Web Data Integration

Introduction and Course Organization
Hallo

- **Prof. Dr. Christian Bizer**
- Professor for Information Systems V
- Research Interests:
 - Web-based Systems
 - Large-Scale Data Integration
 - Data and Web Mining
- Room: B6, 26 - B1.15
- Consultation: Wednesday 13:30-14:30
- eMail: chris@informatik.uni-mannheim.de

- Will teach the lecture (IE670)
Hallo

- **M. Sc. Wi-Inf. Alexander Brinkmann**
- Graduate Research Associate
- Research Interests:
 - Data Search using Deep Learning
 - Product Data Categorization
- Room: B6, 26, C 1.03
- eMail: alex.brinkmann@uni-mannheim.de
- Will teach the exercises and will supervise student projects (IE683)
Hallo

- M. Sc. Wi-Inf. Keti Korini
- Graduate Research Associate
- Research Interests:
 - Schema Mapping
 - Table Annotation using Deep Learning
- Room: B6, 26, C 1.03
- eMail: kkorini@uni-mannheim.de

- Will teach the exercises and will supervise student projects (IE683).
Hallo

- **M. Sc. Wi-Inf. Ralph Peeters**
- Graduate Research Associate
- Research Interests:
 - Entity Matching using Deep Learning
 - Product Data Integration
- Room: B6, 26, C 1.04
- eMail: ralph@informatik.uni-mannheim.de

- Will teach the exercises and will supervise student projects (IE683).
Outline

1. Course Organization
2. What is Data Integration?
3. Application Areas
4. Types of Heterogeneity
5. The Data Integration Process
6. Data Integration Architectures
7. The Data Integration Software Market
1. Course Organization
The Lecture (IE670)

- introduces the principal methods of data integration
- discusses how to evaluate data integration results
- presents practical examples of how the methods are applied
- Topics
 1. Introduction to Data Integration
 2. Structured Data on the Web
 3. Data Exchange Formats
 4. Schema Mapping and Data Translation
 5. Identity Resolution
 6. Data Quality and Data Fusion
- no restriction on the number of participants, registration via Portal2
- 3 ECTS, (offline exam: 60 minutes)
The Student Projects (IE683)

- teams of **five students** realize a data integration project including
 1. data gathering
 2. schema mapping and data translation
 3. identity resolution
 4. data quality assessment and data fusion
- teams write a 12-page report about their project, present project results
- you may choose their own application domain and data sets
 - minimum 3 data sets with a good degree of overlap in attributes and instances
- in addition, we will propose some suitable data sets from the domains of
 - films and actors, products, restaurants, companies, geographic information
- 3 ECTS (70 % written project report, 30 % presentation of project results)
The Exercise

In the exercise sessions, Ralph, Keti and Alex give you an introduction to tools that you can use for your projects. You experiment with the tools along the use case of integrating data about films.

1. Data Translation
 - Altova MapForce
 - graphical mapping and data translation tool

2. Identity Resolution
 - Winte.r Data Integration Framework
 - provides matching methods

3. Data Fusion
 - Winte.r Data Integration Framework
 - provides conflict resolution methods
<table>
<thead>
<tr>
<th>Week</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.9.2022</td>
<td>Lecture: Introduction to Web Data Integration</td>
<td>Lecture: Structured Data on the Web</td>
</tr>
<tr>
<td>14.9.2022</td>
<td>Lecture: Data Exchange Formats</td>
<td>Lecture: Data Exchange Formats</td>
</tr>
<tr>
<td>05.10.2022</td>
<td>Project: Feedback about Project Outlines</td>
<td>Coaching: Schema Mapping</td>
</tr>
<tr>
<td>19.10.2022</td>
<td>Lecture: Identity Resolution</td>
<td>Exercise: Identity Resolution</td>
</tr>
<tr>
<td>02.11.2022</td>
<td>Project: Work Identity Resolution</td>
<td>Coaching: Identity Resolution</td>
</tr>
<tr>
<td>09.11.2022</td>
<td>Lecture: Data Quality and Data Fusion</td>
<td>Lecture: Data Quality and Data Fusion</td>
</tr>
<tr>
<td>16.11.2022</td>
<td>Exercise: Data Quality and Data Fusion</td>
<td>Project Work: Data Quality and Data Fusion</td>
</tr>
<tr>
<td>23.11.2022</td>
<td>Project Work: Data Quality and Fusion</td>
<td>Coaching: Data Quality and Fusion</td>
</tr>
<tr>
<td>30.11.2022</td>
<td>Project Work: Data Quality and Fusion</td>
<td>Coaching: Data Quality and Fusion</td>
</tr>
<tr>
<td>07.12.2022</td>
<td>Presentation of Project Results (IE683)</td>
<td>Presentation of Project Results (IE683)</td>
</tr>
<tr>
<td>15.12.2022</td>
<td>Final Exam (IE670)</td>
<td></td>
</tr>
</tbody>
</table>
Course Organization

- **Course Webpage**
 - The lecture slides are published on this webpage.
 - Exercise materials will be provided on this webpage.
 - Solutions to the exercises will be provided via ILIAS

- **Time and Location**
 - Wednesday, 15:30 to 17:00. A5 C015
 - Thursday, 10:15 to 11:45. B6 A101
 - Start: 7.9.2022
Literature and Credits

1. AnHai Doan, Alon Halevy, Zachary Ives: **Principles of Data Integration**. Morgan Kaufmann, 2012. (online access via the library)

2. Xin Luna Dong, Divesh Srivastava: **Big Data Integration**, Morgan & Claypool, 2015 (online access via the library)

Credits

The slide set of this lecture builds on slides from:

- Felix Naumann, Ulf Leser
- AnHai Doan, Alon Halevy, Zachary Ives

Lots of thanks to all of you!
Questions about the Course Organization?
Databases and data mining frameworks are great: They let us manage and analyze huge amounts of data

1. assuming you’ve put it all into a single schema
2. assuming the database doesn’t contain duplicate records
3. assuming that data is current and contains no data conflicts

In reality, applications often need to work with data from multiple independently created data sources

1. different sources use different data models
2. different sources use different schemata
3. different sources describe the same real-world entity
4. different sources provide conflicting data about a single entity
5. different sources provide different limited query interfaces to their data
Definition of Data Integration

Data integration is the process of consolidating data from a set of heterogeneous data sources into a single uniform data set (materialized integration) or view on the data (virtual integration).

- The integrated data should:
 1. correctly and completely represent the content of all data sources
 2. use a single data model and a single schema
 3. only contain a single representation of each real-world entity
 4. not contain any conflicting data about single entities

- To achieve this, data integration needs to resolve various types of heterogeneity that exist between data sources.
Overview: Data Integration

Application

Integrated Data

Oracle, DB2...
CSV File
Web Service
App.
Web pages
Integrated Data

Materialized or Virtual Integration
Big Data Integration: Making Sense of the Data Lake

- **Data lakes**
 - are repositories of raw data in different formats
 - collect or generate metadata about datasets
 - provide a common access interface
- different, not yet known use cases
- are used in a schema-on-read fashion: **Pay-as-you-go integration**
- target users: data scientists
3. Application Areas of Data Integration

1. Business
2. Science
3. Government
4. Data Journalism
5. The Web
6. pretty much every application area
Application Area: Business

Enterprise Databases

Legacy Databases

Services and Applications

- CRM
- SCM
- Company Mergers
- ...

Oracle estimate: 50% of all IT $$\$\$\$ are spent here!
Application Area: Science

Hundreds of biomedical data sources available; growing rapidly!
Law enforcement agencies mine unknown amounts of data from various sources in order to identify or rate individuals.

- Cell phone calls
- Location data
- Online profiles (Facebook)
- Web browsing behavior
- Credit card transactions
- Intelligence from other agencies
- …
Application Area: Data Journalism

- Government data is increasingly published under open licenses on the Web.
- Journalists discover stories by combining data from different sources.

EU subsidies
- received for renovating a ship
- received for scraping the same ship

Members of parliament
- donations / membership in company boards
- voting behavior

Panama Papers
- ownership information about company networks
- discussable financial transactions
Application Area: The Web

for instance online shopping
Comparison Shopping

The Unofficial Harry Potter Cookbook: From Cauldron Cakes to Knickerbocker Glory—More Than 150 Magical Recipes for Muggles and Wizards [Book]

$3 online

Bangers and mash with Harry, Ron, and Hermione in the Hogwarts dining hall A proper cuppa tea and rock cakes in Hagrid’s hut Cauldron cakes and pumpkin juice on the Hogwarts Express With this cookbook dining a la Hogwarts is as easy as Baeofii Poi With more than 150 easy-to-make ... more »

Online stores

Online stores set your location

Free shipping Refurbished / used

Sellers

<table>
<thead>
<tr>
<th>Seller</th>
<th>Rating</th>
<th>Details</th>
<th>Base Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MovieMars.com</td>
<td>4.2</td>
<td>Free shipping</td>
<td>$20.92</td>
<td></td>
</tr>
<tr>
<td>ValoreBooks.com</td>
<td>No rating</td>
<td>No tax</td>
<td>$3.24</td>
<td>$7.19</td>
</tr>
<tr>
<td>Overstock.com</td>
<td>4.8</td>
<td></td>
<td>$12.93</td>
<td></td>
</tr>
</tbody>
</table>
More and more Websites
- semantically markup the content of their HTML pages
- publish structured data in addition to HTML pages
4. Types of Heterogeneity

We distinguish five types of heterogeneity:

1. Technical Heterogeneity
2. Syntactical Heterogeneity
3. Data Model Heterogeneity
4. Structural Heterogeneity
5. Semantic Heterogeneity

The goal of data integration is to bridge all these types of heterogeneity.

Data source autonomy is the reason for heterogeneity:

- Data sources independently decide how to store things and how to provide access
- Agreeing on standards partly reduces heterogeneity
Technical heterogeneity comprises all differences in the means to access data, not the data itself.

<table>
<thead>
<tr>
<th>Level</th>
<th>Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Protocol</td>
<td>HTTP, ODBC/JDBC, SOAP</td>
</tr>
<tr>
<td>Data Exchange Format</td>
<td>XML, JSON, CSV, RDF, HTML, binary data</td>
</tr>
<tr>
<td>Query Language</td>
<td>Full query language: SQL, XPath XQuery, SPARQL</td>
</tr>
<tr>
<td></td>
<td>Canned queries: Web APIs, Web Forms</td>
</tr>
<tr>
<td></td>
<td>Download of complete data set dumps</td>
</tr>
<tr>
<td>Additional Restrictions</td>
<td>Number of queries</td>
</tr>
<tr>
<td></td>
<td>Cost per query / data set</td>
</tr>
<tr>
<td></td>
<td>Access rights</td>
</tr>
</tbody>
</table>
Syntactical Heterogeneity

Syntactical heterogeneity comprises all differences in the encoding of values.

<table>
<thead>
<tr>
<th>Level</th>
<th>Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character format</td>
<td>ASCII versus Unicode</td>
</tr>
<tr>
<td>Number format</td>
<td>Little endian versus big endian</td>
</tr>
<tr>
<td>Delimiter format</td>
<td>Tab-delimited versus Comma-separated values</td>
</tr>
</tbody>
</table>

Syntactical heterogeneity does not comprise

- Synonymous values
 - 1GB versus 1000MB ➔ Semantic heterogeneity
- Structural differences
 - First name: Chris, last name: Bizer versus name: Chris Bizer ➔ Structural heterogeneity
Data model heterogeneity comprises differences in the **data model** that is used to represent data.

Data Models:
1. Relational data model
2. XML data model
3. Graph data models (property graphs, RDF)
4. Object-oriented data model
Structural Heterogeneity

Structural heterogeneity comprises differences in the way different schemata represent the same part of reality.

1. Normalized versus Denormalized
2. Nested versus Foreign Key Relationship
3. Alternative Modeling
 - Attribut vs. Value
 - Relation vs. Attribute
 - Relation vs. Value
 - Example: See next slide …
Example: Alternative Modelling

Relation vs. Value

Person(Id, Firstname, Surname)
Man(Id, Firstname, Surname)
Woman(Id, Firstname, Surname)

Relation vs. Attribute

Person(Id, Firstname, Surname, Male, Female)

Attribute vs. Value
Semantic Heterogeneity

Semantic heterogeneity comprises differences concerning the meaning of data and schema elements.

1. Naming Conflicts
 - Synonyms, homonyms, slightly deviating concepts

2. Object Identity / Duplicates
 - Multiple data sources as well as multiple records within one data source may describe the same real-world entity
 - Which “Marie Müller” does a record describe?

3. Data Conflicts
 - Conflicting data about the same real-world entity in different data sources as well as within different records in the same data source

Main focus of this course!
Naming Conflicts: Synonyms

1. Synonymous schema element names:

 DB1:
 \[\text{Employee(Id, FirstName, Name, Male, Female)} \]

 DB2:
 \[\text{Person(Id, FirstName, Surname, Sex)} \]

2. Synonymous attribute values:
 - Different value coding schemas: Manager vs. 2
 - Different spellings / abbreviations: Kantstr. vs. Kantstraße vs. Kantstrasse
 - Different units of measurement: 1 GB vs. 1000 MB
Naming Conflicts: Homonyms

- **Reason**: Different people (in different situations) associate different meanings with the same word.

- **Examples**:

 - **DB1**:
    ```
    Employee( Id, Name, Salary, m, f, Title)
    ```

 - **DB2**:
    ```
    Person( Id, Name, Salary, Sex, Titel)
    ```

Same words having different meanings.

- USD
- Euro
- Secretary, Engineer, Manager, etc.
- Mr., Mrs., Dr., Prof. Dr., ...
Object Identity / Duplicates

Problem: The same real-world entity is often represented
- within multiple data sources.
- by multiple records within the same data base.

- Relevant for: Product data, customer contact data, scientific data, ...
- Business question: How much hardware did we sell to the University of Mannheim?
- Problem: CRM database likely contains multiple records referring to the university itself as well as the different faculties/chairs.
- Reasons for duplicates in the same data base:
 - different people enter data without identity checks
 - same entity observed several times
 - no consistent global IDs in input data (ISBN, GTIN, EAN, DUNS, ...)

Data Conflicts

Problem: Two duplicate records contain different values for the same attribute.

<table>
<thead>
<tr>
<th>ID</th>
<th>Author</th>
<th>Title</th>
<th>Price</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000766607194</td>
<td>H. Melville</td>
<td>Moby Dick</td>
<td>$43.98</td>
<td>442</td>
</tr>
<tr>
<td>766607194</td>
<td>Herman Melville</td>
<td></td>
<td>$35.99</td>
<td>44</td>
</tr>
</tbody>
</table>

Reasons for data conflicts

1. Errors: Typos and other errors when data is entered
2. Outdated data: One source/record is older than the other one
3. Disagreement: Different sources actually disagree on the correct value / the truth
5. The Data Integration Process

- Data Collection / Extraction
- Schema Mapping
 - Data Translation
- Identity Resolution
- Data Quality Assessment
 - Data Fusion
5.1 Data Collection

Goal: Resolve technical and data model heterogeneity so that data from all sources can be accessed / gathered and is represented in the same data model.

- Using middleware libraries that provide
 - different communication protocols (HTTP, ODBC, …)
 - readers for different data exchange formats (CSV, JSON, XML, …)
 - for querying remote data sources using different query languages (SQL, SPARQL, …)
 - for crawling remote data sources (HTML pages, Web APIs, Linked Data)
 - for translating data between different data models (XML-2-Relational, …)
Information Extraction

Goal: Automatic extraction of structured information from unstructured or semi-structured content.

- Example of below 1NF data:

 - The difficulty of the extraction depends on the structuredness

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Type</th>
<th>Memory</th>
<th>Screen</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Samsung</td>
<td>Galaxy S4 GT-19505</td>
<td>16GB</td>
<td>5.0 inches</td>
<td>Android Smart Phone with 2-Year Sprint Contract - White Frost</td>
<td></td>
</tr>
</tbody>
</table>

- Structuredness vs. Difficulty of information extraction:
 - Web APIs
 - HTML-embedded Data
 - HTML Tables
 - DOM Trees
 - Free text
5.2 Schema Mapping and Data Translation

Goal: Resolve structural and schema-related semantic heterogeneity by
1. finding correspondences between elements within different schemata.
2. translate data to a single target schema based on these correspondences.
Example: Defining Correspondences
5.3 Identity Resolution

Goal: Identifying all records in all data sources that describe the same real-world entity.

- Other names for the task:
 - Entity Matching, Data Matching, Duplicate Detection, Record Linkage

- Basic Approach:
 1. Compare records using a combination of different similarity metrics
 2. If records are similar enough → Consider records to describe the same real-world entity

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DB1</td>
<td>CID1243</td>
<td>Chris Miller</td>
<td>12/20/1982</td>
<td>Bardon Street, Melville</td>
</tr>
<tr>
<td>DB2</td>
<td>34</td>
<td>Christian Miller</td>
<td>2/20/1982</td>
<td>7 Bardon St., Melville</td>
</tr>
<tr>
<td>DB3</td>
<td>427859</td>
<td>Chris Miller</td>
<td>12/14/1973</td>
<td>7 Bardon St., Madison</td>
</tr>
</tbody>
</table>
Example: Combining different Similarity Metrics
5.4 Data Fusion

Goal: Resolve data conflicts by combining attribute values from duplicate records into a single consolidated description of an entity.

Basic Approach:

1. **Assess the quality of data sources / records / values**
 - Quality dimensions: timeliness, reputation of source, ...

2. **Apply a conflict resolution function** to choose most promising values or to correct values
 - Example functions: highest estimated quality, voting, average, ...

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DB1</td>
<td>EAN1243</td>
<td>Chris Miller</td>
<td>12/20/1982</td>
</tr>
<tr>
<td>DB2</td>
<td>34</td>
<td>Christian Miller</td>
<td>2/20/1982</td>
</tr>
<tr>
<td>Fused Data</td>
<td>EAN1243</td>
<td>Christian Miller</td>
<td>12/20/1982</td>
</tr>
</tbody>
</table>
6. Data Integration Architectures

1. **Materialized Integration**
 - Integrate sources by bringing the data into a single physical database (data warehouse).

2. **Virtual Integration**
 - Leave the data at the sources and access it at query time via wrappers (integrated view).

3. **Numerous intermediate architectures**

![Diagram showing materialized and virtual integration architectures]
Materialized versus Virtual Integration

<table>
<thead>
<tr>
<th></th>
<th>Materialized Integration</th>
<th>Virtual Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data currency</td>
<td>Low (regular updates)</td>
<td>High (always current)</td>
</tr>
<tr>
<td>Storage requirements</td>
<td>High (copy all data locally)</td>
<td>Low (data remains in sources)</td>
</tr>
<tr>
<td>Query processing time</td>
<td>Low (local query processing)</td>
<td>High (slow network traffic)</td>
</tr>
<tr>
<td>System Complexity</td>
<td>Low (like normal DB)</td>
<td>High (planning of distributed queries)</td>
</tr>
<tr>
<td>Query Expressiveness</td>
<td>High (like normal DB)</td>
<td>Low (as sources might be restricted)</td>
</tr>
<tr>
<td>Identity Resolution / Data Fusion</td>
<td>possible</td>
<td>difficult (often too slow)</td>
</tr>
</tbody>
</table>

- Rule of thumb: Virtual integration not applicable
 - if 5+ data sources need to be joined.
 - identity resolution and data fusion are important.
- This course illustrates data integration through the materialized architecture.
Components of Data Lake Management Systems

Data Lakes provide for **pay-as-you-go** data integration.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Data Warehouses</th>
<th>Data Lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data ingestion</td>
<td>ETL</td>
<td>Load-as-is</td>
</tr>
<tr>
<td>Ingested data format</td>
<td>Structured</td>
<td>Heterogeneous (structured, semi-structured, and unstructured)</td>
</tr>
<tr>
<td>Data storage</td>
<td>Relational databases</td>
<td>Hadoop, Relational databases, NoSQL data stores, etc</td>
</tr>
<tr>
<td>Data access</td>
<td>SQL queries (OLTP, OLAP)</td>
<td>Different query languages (e.g., SQL, Cypher), programming languages (e.g., Java, Python, R)</td>
</tr>
</tbody>
</table>
7. The Data Integration Software Market

- Market size 2017: 7.45 billion US$ (growth: 14.4%)
- Tools for specific tasks
 - Altova Map Force for schema mapping
- Comprehensive solutions covering the complete data integration process
 - Informatica Plattform
 - IBM InfoSphere Information Server
 - SAP Data Hub, SAP Vora
 - Microsoft SQL Server Integration Services
 - Talend Data Integration
- Cloud-based data lake solutions
 - Amazon AWS Glue, Microsoft Azure Purview, Databricks Lakehouse

Getting an Impression of the Tools

Video tutorials on YouTube

- **Informatica PowerCenter**
 https://www.youtube.com/watch?v=u6oLXidGoqs

- **SAP Data Hub**
 https://www.youtube.com/watch?v=CjLc4eDnpso

- **Microsoft SQL Server Integration Services**
 https://www.youtube.com/watch?v=0ikNnenDyNw

- **Amazon AWS Glue**
 https://www.youtube.com/watch?v=jwGGd-kUaLo

- **Tamr Unify**
 https://www.youtube.com/watch?v=7jz740cdtDE
Setting Expectations

Alon Halevy: "Data Integration is AI-Complete"

• Meaning that completely automated solutions are unlikely.

• Reasons:
 1. System Level: Managing different platforms, distributed query processing
 2. Logical reasons: Schema and data heterogeneity
 3. Social reasons: Locating relevant data, convincing people to share (data fiefdoms)

Goal 1:

• Reduce the effort needed to set up an integration application

Goal 2:

• Enable the system to perform gracefully with uncertainty (e.g., on the Web)
Summary

- **Goal of Data Integration**: Abstract away the fact that data comes from multiple sources in varying schemata.
- The problem occurs everywhere: Handling it is curial for many applications in business, science, government, and the Web.
- Architectures range from warehousing over virtual integration to data lakes.
- Regardless of the architecture, bridging heterogeneity is the key issue.
- **Goal**: Reduce the human effort involved.
Next lecture:
Types of Structured Data on the Web