurants

• Abstracts: numbers, units of measure, etc.

11/06/18 Heiko Paulheim 65

Endurants in DOLCE (1)

Endurant

Physical
Endurant

Arbitrary Sum
Non-Physical

Endurant

Amount of Matter Feature
Physical
Object

Agentive Physical
Object

Non-Agentive
Physical Object

Masolo et al. (2003): Ontology Library (final). WonderWeb Deliverable D18.

11/06/18 Heiko Paulheim 66

Distinguishing Endurants

• Amount of Matter vs. Phyiscal Object

– Amount of Matter is “mereologically invariant”

– i.e., a part of an AoM is still an AoM

• A part of “some water” is still “some water”

• But a part of a cup is (likely) not a cup

– cf. unity/anti unity in OntoClean

• Features

– Cannot exist without a physical endurant

– e.g., holes, fringes

11/06/18 Heiko Paulheim 67

Endurants in DOLCE (2)

Endurant

Physical
Endurant

Arbitrary Sum
Non-Physical

Endurant

Non-Agentive
Social Object

Agentive
Social Object

Non-Physical
Object

Mental Object Social Object

SocietySocial Agent
Masolo et al. (2003): Ontology Library (final).
WonderWeb Deliverable D18.

11/06/18 Heiko Paulheim 68

Perdurants in DOLCE

Perdurant

Event Stative

Achievement Accomplishment State Process

Masolo et al. (2003): Ontology Library (final). WonderWeb Deliverable D18.

11/06/18 Heiko Paulheim 69

Distinguishing Perdurants

• Events vs. Statives

– The sum of two consecutive statives is a (longer) stative

• The sum of two times “sitting around” is
“sitting around for a longer time”

• But: the sum of two times “flying to the moon” is not
“flying to the moon for a longer time”

11/06/18 Heiko Paulheim 70

Distinguishing Perdurants

• Achievement vs. Accomplishment

– Achievements non-dividable ("Reaching the border")

– Accomplishments are dividable (“Going to China”)

• State vs. Process

– States only consist of states of the same type (like “sitting around”)

– Processes may consist of processes of different types

• e.g., “studying” consists of “listen to lecture”, “work on project”,
“present results”, “write paper”...

11/06/18 Heiko Paulheim 71

Relation of Endurants and Perdurants

• Endurants take part in perdurants

– Actively (Reader and reading)

– Passively (Book and reading)

– DOLCE defines various types of participation

• Endurants only consist of endurants,
perdurants only consist of perdurants

– Books consist of pages, cover, ...

– Reading consists of perceiving, turning pages, ...

11/06/18 Heiko Paulheim 72

Qualities

• Basic distinction

– Quality is a property of an entity

– Quality space is the set of possible values of the quality

• Qualities need entities

– In general, all particulars can have qualities

– Qualities only exist as long as the entity exists

11/06/18 Heiko Paulheim 73

Qualities

• Example:

– Color is a quality

– RBG is a quality space

• "Two cars have exactly the same color"

– Every car has got its own quality “color”

– Both qualities have the same value in the quality space

• Why should each car have its own quality?

– Qualities only exist as long as the entity they belong to

– Otherwise, the second car would have no more color
once the first car ceases to exist

11/06/18 Heiko Paulheim 74

Other Top Level Ontologies

• SUMO: Suggested Upper Merged Ontology

– Around 1,000 classes

– Strong formalization in KIF (Knowledge Interchange Format)

• Cyc: stems from EnCyClopedia

– Own language (CycL)

– Top Level and deep general ontology

– ~250,000 classes

– OpenCyc: free as OWL and LOD endpoint

• PROTO: PROTo ONtology

– General top level+ upper level, different domain extensions

– ~300 classes, ~100 relations

11/06/18 Heiko Paulheim 75

Comparison

• Size: CyC >> SUMO > PROTON > DOLCE

• Level of formalization: SUMO > DOLCE > CyC > PROTON

• Radically different definitions

• Example: time interval

– In DOLCE: a region (abstract)

– In SUMO: a quantity (abstract)

– In PROTON: a happening (~DOLCE:Perdurant)

– In CyC: e.g., a TemporalThing (~DOLCE:Perdurant)
and an IntangibleIndividual (~DOLCE:NonPhysicalEndurant)

• Different top level ontologies are, in general, incompatible!

11/06/18 Heiko Paulheim 76

Usage of DOLCE for DBpedia

• DBpedia classes and properties

– are defined as subclasses and -properties of DOLCE since 2014

– gain: more formal definitions (e.g., domains/ranges, disjointness, ...)

Tim Berners-Lee Royal Society

Award

award

 range

Description

subclass of

Social Agent
disjoint

with

DBpedia
ontology

DBpedia
instances

DOLCE
ontology

Organisation

is a

Social Person

equivalent class

subclass of

11/06/18 Heiko Paulheim 77

Usage of DOLCE for DBpedia

• 2015 study (Gangemi & Paulheim):

– 24.4% of all assertions in DBpedia violate DBpedia+DOLCE

– only 0.7% if only DBpedia is used

• Results

– identification of typical error clusters

– refactoring of DBpedia ontology

11/06/18 Heiko Paulheim 78

Wrap-Up

• Ontology Engineering: Developing good ontologies

– Given some utility, e.g., correctness of reasoning

• Methodologies, e.g., Methontology

• OntoClean

– Systematic debugging of ontologies

• Design Patterns & Anti Patterns

– Small reusable building blocks

– Common mistakes to avoid

• Top Level Ontologies

– Basic categories

– Help structuring ontologies

11/06/18 Heiko Paulheim 79

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Questions?

