
Solutions:

Exercise - Data Formats

Web Data Integration IE683
University of Mannheim, Germany

October 2020

In the following three exercise sections you will be asked to perform basic
parsing and extraction tasks with Java. Each subsection is dedicated to one of
the three formats: XML, JSON and RDF. The tasks are rather basic and the
goal is to refresh your knowledge in Java in general and in particular in parsing
those formats. Besides the solution and code given below the exercises you
can find the complete solution as class (per Exercise) in a Java project located
within ILIAS.

1 How to start with Java?

Download and unzip the DataParser project which can be found in ILIAS.
Import the project as a Maven project in Eclipse. Now inspect the structure
of the project. Inside the src.main.java folder, you can find three packages.
Each package is dedicated to one data format: JSON, RDF and XML. For each
format, we have prepared some Java classes which will help you solve the tasks
of this exercise.

2 XML

This subsection is dedicated to the XML format. In particular you are asked to
perform XPath queries on the Mondial dataset1. This dataset includes world
geographic information integrated from the CIA World Factbook, the Interna-
tional Atlas and the TERRA database, to name just the pre-dominant sources.
Please inspect the document manually (using a text editor) in order to explore
the structure. You can also have a look at the w3school XPath tutorial2 to solve
the following tasks.

1The file can be downloaded from ILIAS but is also available here: http://aiweb.cs.

washington.edu/research/projects/xmltk/xmldata/data/mondial/mondial-3.0.xml
2https://www.w3schools.com/xml/xpath_intro.asp

1

2.1 Starting point

Locate the XMLReader.java class in the package de.dwslab.lecture.wdi.xml.
This class contains a main method which parses the mondial-3.0.xml file us-
ing the JAXP library and selects its root node.

2.2 Mondial — Print XML node information

TASK 1: Extend the XMLReader class and print the root node of the XML
document.

SOLUTION: The following Java code reads the file and selects the node an
root level. Then prints the name of the node.

Listing 1: Java class to parse XML and print the name of the root node.

1 import java . i o . IOException ;
2
3 import javax . xml . p a r s e r s . DocumentBuilder ;
4 import javax . xml . p a r s e r s . DocumentBuilderFactory ;
5 import javax . xml . p a r s e r s . ParserConf igurat ionExcept ion ;
6 import javax . xml . xpath . XPath ;
7 import javax . xml . xpath . XPathConstants ;
8 import javax . xml . xpath . XPathExpression ;
9 import javax . xml . xpath . XPathExpressionException ;

10 import javax . xml . xpath . XPathFactory ;
11
12 import org . w3c . dom . Document ;
13 import org . w3c . dom . Node ;
14 import org . xml . sax . SAXException ;
15
16 pub l i c c l a s s 20200−RG2−So lut i on1 {
17
18 pub l i c s t a t i c void main (S t r ing [] a rgs) throws

ParserConf igurat ionExcept ion ,
19 SAXException , IOException ,

XPathExpressionException {
20 // c r e a t e the f a c t o r y
21 DocumentBuilderFactory f a c t o r y =

DocumentBuilderFactory . newInstance () ;
22 // c r e a t e a new document b u i l d e r
23 DocumentBuilder b u i l d e r = f a c t o r y .

newDocumentBuilder () ;
24 // parse a document − make sure the f i l e i s l o ca t ed

on root l e v e l
25 Document doc = b u i l d e r . parse (”mondial −3.0 . xml”) ;
26
27 // d e f i n e an xpath exp r e s s i on
28 XPathFactory xpathFactory = XPathFactory .

newInstance () ;
29 XPath xpath = xpathFactory . newXPath () ;
30 // s e l e c t the root nodes on root l e v e l
31 XPathExpression expr = xpath . compi le (”/∗”) ;
32 // parse the node
33 Node root = (Node) expr . eva luate (doc ,

XPathConstants .NODE) ;

2

34 // p r i n t the node name
35 System . out . p r i n t l n (root . getNodeName ()) ;
36 }
37 }

Line 21 to 25 are actually reading the XML document. The following lines
(28 to 31) build the XPath expression. As we want only the nodes on root
level (which should be only one) we use the simple XPath expression: /*

to select this particular node. Line 33 evaluates the expression against our
document. As the selected object is a Node, we need to set this explicitly in
XPathExpression.evaluate(Document, XPathContants).
Answer: mondial

2.3 Mondial — Schema Inspection

Now that we have written our parser and explored the root node we can start
digging deeper into the XML file.

TASK 2: Adapt the class from the previous task that a unique list of all
nodes below the root node is printed.

SOLUTION: From the solution of the former task we exchange the code start-
ing from line 30 with the following code.

Listing 2: Java snippet to select all nodes below the root and print them as a
unique list.

1 // s e l e c t the l e v e l below the root
2 XPathExpression expr = xpath . compi le (”/mondial /∗”) ;
3 NodeList l i s t = (NodeList) expr . eva luate (doc , XPathConstants .

NODESET) ;
4 // he lpe r to p r i n t unique node names
5 HashSet<Str ing> uniqueNodes = new HashSet<Str ing >() ;
6 f o r (i n t i = 0 ; i < l i s t . getLength () ; i++) {
7 // i f i t s not in the uniqueNodes s e t we did not p r i n t i t

yet
8 i f (! uniqueNodes . conta in s (l i s t . item (i) . getNodeName ())) {
9 uniqueNodes . add (l i s t . item (i) . getNodeName ()) ;

10 System . out . p r i n t l n (l i s t . item (i) . getNodeName ()) ;
11 }
12 }

In comparison, we now select all nodes below the root node /mondial and fur-
ther expect a NODESET. We need to iterate through this set (which is not really
a set, as it can include duplicates), and print only the names of a node, if the
name was not printed in a former iteration.
Answer: continent, country, organization, mountain, desert, island,
river, sea, lake

3

2.4 Mondial — Basic XPath

Now that we got an idea about the structure of the XML we are interested in
the content.

TASK 3: Adapt the solution of the previous task in the way that it prints
the names of all countries which belong to the continent with the name Europe.
(Hint: Have a look at the schema of the node country to see how it is linked
to the continent.)

SOLUTION: Based on the schema which is used within the XML the informa-
tion about the continent can be found in the attribute encompassed within the
country node. Here the continent is given with its identifier. (Europe has the
identifier f0 119). This means a possible solution for the XPath query would
be:
/mondial/country[encompassed/@continent=’f0 119’]/@name
In case we do not want to look the identifier up, we can also extend this predi-
cate to:
/mondial/country[encompassed/@continent=/mondial/continent
[@name=’Europe’]/@id]/@name
Update the code from the previous solution with the following code and enter
the XPath query.

Listing 3: Java snippet to select all countries in Europe.

1 // s e l e c t the count r i e s , who are encompassed in a cont inent which
has the name Europe

2 XPathExpression expr = xpath . compi le (”/mondial / country [encompassed/
@continent=/mondial / cont inent [@name=’Europe ’] / @id] /@name”) ;

3 NodeList l i s t = (NodeList) expr . eva luate (doc , XPathConstants .
NODESET) ;

4 f o r (i n t i = 0 ; i < l i s t . getLength () ; i++) {
5 System . out . p r i n t l n (l i s t . item (i) . getTextContent ()) ;
6 }

For each retrieved node, calling the getTextContent() function the name is
returned.
Answer: You should retrieve a list of 51 country names, starting with Albania

ending with Turkey.

2.5 Mondial — XPath Predicates I

With the solution of the previous task we are now able to get the countries for
a selected continent. In a next step we want to extend this query that we can
get countries which belong to two continents.

TASK 4: Extend the XPath for the former task in order to retrieve only
countries which are part of Europe and Asia.

4

SOLUTION: Extending the XPath and adding a second condition using and

where a node also needs to be encompassed in Asia leads to the following XPath:
/mondial/country[encompassed/@continent=/mondial/continent
[@name=’Europe’]/@id and encompassed/@continent=/mondial/continent

[@name=’Asia’]/@id]/@name
Answer: Russia and Turkey

2.6 Mondial — XPath Predicates II

In a final step we want to gather all attributes from a selection of nodes, without
explicitly knowing their names.

TASK 5: Extend the solution of the former task in order to navigate (using
XPath) to the country node and print all attribute names and values. (Hint:
You can use the getAttributes() method to detect all available attributes of
the current node).

SOLUTION: In contrast to the former XPath query, we are not interested in
the node itself, not the name attribute. This means we need to remove it from
the end of the query. The XPath expression now returns two nodes, the one rep-
resenting Russia and the one representing Turkey. Using the getAttributes()
method on each of those both nodes allows us to get a NamedNodeMap including
all attributes and values of this particular node. The following code prints out
all this key-value pairs.

Listing 4: Java snippet to print all attributes of countries which are in Europe
and Asia.

1 // s e l e c t the country nodes o f c o u n t r i e s which are in Europe and
Asia

2 XPathExpression expr = xpath . compi le (”/mondial / country [encompassed/
@continent=/mondial / cont inent [@name=’Europe ’] / @id and
encompassed/ @continent=/mondial / cont inent [@name=’Asia ’] / @id] ”) ;

3 NodeList l i s t = (NodeList) expr . eva luate (doc , XPathConstants .
NODESET) ;

4 // i t e r a t e over the country nodes
5 f o r (i n t i = 0 ; i < l i s t . getLength () ; i++) {
6 System . out . p r i n t l n (”New Country . . . ”) ;
7 // get the node
8 Node n = (Node) l i s t . item (i) ;
9 // get the a t t r i b u t e s o f the node

10 NamedNodeMap map = n . g e tAt t r i bu t e s () ;
11 // i t e r a t e over the a t t r i b u t e s
12 f o r (i n t j = 0 ; j < map . getLength () ; j++) {
13 // p r i n t them
14 System . out . p r i n t l n (map . item (j) . getNodeName () + ” : ”
15 + map . item (j) . getTextContent ()) ;
16 }
17 }

5

In this snippet the usage of the getAttributes() method is shown in line 10.
Answer: The output starts with the following lines:
New Country ...

capital:f0 1598

car code:R

datacode:RS

gdp agri:6

gdp ind:41

...

3 JSON

In the second part of this exercise we focus on the JSON format. As you already
have some experience with the Mondial dataset in a first step, you are asked
to transform parts of the XML into a JSON. In order to do so make use of the
Google Gson Java library3.

3.1 Mondial — XML to JSON

TASK 6: Create a JSON file (*.json) which contains all countries which are
located in Europe with the attributes of the country node from the original
mondial-*.xml. (Hint: Have a look at the last exercise of the former section.
Gson offers a method to simply translate a HashMap into a JSON string, which
than can be written to a file.)

SOLUTION: Starting from the code of Task 4, we first need to adapt the
XPath and remove the restriction, that the countries need to be in Europe and
Asia, as we want all countries in Europe. We further need to store all attribute-
name-value pairs in a Map which we can later transform into a JSON string using
the Gson object. The following code creates a *.json file including all countries
in Europe:

Listing 5: Java class to store countries from Europe from the Mondial XML file
into a JSON file.

1 // . . . not a l l import i s shown , due to space reasons
2
3 import com . goog l e . gson . Gson ;
4
5 pub l i c c l a s s WDI 20200 RG2 Solution6 {
6
7 pub l i c s t a t i c void main (S t r ing [] a rgs) throws

ParserConf igurat ionExcept ion , SAXException , IOException ,
XPathExpressionException {

8 // c r e a t e the f a c t o r y

3You can find the library at the google code page: https://sites.google.com/site/gson/.
A user guide can be found on this page: https://github.com/google/gson/blob/master/

UserGuide.md

6

9 DocumentBuilderFactory f a c t o r y =
DocumentBuilderFactory . newInstance () ;

10 // c r e a t e a new document b u i l d e r
11 DocumentBuilder b u i l d e r = f a c t o r y .

newDocumentBuilder () ;
12 // parse a document
13 Document doc = b u i l d e r . parse (”mondial −3.0 . xml”) ;
14 // d e f i n e an xpath exp r e s s i on
15 XPathFactory xpathFactory = XPathFactory .

newInstance () ;
16 XPath xpath = xpathFactory . newXPath () ;
17 // s e l e c t the c o u n t r i e s o f Europe and a l l t h e i r

a t t r i b u t e s
18 XPathExpression expr = xpath . compi le (”/mondial /

country [encompassed/ @continent=/mondial /
cont inent [@name=’Europe ’] / @id] ”) ;

19 NodeList l i s t = (NodeList) expr . eva luate (doc ,
XPathConstants .NODESET) ;

20 // c r e a t e a gson ob j e c t
21 Gson gson = new Gson () ;
22 // open a w r i t e r to wr i t e some output
23 Buf feredWriter bw = new Buf feredWriter (new

Fi l eWr i t e r (new F i l e (”mondial−3.0−europe−
c o u n t r i e s . j s on ”))) ;

24 // i t e r a t e over a l l country nodes
25 f o r (i n t i = 0 ; i < l i s t . getLength () ; i++) {
26 // get the node
27 Node n = (Node) l i s t . item (i) ;
28 // get the a t t r i b u t e s o f the node
29 NamedNodeMap map = n . g e tAt t r i bu t e s () ;
30 // c r e a t e an empty hashmap
31 Map<Str ing , Str ing> va lue s = new HashMap<

Str ing , Str ing >() ;
32 // i t e r a t e over the a t t r i b u t e s o f the node
33 f o r (i n t j = 0 ; j < map . getLength () ; j++) {
34 // add the a t t r i b u t e name and the

value to the map
35 va lue s . put (map . item (j) . getNodeName

() , map . item (j) . getTextContent
()) ;

36 }
37 // parse the hashmap to a j son s t r i n g
38 St r ing j s o n S t r i n g = gson . toJson (va lue s) ;
39 // wr i t e the s t r i n g to the f i l e
40 bw. wr i t e (j s o n S t r i n g + ”\n”) ;
41 // p r i n t the s t r i n g to the conso l e
42 System . out . p r i n t l n (gson . toJson (va lue s)) ;
43 }
44 // c l o s e the w r i t e r
45 bw. c l o s e () ;
46 }
47 }

The lines till 20 are similar to the exercises before. In line 21 the Gson object
is initialized. In line 31 we create an empty HashMap object for the attribute-
name-value pairs which we put into this map in line 35. This object is then
transformed into a JSON string in line 38. The string is written to a file using

7

a BufferedWriter (which was initialized in line 23) in line 40. One line in this
file look like:
{"id":f̈0 320","total area":"1.9","infant mortal...

3.2 Mondial — Reading JSON

In a second step we want to create Java objects from the JSON file we just
created, but we are not interested in all attributes.

TASK 7: Write a small program, which reads the JSON file (which was the
output of the former task) and transforms each line into a Java object (named
Country.java). The country should have four values: the id (String), the name
(String), the car code (String), and the population (Long). Do you have to
pay attention to type conversion? What is the total number of inhabitants of
those countries? (Hint: Have a look in the example code of the lecture.)

SOLUTION: First we need to generate a new Java class called Country with
the four named attributes:

Listing 6: Java object Country.

1 pub l i c c l a s s Country {
2 St r ing id ;
3 St r ing name ;
4 St r ing car code ;
5 Long populat ion ;
6 }

In order to read the file we can use a BufferedReader and process each JSON
object line by line (as we also stored it in that way). We then can parse the
JSON string using a Gson object into the Country.class object.

Listing 7: Java class to parse the country JSON file and calculate the total
population.

1 import java . i o . BufferedReader ;
2 import java . i o . F i l e ;
3 import java . i o . Fi leReader ;
4 import java . i o . IOException ;
5
6 import com . goog l e . gson . Gson ;
7
8 pub l i c c l a s s WDI 20200 RG2 Solution7 {
9

10 pub l i c s t a t i c void main (S t r ing [] a rgs) throws IOException {
11 // c r e a t gson ob j e c t
12 Gson gson = new Gson () ;
13 // c r e a t e a reader
14 BufferedReader br = new BufferedReader (new

Fi leReader (new F i l e (
15 ” s r c /main/ r e s o u r c e s /mondial−3.0−

europe−c i t i e s . j s on ”))) ;
16 // i n i t a l i z e t o t a l count o f populat ion

8

17 Long p o p u l a t i o n t o t a l = 0 l ;
18 // i t e r a t e through the f i l e − l i n e by l i n e
19 whi le (br . ready ()) {
20 // read the l i n e
21 St r ing j sonL ine = br . readLine () ;
22 // convert i t to a country ob j e c t
23 Country country = gson . fromJson (jsonLine ,

Country . c l a s s) ;
24 // sum the populat ion
25 p o p u l a t i o n t o t a l += country . populat ion ;
26 }
27 // c l o s e the reader
28 br . c l o s e () ;
29 // p r i n t r e s u l t
30 System . out . p r i n t l n (” Total populat ion i s : ” +

p o p u l a t i o n t o t a l) ;
31 }
32 }

As you can see, also within the JSON file itself the population is stored as
string value, the Gson parser automatically tries to convert it to a Long value.
To calculate the total population, for each line the population is selected from
the Country object and added to the total population value (see line 25).
Answer: The total population of those countries is: 792 002 189

4 RDF

In the last part of this exercise session we will focus on RDF and SPARQL. In
ILIAS you can find the European countries with their name, population and the
spoken languages stored as RDF file. The file was generated from the original
mondial XML file.4 In the following you will be asked to formulate SPARQL
queries to answer questions about the dataset using the Jena Java Framework5.
In addition to the lecture the W3 site of SPARQL Query Language can help
you to answer the questions.6

4.1 Mondial — Query with SPARQL I

TASK 8: Write a small program, which reads the RDF file (from ILIAS) and
formulate a SPARQL query which returns the name and id of all countries
within the dataset ordered by the name. What is the last country in this list.
In order to explore the property names and namespaces have a look at the RDF
file or at the code which was used to generate the file. (Hint: Have a look at
the example code of the lecture.)

4The code which was used to generate the file can also be found in the Java project of this
(see de.dwslab.lecture.wdi.rdf.Converter.java).

5The documentation of the framework can be found at their website: https://jena.

apache.org/
6https://www.w3.org/TR/rdf-sparql-query/

9

SOLUTION: Following the example in the lecture slides we generate the model
and read the input data before constructing the query and parsing the results.

Listing 8: Java class to read the country RDF and list all countries with their
id.

1 import com . hp . hpl . j ena . query . Query ;
2 import com . hp . hpl . j ena . query . QueryExecution ;
3 import com . hp . hpl . j ena . query . QueryExecutionFactory ;
4 import com . hp . hpl . j ena . query . QueryFactory ;
5 import com . hp . hpl . j ena . query . QuerySolut ion ;
6 import com . hp . hpl . j ena . query . Resu l tSet ;
7 import com . hp . hpl . j ena . rd f . model . Model ;
8 import com . hp . hpl . j ena . rd f . model . ModelFactory ;
9 import com . hp . hpl . j ena . vocabulary .RDFS;

10
11 pub l i c c l a s s WDI 20200 RG2 Solution8 {
12
13 pub l i c s t a t i c void main (S t r ing [] a rgs) {
14 // c r e a t e RDF model
15 Model model = ModelFactory . createDefau l tMode l () ;
16 // f i l l the model with the data from the f i l e
17 model . read (”mondial−3.0−europe−c o u n t r i e s . rd f ”) ;
18 // the spa rq l query to s e l e c t the names and i d s o f

a l l c o u n t r i e s
19 // d i f f e r e n t i a t e between the country and the

language e n t i t i e s by keeping the e n t i t i e s that
have a populat ion property

20 St r ing queryStr ing = ”SELECT ? country ? l a b e l WHERE
{? country <”

21 + RDFS. l a b e l + ”> ? l a b e l . ? country
<http ://www. geonames . org /

onto logy#populat ion> ?pop }
ORDER BY ? l a b e l ” ;

22 // c r e a t e the query
23 Query query = QueryFactory . c r e a t e (queryStr ing) ;
24 QueryExecution qe = QueryExecutionFactory . c r e a t e (

query , model) ;
25 // execute the query
26 Resu l tSet r e s u l t s = qe . e x e c S e l e c t () ;
27 // parse the r e s u l t s
28 whi le (r e s u l t s . hasNext ()) {
29 QuerySolut ion s o l = r e s u l t s . next () ;
30 System . out . p r i n t l n (s o l . get (” l a b e l ”) .

t oS t r i ng () + ”\ t ” + s o l . get (” country ”) .
t oS t r i ng ()) ;

31 }
32 }
33 }

In our query (line 20) we make use of the predefined property RDFS.label which
is included in the Jena library to formulate our query. We could also simply
use the property itself: http://www.w3.org/2000/01/rdf-schema\#label. In
order to differentiate between the language and the country entities we select
those that have a population property. Between line 26 and 29 the code iter-
ates over the set of results and collects from each result (QuerySolution) the

10

attributes (label and country) as we have defined them in the query.
Answer: The last country in the list is United Kingdom (http://dwslab.de/wdi/country#f0 418).

4.2 Mondial — Query with SPARQL II

As we now have setup the code to query against our dataset, we are interested
in the largest countries. But as we already know that Russia and Germany are
pretty large, we want to generate a list of the second top 5 largest countries by
population.

TASK 9: What is the SPARQL query which returns the second five (6th to
10th) most populated countries in Europe? And which countries are these?

SOLUTION: Based on the SPARQL query of the former exercise we need
to adopt the code starting from line 20 and change it to the following:

Listing 9: Java class to read the country RDF and list the second 5 most
populated countries.

1 // the spa rq l query to s e l e c t the second f i v e most populated
c o u n t r i e s

2 St r ing queryStr ing = ”SELECT ? country ? l a b e l ? populat ion WHERE {?
country <” + RDFS. l a b e l + ”> ? l a b e l . ? country <http ://www.
geonames . org / onto logy#populat ion> ? populat ion .} ORDER BY DESC
(? populat ion) OFFSET 5 LIMIT 5” ;

3 // c r e a t e the query
4 Query query = QueryFactory . c r e a t e (queryStr ing) ;
5 QueryExecution qe = QueryExecutionFactory . c r e a t e (query , model) ;
6 // execute the query
7 Resu l tSet r e s u l t s = qe . e x e c S e l e c t () ;
8 // parse the r e s u l t s
9 whi le (r e s u l t s . hasNext ()) {

10 QuerySolut ion s o l = r e s u l t s . next () ;
11 System . out . p r i n t l n (s o l . get (” l a b e l ”) . t oS t r i ng () + ”\ t ” + s o l

. get (” country ”) . t oS t r i ng () + ”\ t ” + s o l . get (” populat ion
”) . a s L i t e r a l () . getLong ()) ;

12 }

Within the SPARQL query we make use of OFFSET and LIMIT to skip the
first five entries and limit the list to five entries. Beforehand we order the list
descending. To print the population (which is marked as Long datatype within
the data, we make use of the getLong() function of the Literal.
Answer: The code would create the following output:

Italy http://dwslab.de/wdi/country#f0 268 57460272
Ukraine http://dwslab.de/wdi/country#f0 411 50864008
Spain http://dwslab.de/wdi/country#f0 385 39181112
Poland http://dwslab.de/wdi/country#f0 337 38642564
Romania http://dwslab.de/wdi/country#f0 351 21657162

11

4.3 Mondial — Query with SPARQL III

In a last exercise you are asked to write a SPARQL query which selects all
countries whose inhabitants speak a defined language.

TASK 10: How does the SPARQL query look like, which returns a list of
all German-speaking countries with their name and id?

SOLUTION: To answer the question, we need to extend the SPARQL us-
ing a FILTER which limits the returned solutions to those where we know they
speak German:

Listing 10: Java class to read the country RDF and list the second 5 most
populated countries.

1 St r ing queryStr ing = ”SELECT ? country ? l a b e l WHERE {? country <” +
RDFS. l a b e l + ”> ? l a b e l . ? country <” + DCTerms . language + ”> ?
language . ? language <” + RDFS. l a b e l + ”> ? languageName .
FILTER(? languageName=\”German\”) }” ;

Answer: The code would create the following output:

Austria http://dwslab.de/wdi/country#f0 149

Switzerland http://dwslab.de/wdi/country#f0 404

Belgium http://dwslab.de/wdi/country#f0 162

Germany http://dwslab.de/wdi/country#f0 220

12

