Cross-lingual Product Matching using Transformers
− Prof. Dr. Christian Bizer
− Professor for Information Systems V
− Research Interests:
 • Web Data Integration
 • Data and Web Mining
 • Adoption of Data Web Technologies
 • Knowledge Base Construction
− Room: B6 - B1.15
− eMail: chris@informatik.uni-mannheim.de
− Consultation: Wednesday, 13:30-14:30
Hallo

- **Ralph Peeters**
- Graduate Research Associate
- Research Interests:
 - Product Data Integration
 - Entity Matching using Deep Learning
- Room: B6, 26, C 1.04
- eMail: ralph@informatik.uni-mannheim.de
Agenda of Today‘s Kickoff Meeting

1. You and Your Experience
2. Motivation and Project Goals
3. The WDC Product Corpus for Large-Scale Product Matching
4. Organization
5. Specific Subtasks
6. Schedule
7. Formal Requirements
You and Your Experience

− A Short Round of Introductions
 • What are you studying? Which semester?
 • Which DWS courses did you already attend?
 • What are your programming and data wrangling skills?
 • Did you already work on any data integration or cleansing projects?

− Participants
 1. Küpfer, Andreas
 2. Ebing, Benedikt
 3. Schweimer, Daniel
 4. Niesel, Fritz
 5. Gutmann, Jakob
Motivation of the Team Project

The Web is a rich source of product information

- same product is described by 100s of websites
 - merchants, producer, consumers
 - different websites describe different aspects of a product
 - technical spec vs consumer experience
- there are plenty of offers for a product online
 - we can collect information on global scale
 - many websites point us at similar products

Using information about products from the Web, we can

- build comprehensive product catalogues and search engines
- construct global price comparison engines
- understand consumer and market behavior
Product Matching: An essential problem to solve

Matching products across websites is hard

- structural heterogeneity (differences in schemata)
- semantic heterogeneity (differences in meaning)
 - synonyms, homonyms
 - conflicting data
 - also: different languages

Features that help us distinguish products

- identifiers (GTINs, MPNs, ISBNs, …)
- titles (product name plus selected features)
- descriptions (long free texts)
- specification tables and lists (detailed features as K/V pairs)
- pictures

Das Samsung Galaxy S4 ist der unterhaltsame und hilfreiche Begleiter für Ihr mobiles Leben. Es verbindet Sie mit Ihren Liebsten. Es lässt Sie gemeinsam unvergessliche Momente erleben und festhalten. Es vereinfacht Ihren Alltag.
Difficulty of the Task depends on the Product Category

- Books
 - wide adoption of identification schema (ISBNs)
 - Entity resolution problem mostly solved 😊
 - other features like title and author often only used for sanity checks

- Phones / Computers / Cameras
 - rather structured descriptions, often including tables / lists
 - different sites often describe same features
 - entity resolution methods for structured data can be applied

- Cloths / Bags / ….
 - rather unstructured descriptions, not too many tables / lists
 - only weak agreement of attributes
 - entity resolution / disambiguation methods for texts need to be applied
50 Years of Entity Linkage

Rule-based and stats-based
- Blocking: e.g., same name
- Matching: e.g., avg similarity of attribute values
- Clustering: e.g., transitive closure, etc.

Supervised learning
- Random forest for matching
 - F-mrr: >95% w. ~1M labels
- Active learning for blocking & matching
 - F-mrr: 80%-98% w. ~1000 labels

1969 (Pre-ML) ~2000 (Early ML) ~2015 (ML) 2018 (Deep ML)

Sup / Unsup learning
- Matching: Decision tree, SVM
 - F-mrr: 70%-90% w. 500 labels
- Clustering: Correlation clustering, Markov clustering

Deep learning
- Deep learning
- Entity embedding

Transformers in NLP

Transformer architectures like BERT have large impact on NLP

- stacked encoder layers with self-attention mechanism
- every token can attend to every other token in both directions
- contextual representations, i.e. embedding depends on context
- multiple attention heads allow learning of different concepts

Pre-training / Fine-tuning paradigm

- pre-training: self-supervised general (masked) language modeling
- fine-tuning: Further training on task-specific data

→ shown to work extremely well for a variety of problems
→ including product matching 😊
Pre-training / Fine-tuning paradigm example: BERT

- Pre-training: Masked language modeling (MLM) and next sentence prediction (NSP) objectives on large natural language corpus

- Fine-tuning: Adaptation of final layer(s) to task followed by continued training with task-specific data
Training of select Multi-lingual Transformers

- **Multilingual BERT** (https://github.com/google-research/bert/blob/master/multilingual.md)
 - Pre-trained on 100 languages with the largest Wikipedias
 - Varying sizes handled by smoothed weighting
 - under-/oversampling of high-resource/low-resource languages
 - Shared WordPiece vocabulary of 110K tokens

 - Pre-trained on 15 language Wikipedias (those contained in XNLI)
 - Various other *parallel* corpora (e.g. MultiUN, EUbookshop, ...)
 - used for additional TLM objective, similar to MLM but with parallel sentences
 - Shared BPE vocabulary of 95K tokens

 - Extension of XLM trained on parts of CommonCrawl for 100 languages
 - Vocabulary of 250K tokens
Project Goal

Can matching knowledge be transferred between languages?

- Can we augment performance on languages with small amounts of training data by adding data from more readily available languages (English)?
 - E.g. Fine-tune model for the task using english data
 - Further fine-tune using few examples of target language (few-shot learning)
- Can we achieve good performance without any data from the target language? (Zero-shot performance)
- If it works well, how can we explain it?
Project Goal

1. Collect product data from a large number of websites in different languages and build train / test sets for experimental evaluation

2. Match multi-lingual product data using multiple multi-lingual Transformer-based models

3. Compare performance of methods w.r.t.:
 • Product categories (structured vs. semi-structured input)
 • Simple Baselines (e.g. Random Forest / SVM)
 • Mono-lingual Transformers
 • Product popularity (amount of training data)

4. Explain why models perform better than others
 • Conduct an error analysis
 • Apply explainability methods
Learning Targets

Improve your technical skills
- Work as a **Data Scientist**: clean, profile, integrate, classify data
- Understand the nature of **Web Data**
- Improve your technical expertise / programming skills

Improve your soft skills
- Work as part of a bigger team on a more complex project
- Organize yourself and assign tasks based on your skills
- Communicate and coordinate your work
How to find many offers of the same product?

Not an easy task!

1. Which sources to consider?
2. Which data to extract?
3. How to recognize identical products?
4. How to categorize products?

OR...

Use the WDC Product Corpus for Large-Scale Product Matching
http://webdatacommons.org/largescaleproductcorpus/v2/
The WDC Product Corpus for Large-Scale Product Matching

1. Semantic Annotations in HTML Pages
2. Web Data Commons Project
3. Web Data Commons – Product Corpus for Large-Scale Product Matching
Semantic Annotation of HTML Pages: Schema.org

- ask site owners since 2011 to annotate data for enriching search results
- 675 Types: Event, Place, Local Business, Product, Review, Person
- Encoding: Microdata, RDFa, JSON-LD
Example: Microdata Annotations in HTML

```html
<div itemtype="http://schema.org/Product">
  <span itemprop="name">Sony GTK-XB5L Audiosystem</span>
  <span itemprop="gtin13">04048945021687</span>
  <span itemprop="description">high-power home audio system with Bluetooth technology</span>
</div>

<div itemprop="aggregateRating" itemscope itemtype="http://schema.org/AggregateRating">
  <span itemprop="ratingValue">4</span> stars-based on
  <span itemprop="reviewCount">250</span> reviews.
</div>
```
schema.org Annotations: Most Popular Classes

Development of Selected Classes by #PLDs

http://webdatacommons.org/structureddata/
Top 15 Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>PLDs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>schema:Product/name</td>
<td>535,625</td>
<td>92%</td>
</tr>
<tr>
<td>schema:Offer/price</td>
<td>462,444</td>
<td>80%</td>
</tr>
<tr>
<td>schema:Product/offers</td>
<td>462,233</td>
<td>79%</td>
</tr>
<tr>
<td>schema:Offer/priceCurrency</td>
<td>430,556</td>
<td>74%</td>
</tr>
<tr>
<td>schema:Product/image</td>
<td>419,391</td>
<td>72%</td>
</tr>
<tr>
<td>schema:Product/description</td>
<td>377,639</td>
<td>65%</td>
</tr>
<tr>
<td>schema:Offer/availability</td>
<td>337,876</td>
<td>58%</td>
</tr>
<tr>
<td>schema:Product/url</td>
<td>263,720</td>
<td>45%</td>
</tr>
<tr>
<td>schema:AggregateRating/ratingValue</td>
<td>184,004</td>
<td>32%</td>
</tr>
<tr>
<td>schema:Product/sku</td>
<td>126,696</td>
<td>22%</td>
</tr>
<tr>
<td>schema:AggregateRating/reviewCount</td>
<td>112,408</td>
<td>19%</td>
</tr>
<tr>
<td>schema:Product/aggregateRating</td>
<td>101,434</td>
<td>17%</td>
</tr>
<tr>
<td>schema:Product/brand</td>
<td>73,934</td>
<td>13%</td>
</tr>
<tr>
<td>schema:Product/productID</td>
<td>35,211</td>
<td>6%</td>
</tr>
<tr>
<td>schema:Product/manufacturer</td>
<td>21,967</td>
<td>4%</td>
</tr>
</tbody>
</table>

Samsung Galaxy S4 Verizon AT&T T-Mobile GSM Unlocked Smartphone SRF

Das Samsung Galaxy S4 ist der unterhaltsame und hilfreiche Begleiter für Ihr mobiles Leben. Es verbindet Sie mit Ihren Liebsten. Es lässt Sie gemeinsam unvergessliche Momente erleben und festhalten. Es vereinfacht Ihren Alltag.

UPC 610214632623

UPC 610214632623

The WDC Product Corpus for Large-Scale Product Matching

- Product corpus grouping schema.org product/offer annotations by identifier value.
 - all WDC 2017 product data is included that
 - provides some sort of product ID (gtin, mpn, sku, identifier)
- Initial cleaning steps are performed
- Clustering of product descriptions from different PLDs (web sites) that share identifier values.

Details and Download:
- http://webdatacommons.org/largescaleproductcorpus/v2/
Distribution of Offers per Category in the English Training Set

source: webdatacommons.org/categorization/index.html

Offer Entities
Distribution of Offers in WDC Product Corpus by TLD

Offer distribution over top 20 TLDs
Organization

Duration: 6 months (01.11.2020 – 30.04.2021)

Participants: 5 people

Type of work: Team and subgroup based

Milestones: 4 project phases

ECTS Points: 12

Evaluation

- Intermediate presentations
- Final report
- Individual contribution to the deliverables
Questions and Subtasks

1. Which (sub-)categories to consider? → Data Selection and Profiling I
2. (How to integrate the schemata of the different sources? → Data Selection and Profiling I)
3. Which products to select (enough train/test data available?) → Data Selection and Profiling II
4. How to split product offers for training and testing sets? → Data Selection and Profiling II
5. Which baseline methods to consider? → Experiments
6. Which Transformer-based models to try? → Experiments
7. How do the different methods compare? → Experiments
8. What can you learn from the results? → Explanation
9. How can you explain the results? → Explanation
Phase 1: Data Selection and Data Profiling I

Participants: all team members

Duration: 22.10. – 13.11.

Deliverables: 20 min. presentation, code & data

Input: WDC Large-scale Product Corpus (provided here)

Goal: Identify 3 languages in addition to English and collect enough product offers

Tasks:

1. Find product (sub-)categories for which:
 • matching cannot be solved without using non-english words (i.e. by using language-agnostic words)
 • enough (see slide 31) offers exist in English and 3 other languages
 • crawl for more offers in selected shops if necessary (use product identifiers from corpus)

2. Decide on 2 (sub-)categories, 1 more structured, 1 less structured

3. Profile the clusters/offers of these (sub-)categories (features/density/similarity)
Languages and how to detect them

- Apart from English, we want to collect offers in 3 additional languages
 - stay within Latin alphabet, no Chinese, Arabic, …, letters or signs
 - *recommended*: take those languages which appear in the corpus most frequently
 - *important*: For at least one of the 3 foreign languages, we want to have a sizeable amount of examples (see slide 34ff.), so we can also build a training set for that language

- How to detect languages?
 - Use 3-step approach:
 1. Use TLD for selection of relevant clusters (you can find the ID-URL mapping [here](#))
 2. Apply language detection algorithm of your choice to offers of that cluster
 3. For further offers (i.e. from .com domain) run algorithm from 2. over respective clusters
 - Example algorithms:
 - Dictionary-based approach (likely too simple)
 - Machine-learning approach like [fastText language detection](#)
Phase 1: How to get started?

- Get the offers of the english corpus
 http://webdatacommons.org/largescaleproductcorpus/v2/
 File: offers_corpus_english_v2_non_norm.json.gz

- Get the offers of the full corpus
 http://webdatacommons.org/largescaleproductcorpus/v2/
 File: offers_corpus_all_v2_non_norm.json.gz

- Get acquainted with data, attributes, etc.

- Start by looking at English/non-English offers from each available category and identify categories which depend on non-English words for correct classification

- Select one rather structured and one unstructured category

- Profile available clusters of these categories
Phase 1: Deliverables

- Statistics about the data you have selected:
 - Which languages did you choose and why?
 - Which (sub-)categories did you choose and why?
 - How many different clusters (products) did you find per category?
 - What is the distribution of cluster-sizes (overall and per language)
 - How many clusters contain offers in 2, 3, 4 languages? (cross-language clusters)
 - Example of 3 hard matches and 3 hard non-matches for each language per category
 - What additional shops did you crawl? Resulting amount of additional offers?

- Must haves:
 - Histogram showing the cluster-size distribution per category
 - Overall
 - Per language
Phase 2: Data Selection and Profiling II

Participants: two subgroups (one subgroup per selected category)

Duration: 14.11. – 11.12.

Deliverables: 30 min. presentation, code & data

Input: Selected product categories and relevant clusters

Tasks:
1. Select products (clusters) following the rules on next slide
2. Build training sets and testing sets for both categories
 - Framing the problem as multi-class classification (label = cluster_id or GTIN)
 - Framing the problem as a binary pair-wise matching problem (label = match/non-match)
3. Produce statistics for both types of sets
Phase 2: How to select suitable clusters?

- Try to find/crawl 150 clusters that fulfill the following criteria:
 - Contain (non-exact) offers for all languages (English + 3 selected languages)
 - Contain at least 15 (10 training / 5 testing) offers for English as well as at least 10 (5 training / 5 testing) for one selected language other than English
 - Contain at least 5 offers for the remaining 2 languages
 - Make sure that for every cluster you select, you also select at least 3 clusters containing very similar products (e.g. *iPhone 6* vs *iPhone 6s*)
 → Hard to distinguish *corner-cases*, otherwise the matching can be trivial

- Ways to find similar clusters:
 - Use keyword search, e.g. model name
 - Calculate similarity metric and order by similarity
Phase 2: How to build training and test sets (multi-class)?

- Select from each previously identified cluster:
 - At least 15 offers for training (10 for English / 5 for selected other language)
 - At least 20 offers for testing (5 for each of the 4 languages)

→ **important:** You have to manually check that the testing offers actually belong in this cluster, otherwise you will introduce noisy labels in your testing data!

Result: Training and Test sets for the multi-class case
Phase 2: How to assemble good training data (pair-wise)?

For English and one selected language:

- Build Training data which should:
 1. be balanced as random pairs would be highly skewed towards non-matches
 2. contain corner cases as they are most informative
 - especially “near-miss” negative examples are more informative for training than randomly selected pairs which tend to be “easy” non-matches.
 - iPhone 6 vs. iPhone 6s
 - rule of thumb: 50% corner cases
 - match offers using several simple matching techniques (e.g. Jaccard) and sort offer pairs according to their similarity

- You can use the weak supervision of the cluster_ids to automatically build training sets
- You do not need to manually check each pair
Phase 2: How to assemble good testing data (pair-wise)?

For each language:

- manually label a set of record pairs (e.g. 500 pairs) including corner cases

- Use the following rule of thumb:
 1. matching record pairs (25% of GS)
 2. non-matching record pairs (75% of GS)
 → 50% of each group corner-cases
 the other 50% random pairs

- You have to verify these pairs manually!

Result: Training and Test sets for the pairwise matching task
Phase 3: Experiments

Participants: two subgroups (one subgroup per selected category)

Duration: 12.12. – 22.01.

Deliverables: 30 min. presentation, code & data

Input: Train and test sets from phase 2

Tasks:

1. Design baseline methods (e.g. TFIDF-based features combined with Random Forest learner) including a mono-lingual Transformer Research and select suitable multi-lingual Transformer models

2. Come up with an experiment plan **and send it to us by 18.12**

3. Implement methods and start running experiments

 → More specifics on next slide
Phase 3: Experiments specifics

- Fine-tune Transformers and train baselines on
 - non-English product data (of one language)
 - non-English product data (of one language) + English product data

 → Tells us if and how much better we get on a language without readily available training data when we augment it with more easily available training data in English
 - just English product data

 → Tells us if only using English training data is enough for good performance on other languages (zero-shot performance)

- Evaluate models on
 - Test sets of single languages
Phase 4: Explanation

Participants: two subgroups (one subgroup per selected category)

Duration: 23.01 – 05.03

Deliverables: 30 min. presentation, code & data

Input: Results from Phase 3

Tasks:

1. Error analysis
 • Look at correctly/incorrectly classified examples for select models
 • Come up with error classes and sort examples into them
 • Calculate statistics for error classes

2. Explanation
 • Apply explainability algorithm to instances from 1 (e.g. LIME)
 • Aggregate single explanations to allow you to make general statements about each model
What an Explanation may look like

- Example of work-in-progress explanation from ongoing research at our chair
 - We use LIME to explain instances and then aggregate by wordclasses
 - Allows us to see what each model focuses on

![Graph showing correct classifications and instances.](image-url)
Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, 22.10.2020</td>
<td>Kickoff meeting (today)</td>
</tr>
<tr>
<td></td>
<td>Phase 1 (all members): Data Selection and Data Profiling I</td>
</tr>
<tr>
<td>Friday, 06.11.2020</td>
<td>Meet Ralph and report plan/current results</td>
</tr>
<tr>
<td>Friday, 13.11.2020</td>
<td>1<sup>st</sup> Deliverable: 20 minutes presentation, code & data - Subgroup formation</td>
</tr>
<tr>
<td></td>
<td>Phase 2 (in 2 subgroups): Data Selection and Data Profiling II</td>
</tr>
<tr>
<td>Friday, 27.11.2020</td>
<td>Meet Ralph and report plan/current results</td>
</tr>
<tr>
<td>Friday, 11.12.2020</td>
<td>2<sup>nd</sup> Deliverable: 30 minutes presentation, code & data</td>
</tr>
<tr>
<td></td>
<td>Phase 3 (in 2 subgroups): Experiments</td>
</tr>
<tr>
<td>Monday, 04.01.2021</td>
<td>Meet Ralph and report plan/current results</td>
</tr>
<tr>
<td>Friday, 22.01.2021</td>
<td>3<sup>rd</sup> Deliverable: 30 minutes presentation, code & data</td>
</tr>
<tr>
<td></td>
<td>Phase 4 (in 2 subgroups): Explanation</td>
</tr>
<tr>
<td>Friday, 12.02.2021</td>
<td>Meet Ralph and report plan/current results</td>
</tr>
<tr>
<td>Friday, 05.03.2021</td>
<td>4<sup>th</sup> Deliverable: 30 minutes presentation, code & data</td>
</tr>
<tr>
<td>Friday, 30.04.2021</td>
<td>Final Report Submission</td>
</tr>
</tbody>
</table>
Formal Requirements & Consultation

Deliverables

1. On the deliverable dates provide us via e-mail with:
 - Presentation slides
 - Task to member report: excel sheet stating which team member conducted which subtask
 - Code/Data: link or zipped folder with your code and data

2. Final Report
 - 15 pages including appendices, not including the bibliography
 - every additional page reduces your grade by 0.3
 - Created with Latex template of the Data and Web Science group (https://www.uni-mannheim.de/dws/teaching/thesis-guidelines/)

All deliverables should be sent to Chris & Ralph!
Formal Requirements & Consultation

Final grade
• 20% for every phase
• 20% for final report
• Late submission: -0.3 per day

Consultation
• Send one e-mail per team or subgroup stating your questions to Ralph
Useful Software

− Entity Resolution
 • HuggingFace Transformers: https://huggingface.co/transformers/
 • DeepMatcher: https://github.com/anhaidgroup/deepmatcher
 • Magellan: https://sites.google.com/site/anhaidgroup/projects/magellan

− Crawling
 • Scrapy: https://scrapy.org/

− Processing and GPUs
 • Google Colab: https://colab.research.google.com/

− Team Cooperation
 • GitHub/Lab
 • Video-Chat application of your choice
Related Work: (Multi-lingual) Transformers

- Ziqi Zhang, Christian Bizer, Ralph Peeters and Anna Primpeli, MWPD2020: Semantic Web Challenge on Mining the Web of HTML-embedded Product Data @ISWC2020, to be published
Related Work: (Multi-lingual) Transformers

Related Work: General (Deep) Data Matching (1/2)

Related Work: General (Deep) Data Matching (2/2)

Questions?