

Team Project FSS 2018

Mining Product Data from the Web Phase 2

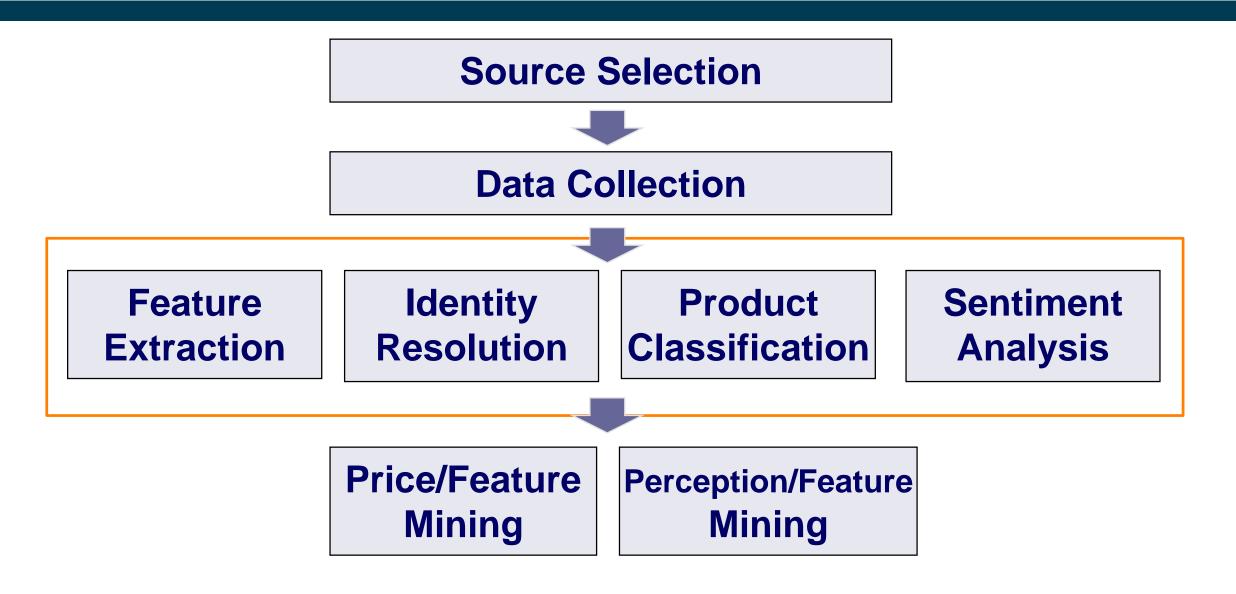
Universität Mannheim – Bizer/ Primpeli: Team Project – FSS2018 (Version: 13.04.2018) – Slide 1

✓ 1. Which e-shops to consider? \rightarrow Data Selection and Crawling

2. Which data to extract? \rightarrow Feature Extraction

3. How to recognize identical products? \rightarrow **Identity Resolution**

4. How to group similar products? \rightarrow Categorization / Cluster Analysis


5. How to understand user perception? \rightarrow Sentiment Analysis

6. How to combine extracted information? \rightarrow **Data Fusion**

7. What patterns can be found in the data? \rightarrow Data Mining

Phase 3 will be a refinement of phase 2

Main Steps of the Project

Date	Session
Friday, 13.04.2018, 9:15am	Introduction to Phase 2, subgroup formation
Friday, 20.04.2018, 8:30am	Meet Anna and discuss plans
Friday, 27.04.2018, 9:15am	Meet Chris and Anna, report profiling results and specific goals for phase 2
Friday, 18.05.2018, 9:15am	2 nd Deliverable: 10 minutes presentation from each subgroup, code & data

Results from Phase 1

What should you have from Phase 1?

- ✓ Crawled corpus of Bag and Camera products
 - Min. 20 e-shops located in 2 countries
 - Estimated high product overlap
 - Different subcategories
 - Pages rich in annotations and specification tables
 - Pages describing different products with similar attributes ex: Polaroid vs Polaroid Kit
- ✓ Basic Feature Extraction and Profiling
 - Identify and profile product specifications, prices, category information, product IDs, and reviews
- ✓ Product Catalogs
 - Min 50 bag products
 - Min 50 camera products

Goal: Extract clean feature - value pairs from the product pages and perform schema maching

How?

- 1. Identify where features are located: tables, lists, free text following certain patterns, schema.org annotations
- 2. Extract product features and map them to the catalog
 - Generic Approach: Consider table and list structure, schema.org annotations and DOM structure
 - 1. Create a gold standard for schema matching
 - 2. Perform schema matching
 - Label based
 - Instance based
 - Catalog-oriented Approach: Apply regex expressions exploiting the knowledge in the catalog
- 3. Compare the two approaches

Goal: Match entities between your product corpus and the product catalog How?

- 1. Create your gold standard
 - Annotate manually min. 100 product pairs (product page catalog entry)
 - Make sure you include good negative examples!
- 2. Consider Bag of Words models from different parts of the product page, e.g. Tables, annotations, free text
- 3. Preprocess the data
- 4. Apply basic IR techniques
- 5. Apply machine learning methods
 - Learn one model for all product pairs
 - Learn multiple models one for each product (you need a big gold standard)
 - Feature vectors: tokens (binary or tfidf weights), similarity scores computed with different measures
- 6. Evaluate and if necessary refine your gold standard

Goal: Learn a model to assign the correct category to every product

How?

- 1. Define an initial hierarchy of product categories
- 2. Select a hierarchical classification method [1]
- 3. Create a gold standard considering the requirements of your method
 - Min. 200 annotated products in the form of <product_a : action camera>
- 4. Use product features and apply hierarchical classification
 - Your features should be simply induced, e.g. Bag of Words model.
- 5. Evaluate and if necessary refine your gold standard

[1] Silla, Carlos N., and Alex A. Freitas. "A survey of hierarchical classification across different application domains." Data Mining and Knowledge Discovery 22.1-2 (2011): 31-72.

Phase 2 – Subgroup 4: Sentiment Analysis

Goal: Perform aspect based sentiment analysis on product reviews

How?

- 1. Profile the review information and if necessary crawl more reviews from the product pages
 - How many reviews?
 - Are there predefined aspects/ information about reviewers?
- 2. Identify reviewed features and subfeatures
 - e.g. "The *display* is of great quality" VS "Although the *display screen* is big, I am not satisfied with its *resolution*"
- 3. Extract the sentiment for each feature and overall for the product
 - Usage of linguistic patterns, e.g. Adjective + Noun : This bag is of great material
 - Consideration of negation and degree words
 - Usage of polarity dictionaries
- 4. Evaluate your scoring against the extracted score

Duration: 13.04.2018 – 15.05.2018

Deliverables:

1. A 10 min presentation from each subgroup

The presentation slides should be provided by the end of the meeting.

2. Data and Code

Add your data and code in a zipped folder and send (URL) via e-mail

3. Member to subtask report

Send one excel sheet per team explaining who did what together with the deliverables.

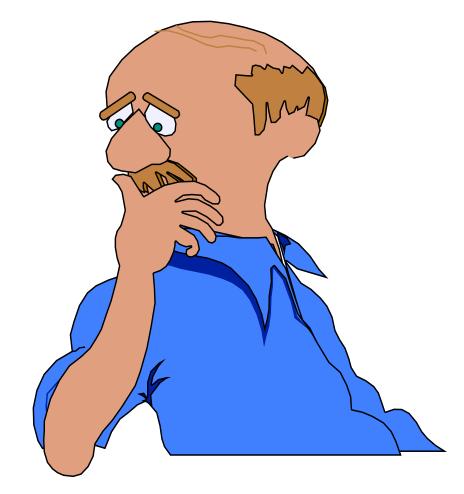
All deliverables should be sent to Chris & Anna!

Potentially Useful Software

- Crawling
 - Scrapy : <u>https://scrapy.org/</u>
 - Any23
- Data Integration
 - Winte.r Framework : <u>https://github.com/olehmberg/winter</u>
 - Silk Framework : <u>https://github.com/silk-framework/silk</u>
- Data Mining, Machine Learning
 - RapidMiner : <u>https://rapidminer.com/</u>
- Natural Language Processing
 - Stanford NLP: https://nlp.stanford.edu/software/
 - RiTa library: http://rednoise.org/rita/download.php

- Qiu, Disheng, et al. "Dexter: large-scale discovery and extraction of product specifications on the web." *Proceedings of the VLDB Endowment* 8.13 (2015): 2194-2205
- Petar Petrovski, Christian Bizer: Extracting Attribute-Value Pairs from Product Specifications on the Web. International Conference on Web Intelligence (WI2017), pp. 558-565, Leipzig, Germany, August 2017.
- Petrovski, Petar, Volha Bryl, and Christian Bizer. "Learning regular expressions for the extraction of product attributes from e-commerce microdata." Proceedings of the Second International Conference on Linked Data for Information Extraction-Volume 1267. CEUR-WS. org, 2014
- Dalvi, Nilesh, Ravi Kumar, and Mohamed Soliman. "Automatic wrappers for large scale web extraction." *Proceedings of the VLDB Endowment* 4.4 (2011): 219-230
- Probst, Katharina, et al. "Semi-Supervised Learning of Attribute-Value Pairs from Product Descriptions." *IJCAI*. Vol. 7. 2007
- Petar Petrovski, Anna Primpeli, Robert Meusel, Christian Bizer: The WDC Gold Standards for Product Feature Extraction and Product Matching. 17th International Conference on Electronic Commerce and Web Technologies (EC-Web 2016), Porto, Portugal, September, 2016.

Related Work for Identity Resolution


- Petrovski, Petar, Volha Bryl, and Christian Bizer. "Integrating product data from websites offering microdata markup." *Proceedings of the 23rd International Conference on World Wide Web*. ACM, 2014.
- Kannan, Anitha, et al. "Matching unstructured product offers to structured product specifications." Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011
- Köpcke, Hanna, Andreas Thor, and Erhard Rahm. "Evaluation of entity resolution approaches on realworld match problems." *Proceedings of the VLDB Endowment* 3.1-2 (2010): 484-493
- Christen, Peter. Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection. Springer Science & Business Media, 2012
- Isele, Robert, and Christian Bizer. "Learning linkage rules using genetic programming." Proceedings of the 6th International Conference on Ontology Matching-Volume 814. CEUR-WS. org, 2011
- Petar Petrovski, Anna Primpeli, Robert Meusel, Christian Bizer: The WDC Gold Standards for Product Feature Extraction and Product Matching. 17th International Conference on Electronic Commerce and Web Technologies (EC-Web 2016), Porto, Portugal, September, 2016.
- Petar Petrovski, Christian Bizer: Learning Expressive Linkage Rules from Sparse Data. Under review at the Semantic Web Journal, 2018.

Related Work for Categorization

- Meusel, Robert, et al. "Exploiting microdata annotations to consistently categorize product offers at web scale." *International Conference on Electronic Commerce and Web Technologies*. Springer International Publishing, 2015
- Navigli, Roberto, Paola Velardi, and Stefano Faralli. "A graph-based algorithm for inducing lexical taxonomies from scratch." IJCAI. Vol. 11. 2011.
- Ristoski, Petar, et al. "Large-scale taxonomy induction using entity and word embeddings." Proceedings of the International Conference on Web Intelligence. ACM, 2017.
- Silla, Carlos N., and Alex A. Freitas. "A survey of hierarchical classification across different application domains." Data Mining and Knowledge Discovery 22.1-2 (2011): 31-72.
- Melo, André, Heiko Paulheim, and Johanna Völker. "Type prediction in rdf knowledge bases using hierarchical multilabel classification." Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics. ACM, 2016.
- Poon, Hoifung, and Pedro Domingos. "Unsupervised ontology induction from text." Proceedings of the 48th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010.

- Liu, Bing. Web data mining: exploring hyperlinks, contents, and usage data. Springer Science & Business Media, 2007.
- Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004.
- Ana-Maria Popescu and Oren Etzioni. Extracting product features and opinions from reviews. In Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, 2005.
- Dave, Kushal, Steve Lawrence, and David M. Pennock. "Mining the peanut gallery: Opinion extraction and semantic classification of product reviews." *Proceedings of the 12th international conference on World Wide Web*. ACM, 2003.
- Hu, Minqing, and Bing Liu. "Mining opinion features in customer reviews." AAAI. Vol. 4. No. 4. 2004.
- Eirinaki, Magdalini, Shamita Pisal, and Japinder Singh. "Feature-based opinion mining and ranking." *Journal of Computer and System Sciences* 78.4 (2012): 1175-1184.

Questions?

Universität Mannheim – Bizer/ Primpeli: Team Project – FSS2018 (Version: 13.04.2018) – Slide 16

Subtask Assignment

- Subgroup 1: Feature Extraction
 - Members: Chung, Adela
 - Timeslot for 27.04: 9:15 9:35
- Subgroup 2: Identity Resolution
 - Members: Larissa, Ersejda
 - Timeslot for 27.04: 9:35 9:55
- Subgroup 3: Categorization
 - Members: Bengi, Anjeza
 - Timeslot for 27.04: 10:15 10:35
- Subgroup 4: Sentiment Analysis
 - Members: Matthias, Murad
 - Timeslot for 27.04: 10:35 10:55