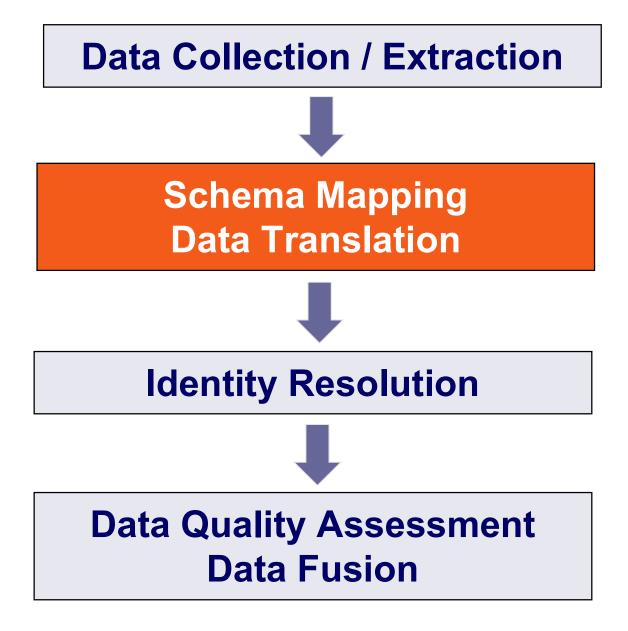


The Data Integration Process



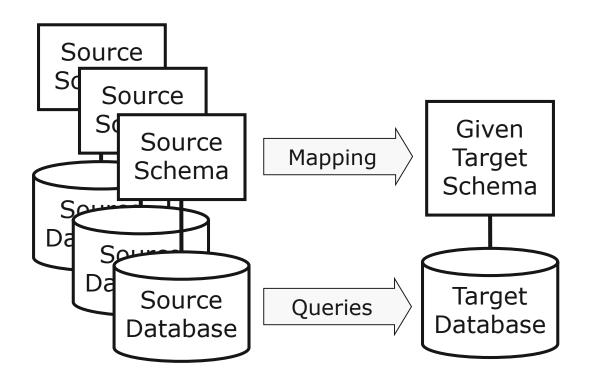
Outline

- 1. Two Basic Integration Situations
- 2. Types of Correspondences
- 3. Schema Integration
- 4. Data Translation
- 5. Schema Matching
- 6. Schema Heterogeneity on the Web

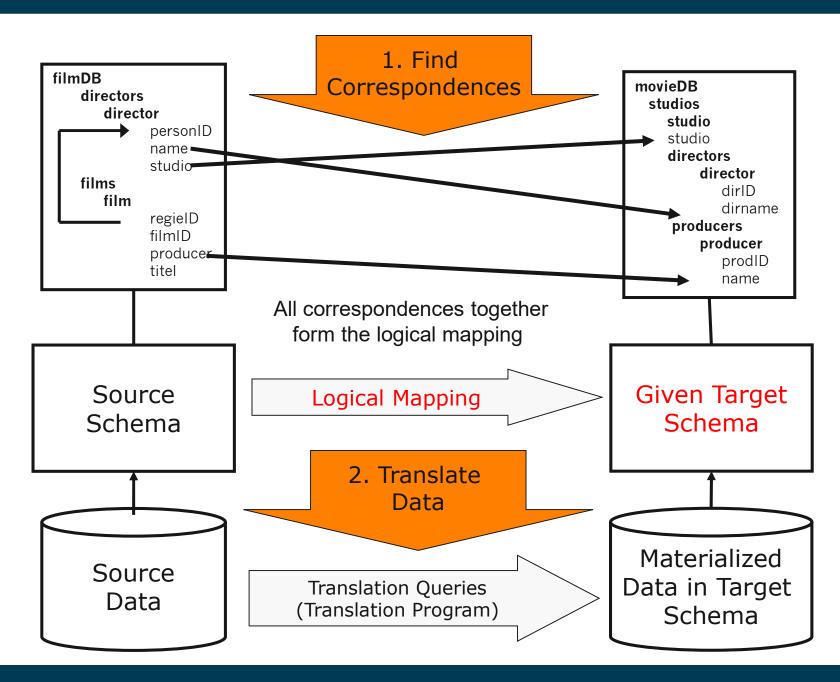
Basic Integration Situation 1: Schema Mapping

Goal: Translate data from a set of source schemata into a given target schema.

- Top-down integration situation
- Triggered by concrete information need (= target schema)



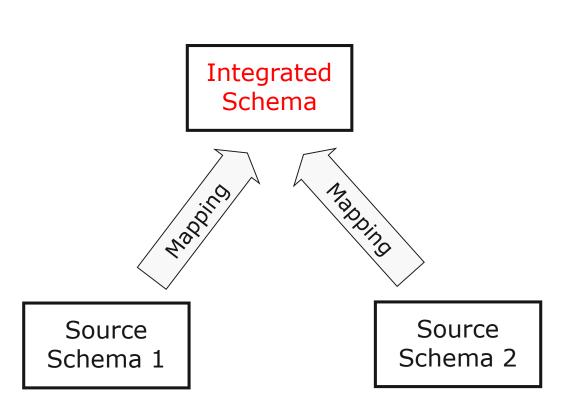
The Schema Mapping Process



Basic Integration Situation 2: Schema Integration

Goal: Create a new integrated schema that can represent all data from a given set of source schemata.

- Bottom-up integration situation
- Triggered by the goal to fulfill different information needs based on data from all sources.



2. Correspondences

A correspondence relates a set of elements in a schema S to a set of elements in schema T.

- Mapping = Set of <u>all</u> correspondences that relate S and T
- Correspondences are easier to specify than transformation queries
 - domain expert does not need technical knowledge about query language
 - specification can be supported by user interfaces (mapping editors)
 - step-by-step process with separate local decisions
- Correspondences can be annotated with transformation functions
 - normalize units of measurement (€ to US\$, cm and km to meters)
 - calculate or aggregate values (salary * 12 = yearly salary)
 - cast attribute data types (integer to real)
 - translate values using a translation table (area code to city name)

Types of Correspondences

One-to-One Correspondences

- Movie.title → Item.name
- Product.rating → Item.classification
- Movie
 ≡ Film (equivalence: Same semantic intention)
- Athlete ⊆ Person (inclusion: All athletes are also persons)

One-to-Many Correspondences

```
    Person.Name → split() → FirstName (Token 1)
    → Surname (Token 2)
```

Many-to-One Correspondences

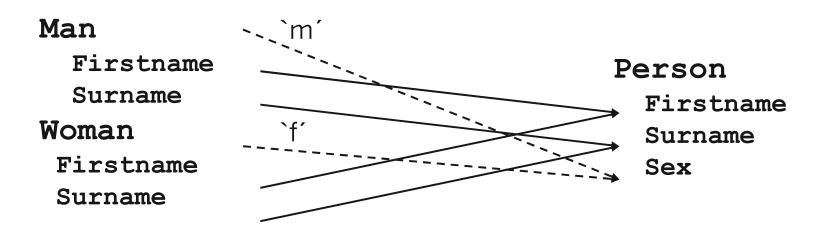
Product.basePrice * (1 + Location.taxRate) → Item.price

Higher-Order Correspondences

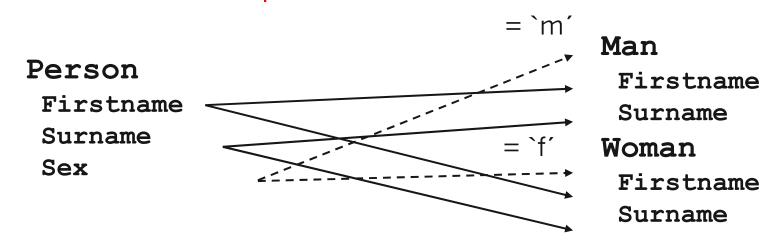
- relate different types of data model elements
- for example: Relations (classes) and attributes, see next slide

Examples of Higher-Order Correspondences

Relation-to-Value Correspondences



Value-to-Relation Correspondences



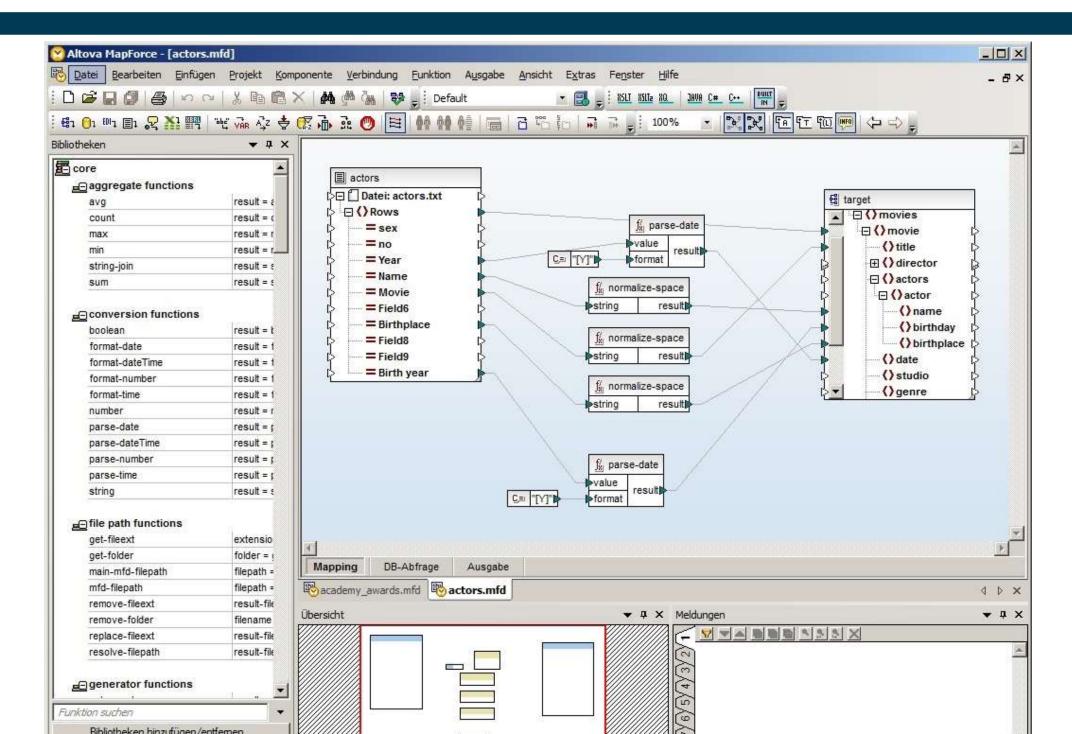
Types of Schema Heterogeneity that can be Captured

- Naming of
 - Relations
 - Attributes
- Normalized vs. Denormalized
- Nesting vs. Foreign Keys
- Alternative Modelling
 - Relation vs. Value
 - Relation vs. Attribute
 - Attribute vs. Value

1:1, 1:n, n:1 Correspondences

Higher-order Correspondences

Defining Correspondences



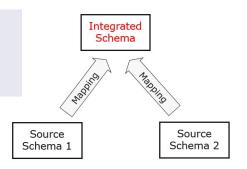
Discovering Correspondences

Schema Matching: Automatically or semi-automatically discover correspondences between schemata.

- Various schema matching methods exist (we will cover them later)
- Automatically finding a high-quality mapping works for simple tables within specific domains (e.g. persons, publications) but is error-prone for complex schemata (e.g. databases behind ERP systems)
- In practice, schema matching is often used to create candidate correspondences that are verified by human experts afterwards

3. Schema Integration

Create a new integrated schema that can represent all data from a given set of source schemata.



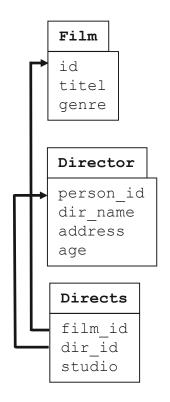
- Goals:
 - Completeness: All elements of the source schemata should be covered
 - Correctness: All data should be represented semantically correct
 - cardinalities, integrity constraints, ...
 - Minimality: The integrated schema should be minimal in respect to the number of relations and attributes
 - redundancy-free
 - Understandability: The schema should be easy to understand

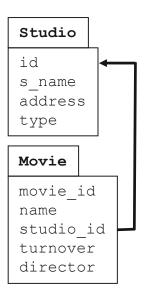
Example: Two Schemata about Films

Having a different focus and a different level of detail

- Schema 1: Who are the directors of a movie?
- Schema 2: What are the details about the studio in which the movie was shot?

- Goals:
 - 1. Completeness
 - 2. Correctness
 - 3. Minimality
 - 4. Understandability

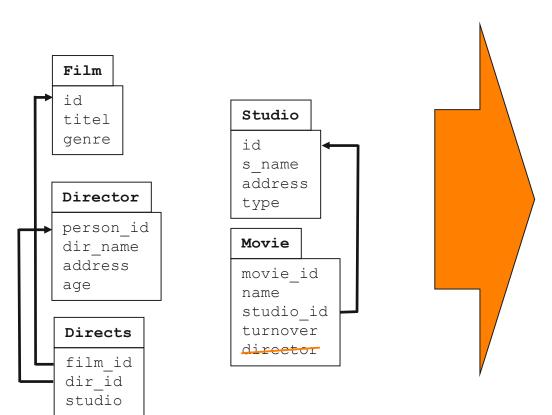


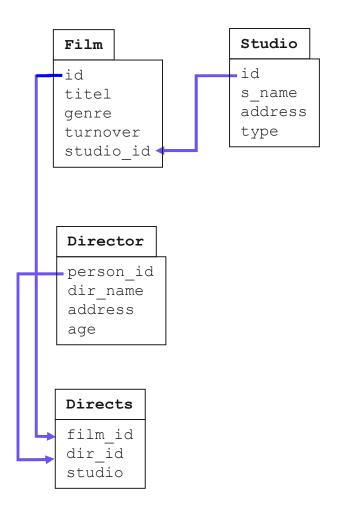


N:M Relationship Normalized Schema

Schema Integration: Rules of Thumb

- 1. Merge all tables with corresponding tables in other schema (Film, Movie)
- 2. Add all tables without corresponding tables (Director, Directs, Studio)
- Add relationships with highest cardinality in order to keep expressivity (keep Directs)





Example of a Schema Integration Method

- Spaccapietra, et al.: Model Independent Assertions for Integration of Heterogeneous Schemas. VLDB 1992
- Input
 - Two source schemata in Generic Data Model
 - classes, attributes, and relationships
 - similar to Entity Relationship Model
 - 2. Correspondence Assertions
 - correspondences between classes, attributes, and relationships
 - correspondences between paths of relationships
- Output: Integrated Schema

Integration Rules

Include into the target schema S:

- 1. Equivalent classes and merge their attribute sets
 - Pick class / attribute names of your choice for equivalent classes / attributes
- 2. Classes with their attributes that are not part of any class-class correspondence (classes without direct equivalent)
- 3. Direct relationships between equivalent classes
 - If $A \equiv A'$, $B \equiv B'$, $A-B \equiv A'-B'$ then include A-B
- 4. Paths between equivalent attributes and classes
 - a) If A = A', B = B', $A B = A' A_1' ... A_m' B'$ then include the longer path
 - as the <u>length one path</u> is subsumed by the longer path
 - as the longer one is more expressive with respect to cardinality
 - b) If $A \equiv A'$, $B \equiv B'$, $A A_1 \dots A_n B \equiv A' A_1' \dots A_m' B'$ then include both paths
 - as they represent different relationships to B
- 5. Equivalences between classes and attributes are included as relationships
 - again, prefer more expressive solution with respect to cardinality

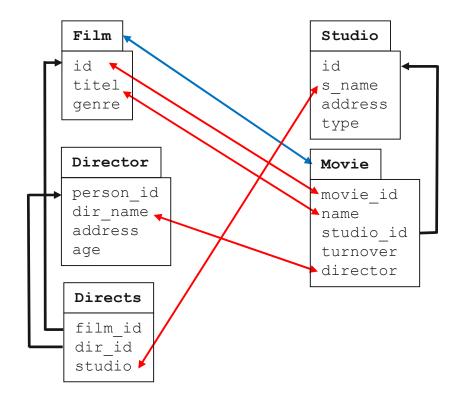
Example: Class and Attribute Correspondences

Class Correspondence

```
Film ≡ Movie
```

Attribute Correspondences

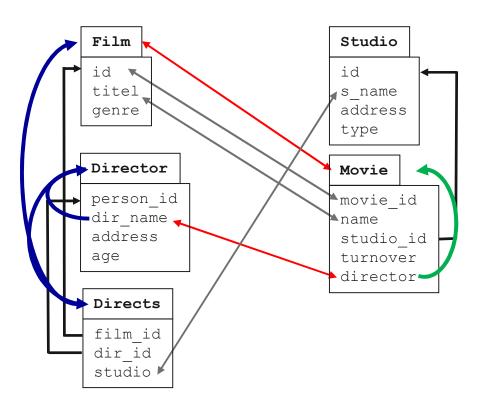
```
id = movie_id
titel = name
dir_name = director
studio = s name
```



Example: Relationship Path Correspondence 1

Relationship Path Correspondence

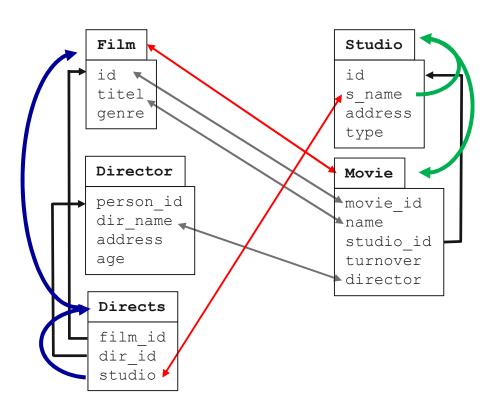
```
dir_name-Director-Directs-Film = director-Movie
```



Example: Relationship Path Correspondence 2

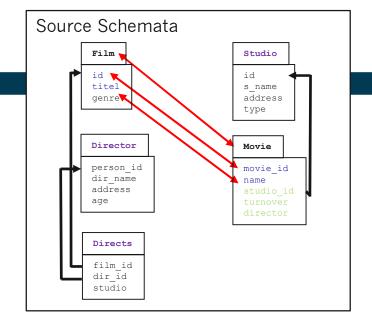
Relationship Path Correspondence

```
studio-Directs-Film = s_name-Studio-Movie
```



Creation of the Integrated Schema 1

- Integration Steps
 - 1. Rule 1: Equivalent classes Film and Movie are merged to Film. Attributes are either merged (id, title) or simply copied (turnover, director, studio id).
 - 2. Rule 2: Classes without direct equivalent are included into the integrated schema (Director, Directs, Studio)



Film

id
titel
genre
turnover
director
studio_id

Studio

id
s_name
address
type

Director

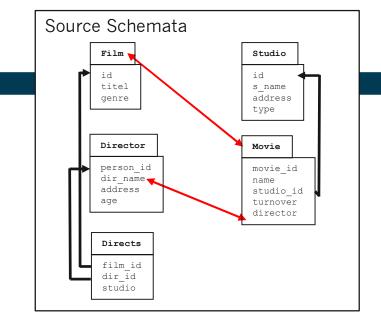
person_id dir_name address age

Directs

film_id dir_id studio

Creation of the Integrated Schema 2

- Correspondence
 - dir_name-Director-Directs-Film = director-Movie
- Integration Steps
 - 3. Rule 4a: The path dir_name-Director-Directs-Film is included. The path director-Movie is left out as it is less expressive (allows only one director per movie).
 - 4. Thus, dir_name is kept and director removed.



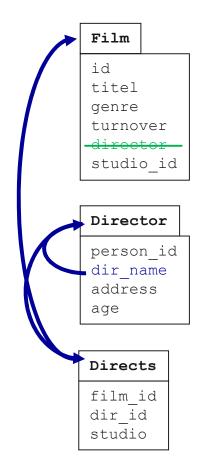
Studio

s name

type

address

id

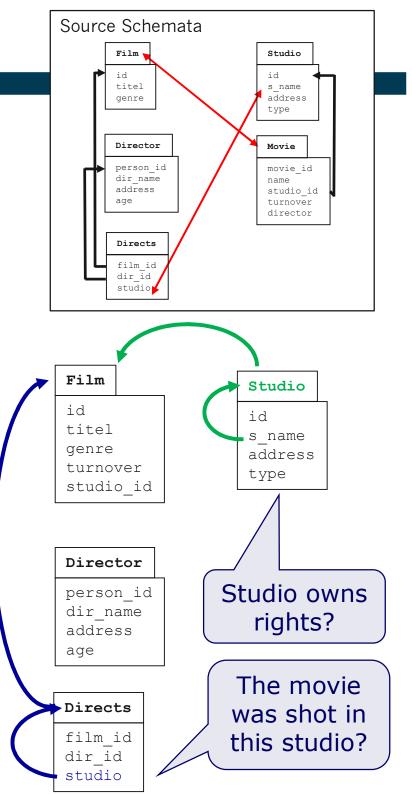


Creation of the Integrated Schema 3

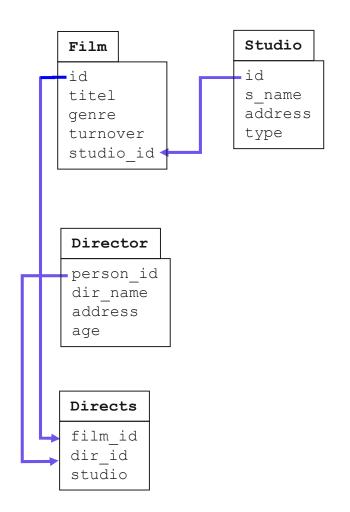
Correspondence

```
studio-Directs-Film =
s_name-Studio-Movie
```

- Integration Step
 - Rule 4b: Both paths are included as both have a length > 1.
 - Studio and studio are not merged as they have a different relationship to the surrounding classes and might thus mean different things.



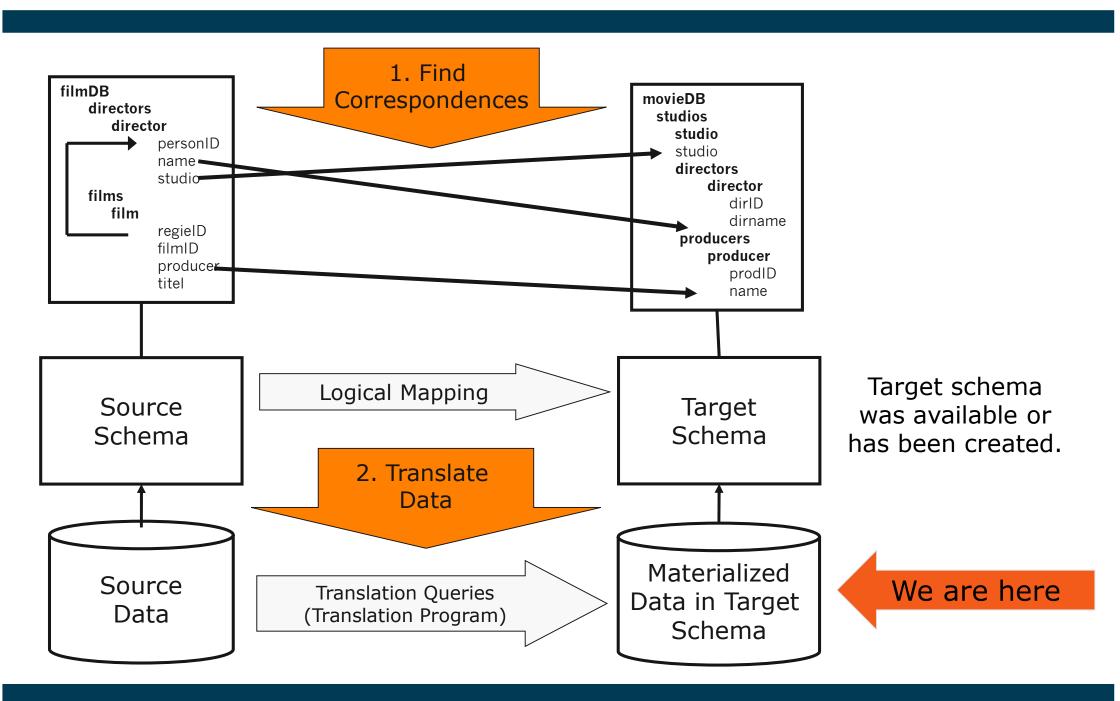
Final Integrated Schema



Fulfills the schema integration goals

- Completeness: All elements of the source schemata covered
- Correctness: All data can be represented semantically correct
- Minimality: The integrated schema is minimal in respect to the number of relations and attributes
- Understandability: The schema is easy to understand

4. Data Translation



Query Generation

Goal: Derive suitable data translation queries (or programs) from the correspondences.

- Possible query types: SQL Select Into, SPARQL Construct, XSLT
- Example of a data translation query:

```
ARTICLE PUBLICATION

• artPK — • pubID

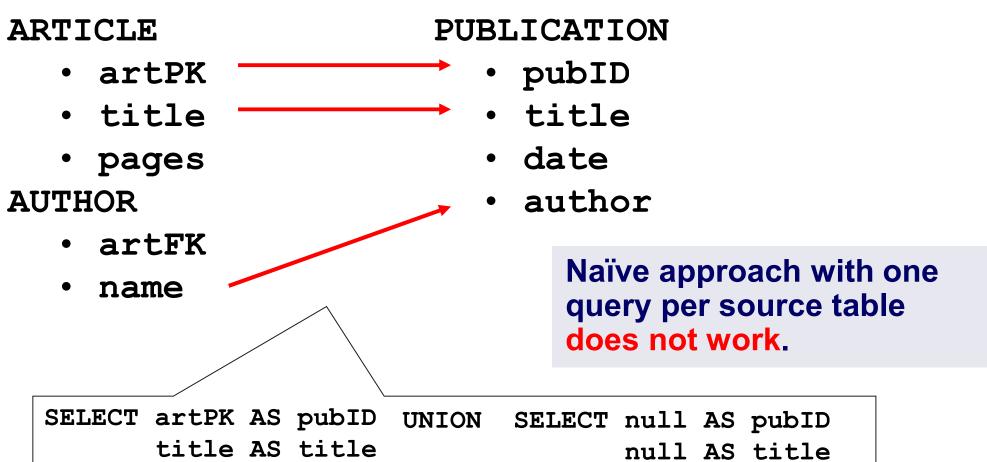
• heading — • title

• date
```

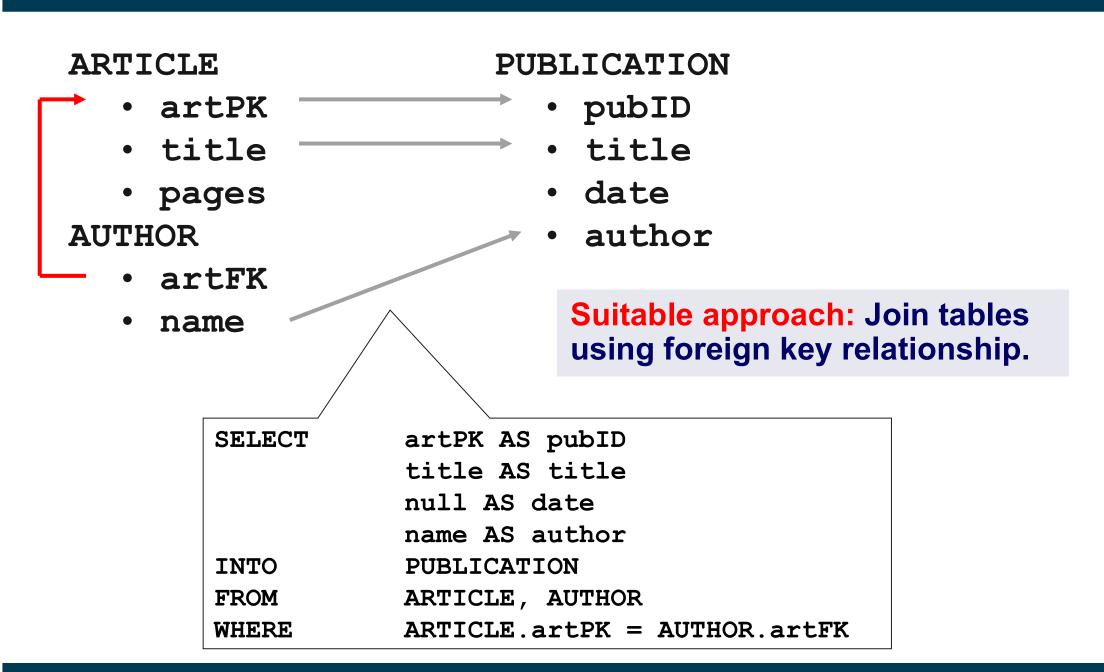
```
SELECT artPK AS pubID
heading AS title
null AS date
INTO PUBLICATION
FROM ARTICLE
```

- Challenges for more complex schemata
 - Correspondences are not isolated but embedded into context (tables, relationships)
 - Might require joining tables in order to overcome different levels of normalization
 - Might require combining data from multiple source tables (horizontal partitioning)

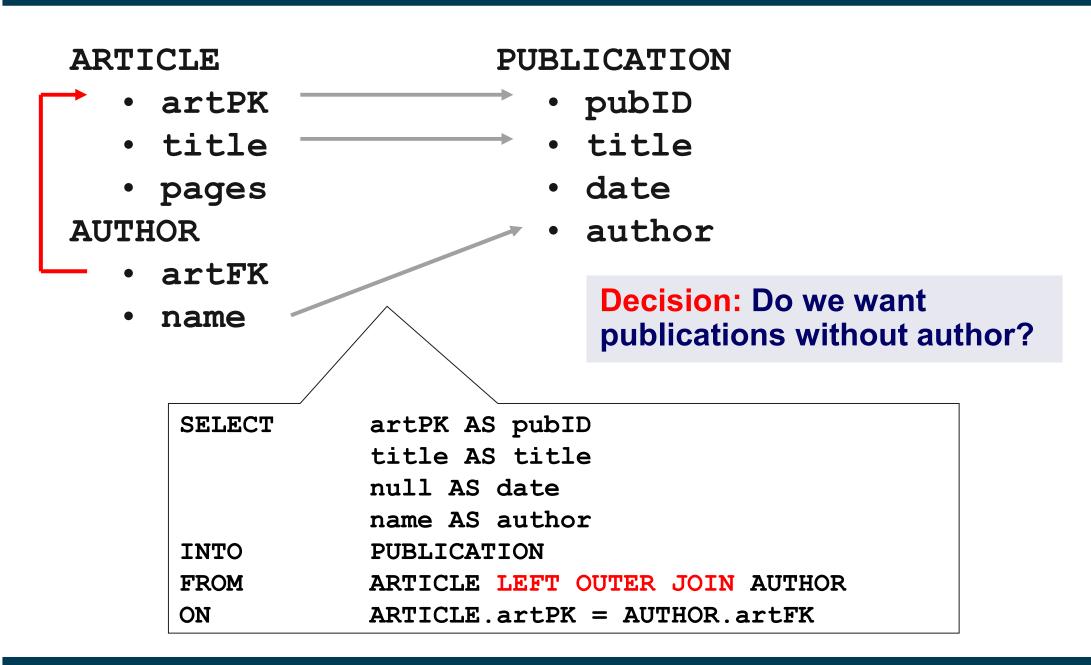
Normalized > Denormalized



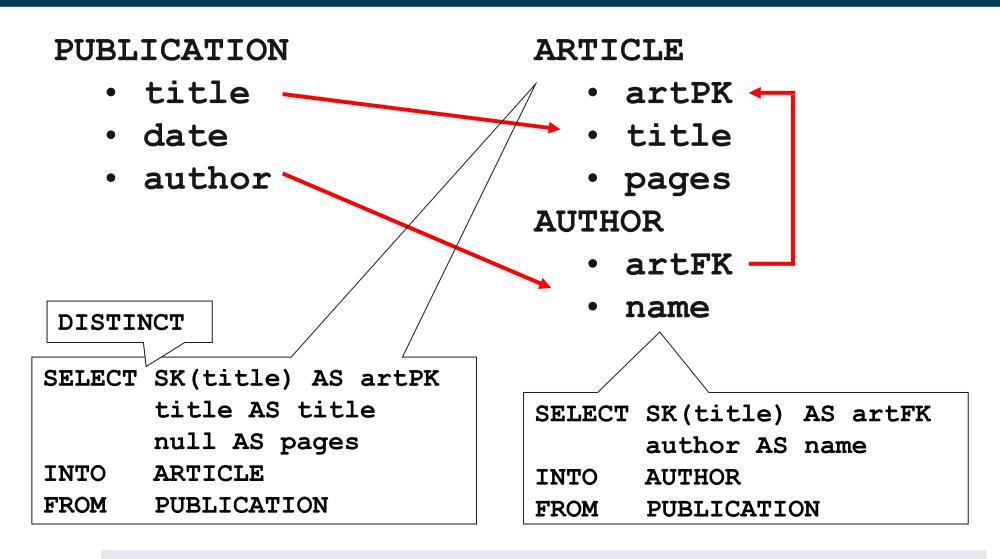
Normalized > Denormalized



INNER JOIN vs. OUTER JOIN



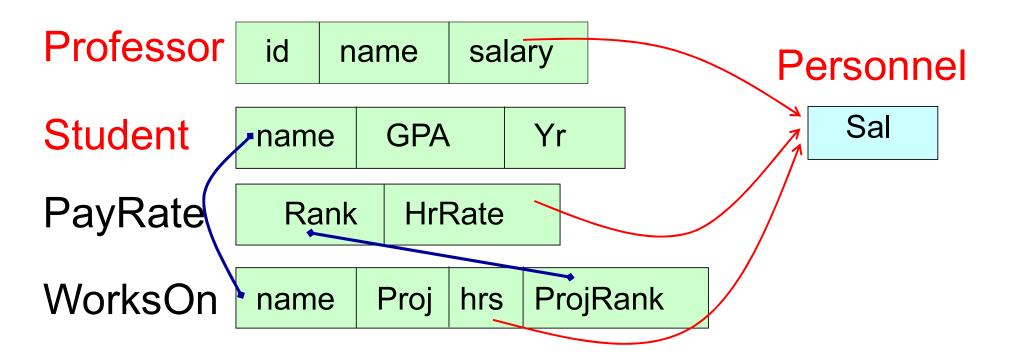
Denormalized → **Normalized**



SK(): Skolem function used to generate unique keys from distinct values, e.g. hash function.

Horizontal Partitioning

Data for target table might be horizontally distributed over multiple source tables.



Correspondence 1: Professor.salary → Personnel.Sal

Correspondence 2: PayRate.HrRate * WorksOn.Hrs → Personnel.Sal

UNION the Salaries of Professors and Students

Correspondence 1: Professor.salary → Personnel.Sal

Correspondence 2: PayRate.HrRate * WorksOn.Hrs → Personnel.Sal

INSERT INTO Personal(Sal)

SELECT salary FROM Professor

UNION

SELECT P.HrRate * W.hrs FROM PayRate P, WorksOn W WHERE P.Rank = W.ProjRank

Complete Algorithms for Generating Translation Queries

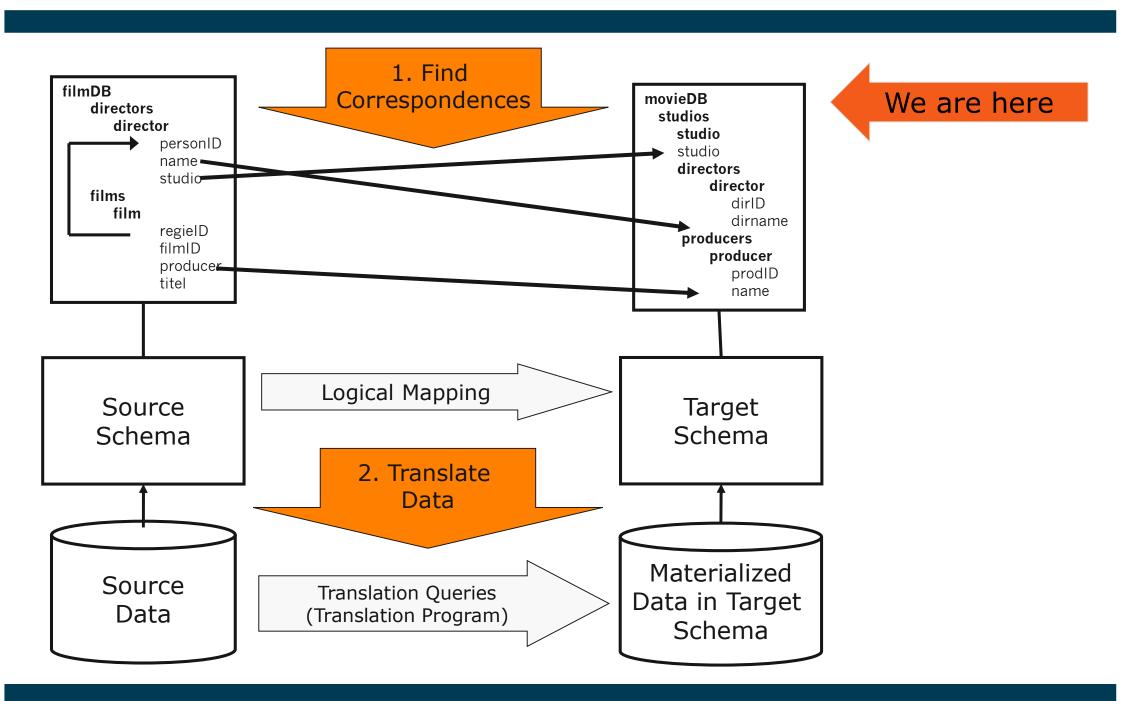
- Relational Case
 - Doan, Halevy, Ives: Principles of Data Integration. Pages 152-158.
- XML Case
 - Leser, Naumann: Informationsintegration. Pages 137-143.
- MapForce
 - implements another one which we will try out in the exercise

5. Schema Matching

Schema Matching: Automatically or semi-automatically discover correspondences between schemata.

- Automatically finding a complete high-quality mapping (= set of all correspondences) is difficult in more complex use cases
 - ERP databases versus simple tables about books or companies on the Web
- In practice, schema matching is used to create candidate correspondences that are verified by domain experts afterwards
- Most schema matching methods focus on 1:1 correspondences
 - we restrict ourselves to 1:1 for now and speak about 1:n and n:1 later.

Schema Matching



Outline: Schema Matching

- 1. Challenges to Finding Correspondences
- 2. Schema Matching Methods
 - Label-based Methods
 - 2. Instance-based Methods
 - 3. Structure-based Methods
 - 4. Combined Approaches
- 3. Generating Correspondences from the Similarity Matrix
- 4. Finding One-to-Many and Many-to-One Correspondences
- 5. Table Annotation
- 6. Summary and Current Trends

5.1 Challenges to Finding Correspondences

1. Large schemata

- >100 tables and >1000 attributes

2. Esoteric naming conventions and different languages

- 4-character abbreviations: SPEY
- city vs. ciudad vs. مدينة

3. Generic, automatically generated names

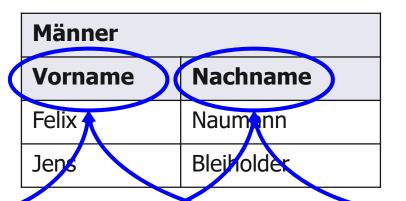
attribute1, attribute2, attribute3
 (was used as names for product features in Amazon API)

4. Semantic heterogeneity

synonyms, homonyms, ...

5. Missing documentation

Problem Space: Different Languages and Strange Names



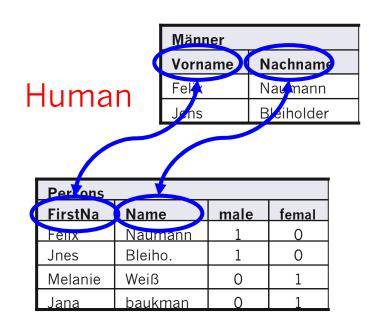
Frauen		
Vorname	Nachname	
Melanie	Weis	
Jana	Bauckmann	

Persons				
firstname	name	male	female	
Felix	Naumann	1	0	
Jnes	Bleiho.	1	0	
Melanie	Weiß	0	1	
Jana	baukman	0	1	

Pers		
FN	NN	S
F.	Naumann	М
J.	Bleiholder	M
M.	Weis	F
J.	Bauckmann	F

How do humans know?

- We recognize naming conventions and different languages
- use table context
- values look like first names and surnames
- values look similar
- if there is a first name, there is usually also a surname
- persons have first- and surnames
- man are persons
- → Recognizing these clues is hard for the computer (without additional resources)



◆ * ↗■■ Mౖ□	
†D©OM	& ≈ ■50M
☞∭●┼⊠	\$⊙ ♦ ○⊙■■
©M,■•	ℋℿ℄℄ℍℿ

Computer

₽M□∙□■M■		
₽□□ M	P=©OM,	
@M, ●) (\$0 ♦○ ■	
©M,■∙	P••M□	
& M, ● 55	†M,)(•	

5.2. Schema Matching Methods

- 1. Label-based Methods: Rely on the names of schema elements
- 2. Instance-based Methods: Compare the actual data values
- 3. Structure-based Methods: Exploit the structure of the schema
- 4. Combined Approaches: Use combinations of above methods

Source: Erhard Rahm and Philip Bernstein: A survey of approaches to automatic schema matching., VLDB Journal 10(4), 2001.

5.2.1 Label-based Schema Matching Methods

- Given two schemata with the attribute (class) sets A and B
 - A={ID, Name, Vorname, Alter}, B={No, Name, First_name, Age}
- Approach
 - 1. Generate cross product of all attributes (classes) from A and B
 - 2. For each pair calculate the similarity of the attribute labels
 - using some similarity metric: Levenshtein, Jaccard, Soundex, etc.
 - 3. The most similar pairs are the matches

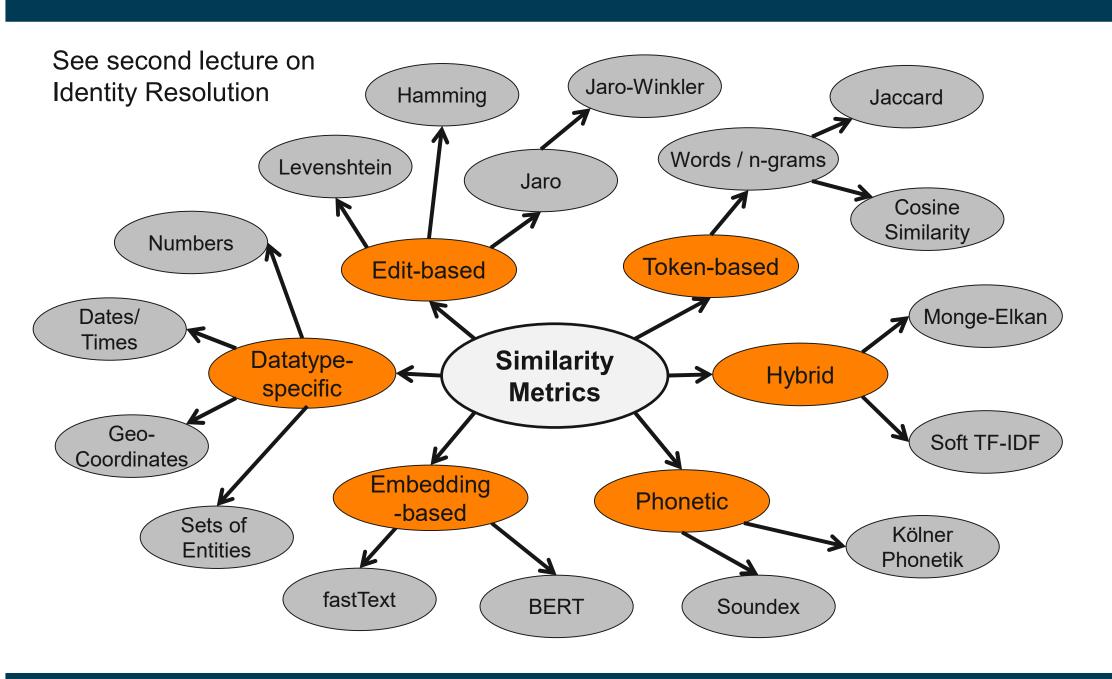
	ID	Name	Vorname	Alter
No	0.8	0.6	0.4	0.4
Name	0.1	1.0	0.6	0.3
First_name	0.2	0.6	0.5	0.3
Age	0.4	0.3	0.2	0.7

Example Metric: Levenshtein

- Measures the dissimilarity of two strings
- Measures the minimum number of edits needed to transform one string into the other
- Allowed edit operations
 - insert a character into the string
 - delete a character from the string
 - replace one character with a different character
- Examples
 - levensthein('table', 'cable') = 1 (1 substitution)
 - levensthein('Chris Bizer', 'Bizer, Chris') = 11 (10 substitution, 1 insertion)
- Converting Levenshtein distance into a similarity

$$sim_{Levenshtein} = 1 - \frac{LevenshteinDist}{\max(|s_1|, |s_2|)}$$

A Wide Range of Similarity Metrics Exists



Problems of Label-based Schema Matching

1. Semantic heterogeneity is not recognized

- the labels of schema elements only partly capture their semantics
- synonyms und homonyms

2. Problems with different naming conventions

- Abbreviations: pers = person, dep = department
- Combined terms and ordering: id_pers_dep vs. DepartmentPersonNumber
- Different languages: city vs. ciudad vs. مدينة
- We need to apply smart, domain-specific tweaks:
 - 1. Preprocessing: Normalize labels in order to prepare them for matching
 - 2. Matching: Employ similarity metrics that fit the specifics of the schemata

Pre-Processing of Labels

- Case and Punctuation Normalization
 - ISBN, IsbN, and I.S.B.N → isbn
- Explanation Removal
 - GDP (as of 2014, US\$) \rightarrow gdp
- Stop Word Removal
 - in, at, of, and, ...
 - ex1:locatedIn → ex1:located
- Stemming
 - ex1:located, ex2:location → both stemmed to ,locat
 - but: ex1:locationOf, ex2:locatedIn (Inverse Properties!)
- Tokenization
 - ex1:graduated_from_university → {graduated,from,university}
 - ex2:isGraduateFromUniversity → {is,Graduate,from,University}
 - tokens are then compared one-by-one using for instance Jaccard similarity

Use Linguistic Resources for Pre-Processing

- Translate labels into target language
 - ciudad and مدينة → city
 - using for instance Goolge Translate
- Expand known abbreviations or acronyms
 - loc → location, cust → customer
 - using a domain-specific list of abbreviations or acronyms
- Expand with synonyms
 - add cost to price, United States to USA
 - using a domain-specific dictionary of synonyms or WordNet
- Expand with hypernyms (is-a relationships)
 - generalize book, laptop into product
 - using a domain-specific taxonomy or cross-domain resource, e.g.
 WordNet, DBpedia, WebIsA

5.2.2 Instance-based Schema Matching Methods

- Given two schemata with the attribute sets A and B and
 - all instances (records) of A and B or
 - a sample of the instances of A and B
- Approach
 - determine correspondences between A and B by examining which attributes in A and B contain similar values
 - as values often better capture the semantics of an attribute than its label
- Types of instance-based methods
 - 1. Attribute Recognizers
 - 2. Value Overlap
 - 3. Feature-based Methods
 - 4. Duplicate-based Methods

Table A		
A1	A2	
Felix	Naumann	
Jens	Bleiholder	

Table B	
VN	NN
Felix	Naumann
Jens	Bleiholder

Attribute Recognizers and Value Overlap

1. Attribute Recognizers

- employ dictionaries, regexes or rules to recognize values of a specific attribute
 - Dictionaries fit attributes that only contain a relatively small set of values (e.g. age classification of movies (G, PG, PG-13, R), country names, US states
 - Regexes or rules fit attributes with regular values (e.g. area code phone number).
- similarity = fraction of the values of attribute B that match dictionary/rule of attribute A

2. Value Overlap

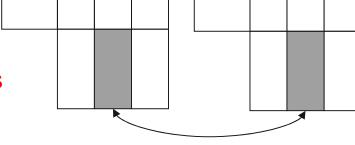
 calculate the similarity of attribute A and B as the the overlap of their values using the Jaccard similarity measure (or Generalized Jaccard):

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Feature-based Methods

Given two schemata with the attribute sets A and B and instances of A and B

- Approach
 - 1. For each attribute calculate interesting features using the instance data, e.g.



- attribute data type
- average string length of attribute values
- average maximal and minimal number of words
- average, maximal and minimal value of numbers
- standard derivation of numbers
- does the attribute contain NULL values?
- 2. generate the cross product of all attributes from A and B
- 3. for each pair compare the similarity of the features

Example: Feature-based Matching

ID	Name	Loc	
1	Müller	Danziger Str, Berlin	
2	Meyer	Boxhagenerstr, Berlin	
4	Schmidt	Turmstr, Köln	

Nr	Adresse	Telefon
1	Seeweg, Berlin	030- 3324566
3	Aalstr, Schwedt	0330- 1247765
4	Rosenallee, Kochel	0884- 334621

- Features: Attribute data type, average string length
 - Table1 = {(ID, NUM, 1), (Name, STR, 6), (Loc, STR, 18)}
 - Table2 = {(Nr, NUM, 1), (Adresse, STR, 16), (Telefon, STR, 11)}
- Similarity measure: Euclidean Distance (NUM=0, STR=1)

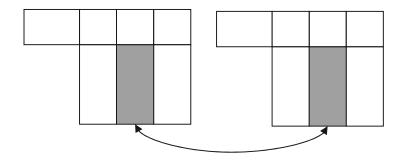
	ID	Name	Loc
Nr	d(<0,1>,<0,1>)	d(<1,6>,<0,1>)	d(<1,18>,<0,1>)
Adresse	d(<0,1>,<1,16>)	d(<1,6>,<1,16>)	d(<1,18>,<1,16>)
Telefon	d(<0,1>,<1,11>)	d(<1,6>,<1,11>)	d(<1,18>,<1,11>)

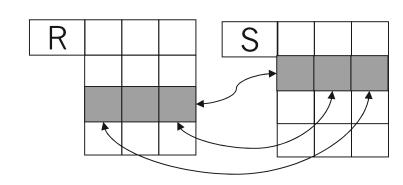
Discussion: Feature-based Methods

- 1. Require decision which features to use
 - good features depend on the attribute data type and application domain
- 2. Require decision how to compare and combine values
 - e.g. cosine similarity, Euclidian distance of normalized values, ...
 - different features likely require different weights
- 3. Similar attribute values do not always imply same semantics
 - phone number versus fax number
 - employee name versus customer name

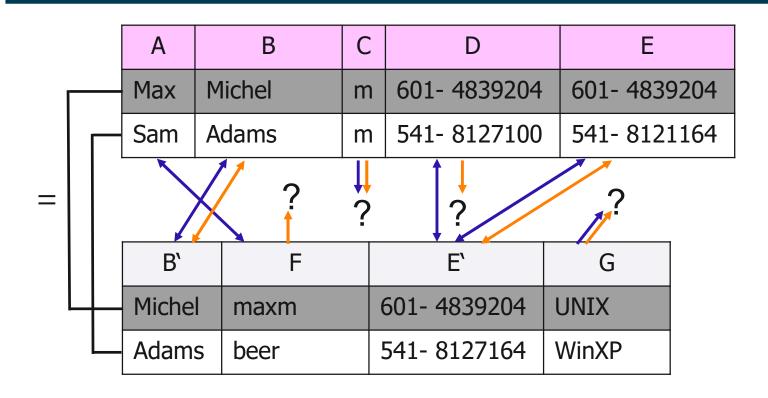
Duplicate-based Methods

- Classical instance-based matching is vertical
 - Comparison of complete columns
 - ignores the relationships between instances
- Duplicate-based matching is horizontal
 - Find (some) potential duplicates or use previous knowledge about duplicates
 - 2. Check which attribute values closely match in each duplicate
 - 3. Result: Attribute correspondences per duplicate
 - 4. Aggregate the attribute correspondences on duplicate-level into attribute correspondences on schema-level using majority voting.





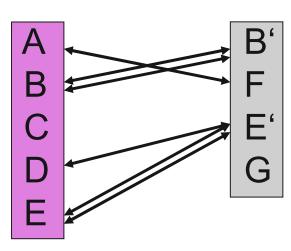
Example: Vote of Two Duplicates



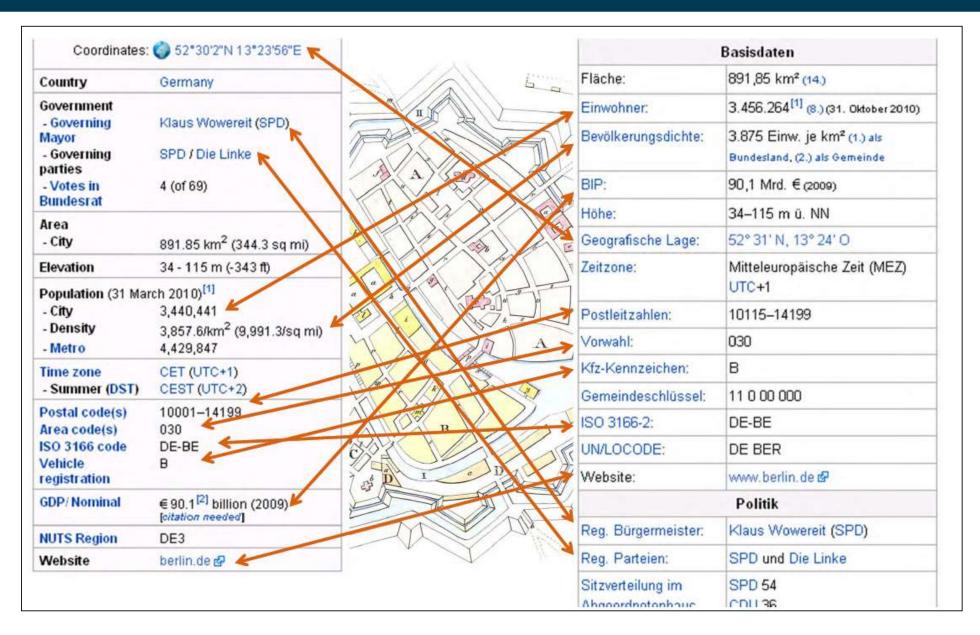
Vote of the two duplicates:

Resulting schema-level correspondences:

$$B \equiv B', E \equiv E', A \equiv F$$



Using Duplicates for Cross-Language Infobox Matching



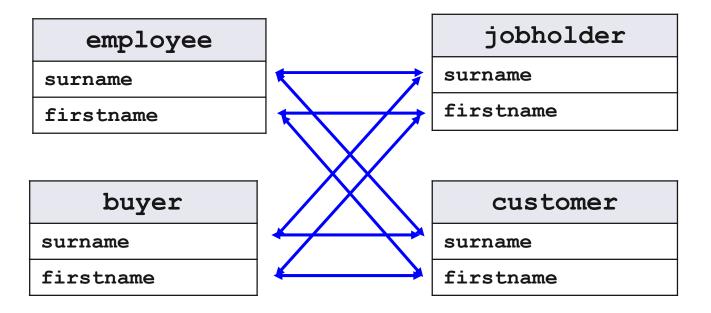
Source: Felix Naumann, ICIQ 2012 Talk

Discussion: Duplicate-based Methods

- Can correctly distinguish very similar attributes
 - Telephone number <> fax number, Surname<>Maiden name
- Work well if duplicates are known or easy to find
 - owl:sameAs statements in LOD cloud
 - shared IDs like GTINs, ISBNs, or GenIDs
- Does not work well if identity resolution is too noisy
 - e.g. products with very similar names

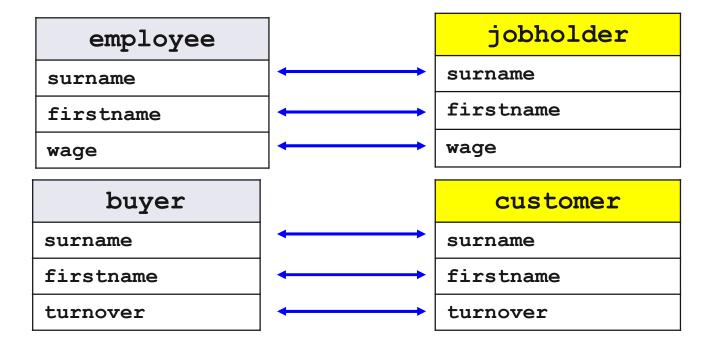
5.2.3 Structure-based Schema Matching Methods

Addresses the following problem:



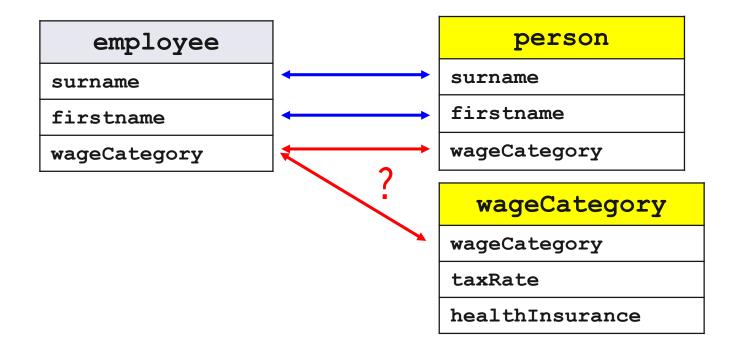
- Attribute-Attribute-Matching
 - Instance-based: Values of all attributes rather similar
 - Label-based: Labels of all attributes rather similar
 - All matchings are about equally good ☺

Better approach: Exploit the Attribute Context



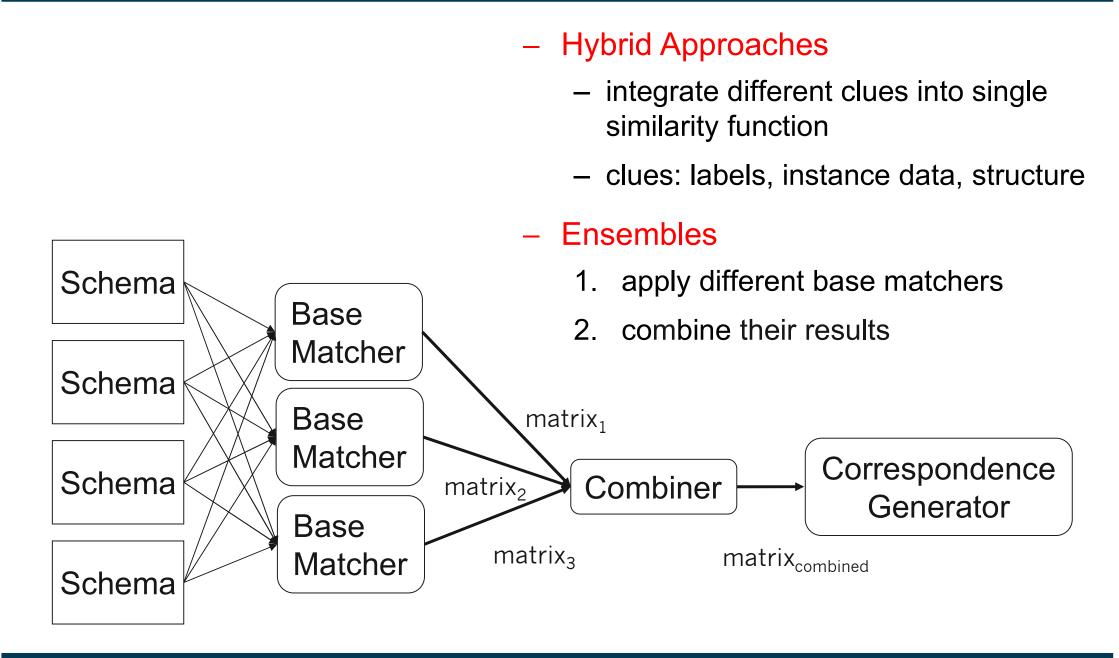
 Attributes that co-occur in one relation often (but not always) also co-occur in other relations.

Approach: Spread Similarity to Neighbors



- Idea: High similarity of neighboring attributes and/or name of relation increases similarity of attribute pair
- Base similarities: Label-based and/or instance-based matching
- Simple calculation: Weight attribute similarity with average similarity of all other attributes in same relation and similarity of relation names
- Alternative calculation: Similarity Flooding algorithm (see references)

5.2.4 Combined Approaches



Example of the Need to Exploit Multiple Types of Clues

realestate.com

listed-price	contact-name	contact-phone	office	comments
\$250K \$320K	James Smith Mike Doan	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(305) 616 1822 (617) 112 2315	

If we use only labels

 contact-agent matches either contact-name or contact-phone

- If we use only data values
 - contact-agent matches either contact-phone or office
- If we use both labels and data values
 - contact-agent matches contact-phone

How to Combine the Predictions of Multiple Matchers?

Combiner

- Average combiner: trusts all matchers the same
- Maximum combiner: when we trust a strong signal from a single matcher
- Minimum combiner: when we want to be more conservative and require high values from all matchers
- Weighted-sum combiner
 - assign a weight to each matcher according to its quality
 - you may learn the weights using
 - known correspondences as training data
 - linear/logistic regression or decision tree learning algorithms
 - we will cover learning weights in detail in chapter on identity resolution

5.3 Generating Correspondences from the Similarity Matrix

Input: Matrix containing attribute similarities

Output: Set of correspondences

Correspondence Generator

Local Single Attribute Strategies:

Thresholding

- all attribute pairs with sim above a threshold are returned as correspondences
- domain expert checks correspondences afterwards and selects the right ones

2. TopK

give domain expert TopK correspondences for each attribute

3. Top1

- directly return the best match as correspondence
- very optimistic, errors might frustrate domain expert

Alternative: Global Matching

 Looking at the complete mapping (all correct correspondences between A and B) gives us the additional restriction that one attribute in A should only be matched to one attribute in B.

Goal of Global Matching

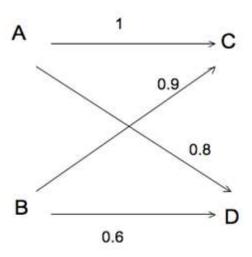
- Find optimal set of disjunct correspondences
- avoid correspondence pairs of the form $A \equiv C$ and $B \equiv C$

– Approach:

 find set of bipartite pairs with the maximal sum of their similarity values

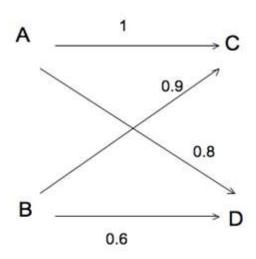
– Example:

- $-A \equiv D$ and $B \equiv C$ have the maximal sum of their similarity values
- Ignores that sim(A,C) = 1



Alternative: Stable Marriage

- Elements of A = women, elements of B = men
- Sim(i,j) = degree to which A_i and B_i desire each other
- Goal: Find a stable match combination between men and women
- A match combination would be unstable if
 - there are two couples $A_i = B_j$ and $A_k = B_l$ such that A_i and B_l want to be with each other, i.e., sim(i,l) > sim(i,j) and sim(i,l) > sim(k,l)
- Algorithm to find stable marriages
 - Let match={}
 - Repeat
 - Let (i,j) be the highest value in sim such that A_i and B_i are not in match
 - Add $A_i = B_i$ to match
- Example: A = C and B = D form a stable marriage



5.4 Finding Many-to-One and One-to-Many Correspondences

- Up till now all methods only looked for 1:1 correspondences
- But real-world setting might require n:1 and 1:n or even n:m correspondences
- Question:
 - How to combine values?
 - Lots of functions possible.
- Problem:
 - Should we test1.2 * A + 2 * B 32 ≡ C
 - … unlimited search space!

n:1 Correspondence

1:n Correspondence

m:n Correspondence

```
Name → extract() → concat() → First name

Title ← extract() ← Last name
```

Search for Complex Correspondences

- Paper: Doan, et al.: iMAP: Discovering complex Semantic Matches between Database Schemas. SIGMOD, 2004.
- Employs specialized searchers:
 - text searcher: uses only concatenations of columns
 - numeric searcher: uses only basic arithmetic expressions
 - date searcher: tries combination of numbers into dd/mm/yyyy pattern
- Key challenge: Control the search.
 - start searching for 1:1 correspondences
 - add additional attributes one by one to sets
 - consider only top k candidates at every level of the search
 - termination based on diminishing returns

An Example: Text Searcher

Mediated-schema

price num-baths	address
-----------------	---------

homes.com

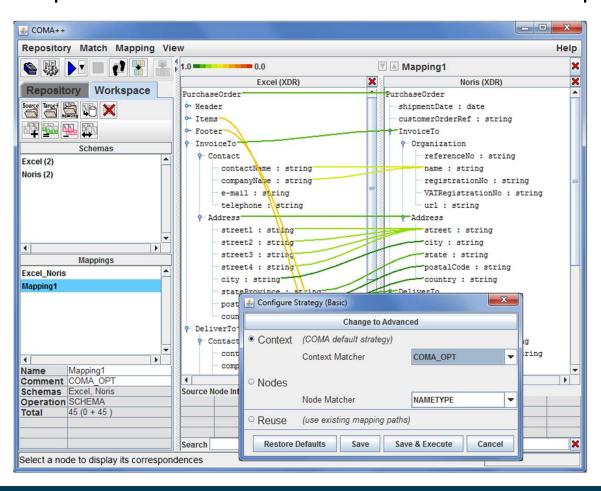
listed-price	agent-id	full-baths	half-baths	city	zipcode		
320K	532a	2	1	Seattle	98105		
240K	115c	1	1	Miami	23591		
concat(agent-id,city)		conca	concat(agent-id,zipcode)			concat(city,zipcode)	
532a Seattle		5328	532a 98105		Seattle 98105		
115c Mi	ami	1150	23591		Mia	ami 23591	

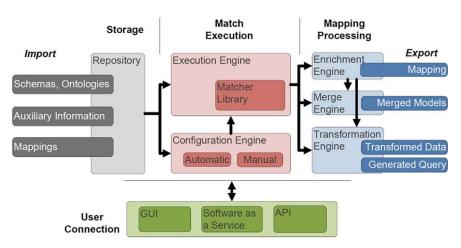
- Best match candidates for address
 - (agent-id,0.7), (concat(agent-id,city),0.75), (concat(city,zipcode),0.9)

Example Matching System: COMA V3.0

Developed by the Database Group at the University of Leipzig

- provides wide variety of matchers (label, instance, structure, hybrid)
- provides user interface for editing correspondences.
- provides data translation based on the correspondences.





http://dbs.uni-leipzig.de /de/Research/coma.html

5.5 Table Annotation

 Goal: Annotate the columns of tables in a large table corpus with concepts from a knowledge graph or shared vocabulary.

Subtasks:

- Column Type annotation: distance, weight, location, or person
- Column Property annotation: proteinContent, fatContent, director, producer

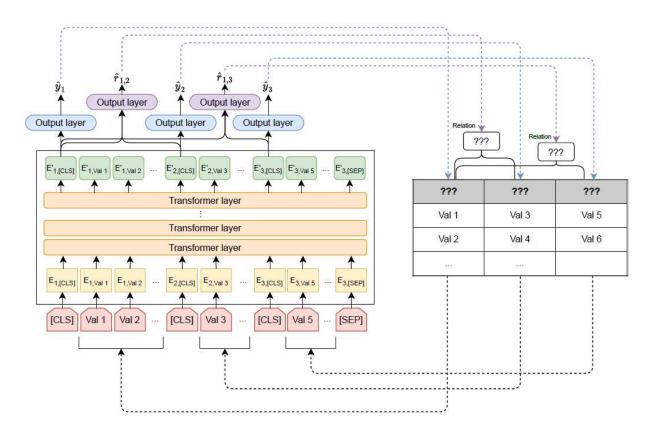
o film	odirector	producer	ocountry	annotate		DBpedia
???	???	???	777	<u> </u>	WIKIDATA	DBpedia
Happy Feet	George Miller, Warren Coleman, Judy Morris	Bill Miller, George Miller, Doug Mitchell	USA			
Cars	John Lasseter, Joe Ranft	Darla K. Anderson	UK		schem	na.org
Flushed Away	David Bowers, Sam Fell	Dick Clement, Ian La Frenais, Simon Nye	France			

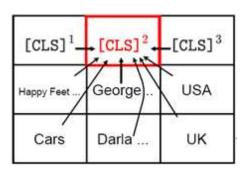
SemTab evaluation campaign: https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

Papers with Code: Table Annotation: https://paperswithcode.com/task/table-annotation

Example Table Annotation System: DoDuo

- directly fine-tunes BERT for column type and property annotation tasks using multi-task learning
- a table cell can pay attention to all neighboring cells





Suhara, et al.: Annotating Columns with Pre-trained Language Models. SIGMOD 2022.

Evaluation Results of Table Annotation Systems

Column Type Annotation (~100 types)

Method	F1	Р	R
TURL (TinyBERT)	88.86	90.54	87.23
DoDuo (BERT)	92.45	92.45	92.21

Column Pair Annotation (Relation Extraction, ~100 relations)

Method	F1	Р	R
TURL (TinyBERT)	90.94	91.18	90.69
DoDuo (BERT)	91.72	91.97	91.47

Suhara, et al.: Annotating columns with pre-trained language models. SIGMOD, 2022. Deng, et al.: TURL: table understanding through representation learning. PVLDB 2020.

5.7. Summary

- Schema Matching is an active research area with lots of approaches
 - yearly competitions: Ontology Alignment Evaluation Initiative (OAEI), SemTab
- Quality of discovered correspondences depends on difficulty of problem
 - many approaches work fine for single tables, but fail for larger schemas
- Thus, it is essential to keep the domain expert in the loop.
 - Active Learning
 - learn from user feedback while searching for correspondences
 - Crowd Sourcing
 - mechanical turk
 - DBpedia Mapping Wiki
 - click log analysis of query results
 - Spread the manual integration effort over time
 - pay-as-you-go integration in data lakes

6. Schema Heterogeneity on the Web

- 1. Role of Standards
 - 1. RDFa/Microdata/Microformats
 - 2. Linked Data
- 2. Self-Descriptive Data on the Web

6.1 Role of Standards

For publishing data on the Web, various communities try to avoid schema-level heterogeneity by agreeing on standard schemata (also called vocabularies or ontologies).

Schema.org

 600+ Types: Event, local business, product, review, person, place, ...

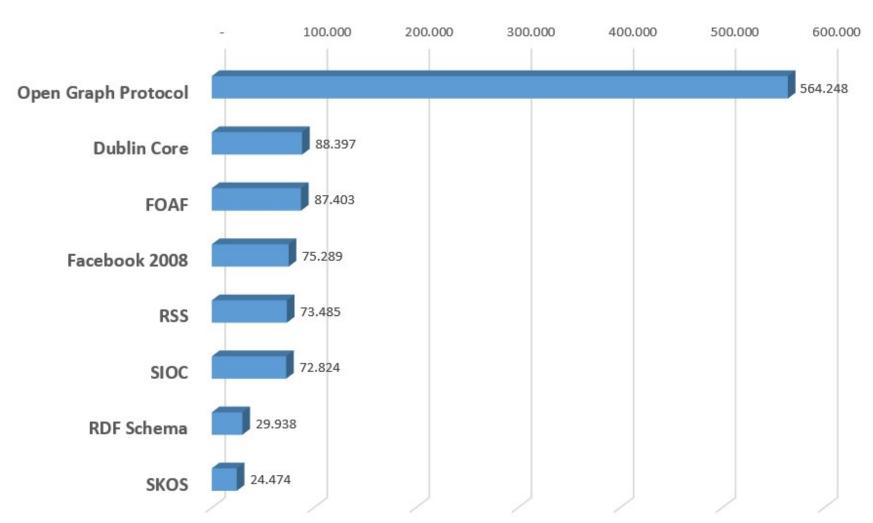
Open Graph Protocol

25 Types: Event, product, place, website, book, profile, article

Linked Data

- various widely used vocabularies
- FOAF, SKOS, Music Ontology, ...

Vocabularies used together with the RDFa Syntax



Source: http://webdatacommons.org/structureddata/2018-12/stats/html-rdfa.xlsx

Properties used to Describe Schema.org Products (2020)

Two million websites (PLDs) annotate product offers.

Attribute	% of PLDs		
schema:Product/name	99 %	—	New Samsung Galaxy S4 GT-19505 16GB 5.0 inches Android Smartphone with 2-Year Sprint Contract - White Frost
schema:Product/offers	94 %		
schema:Offer/price	95 %	—	99.00 US\$
schema:Offer/priceCurrency	95 %		The Galaxy S4 is among the earliest phones to feature a 1080p Full HD display. The various connectivity options on the Samsung include
schema:Product/description	84 %	—	
schema:Offer/availability	72 %		
schema:Product/sku	56 %	\leftarrow	000214632623
schema:Product/brand	30 %		Samsung
schema:Product/image	26 %	—	12.45
schema:Product/aggregateRating	17 %		
schema:Product/mpn	6.3 %		GT-19505
schema:Product/productID	4.7 %	\leftarrow	000214632623

http://webdatacommons.org/structureddata/2020-12/stats/schema_org_subsets.html

Vocabularies in the LOD Cloud

Data sources mix terms from commonly used and proprietary vocabularies.

- Idea
 - Use common, easy-to-understand vocabularies wherever possible.
 - Define proprietary vocabularies terms only if no common terms exist.
- LOD Cloud Statistics 2014
 - 378 (58.24%) proprietary vocabularies, 271 (41.76%) are non-proprietary
- Common Vocabularies

Vocabulary	Number of Datasets		
foaf	701 (69.13%)		
dcterms	568 (56.02%)		
sioc	179 (17.65%)		
skos	143 (14.10%)		
void	137 (13.51%)		
cube	114 (11.24%)		

Source:

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

6.2 Self-Descriptive Data

Data sources in the LOD context try to increase the usefulness of their data and ease data integration by making it self-descriptive.

Aspects of self-descriptiveness

- 1. Reuse terms from common vocabularies / ontologies
- 2. Enable clients to retrieve the schema
- 3. Properly document terms
- 4. Publish correspondences on the Web
- 5. Provide provenance metadata
- 6. Provide licensing metadata

Reuse Terms from Common Vocabularies

1. Common Vocabularies

- Friend-of-a-Friend for describing people and their social network
- SIOC for describing forums and blogs
- SKOS for representing topic taxonomies
- Organization Ontology for describing the structure of organizations
- GoodRelations provides terms for describing products and business entities
- Music Ontology for describing artists, albums, and performances
- Review Vocabulary provides terms for representing reviews
- 2. Common sources of identifiers (URIs) for real world objects
 - LinkedGeoData and Geonames locations
 - GenelD and UniProt life science identifiers
 - DBpedia and Wikidata wide range of things

Enable Clients to Retrieve the Schema

Clients can resolve the URIs that identify vocabulary terms in order to get their RDFS, OWL, XML schema definitions.

Some data on the Web

```
<http://richard.cyganiak.de/foaf.rdf#cygri>
    foaf:name "Richard Cyganiak" ;
    rdf:type <http://xmlns.com/foaf/0.1/Person> .
```

Resolve unknown term

http://xmlns.com/foaf/0.1/Person

RDFS or OWL definition

```
<http://xmlns.com/foaf/0.1/Person>
    rdf:type owl:Class ;
    rdfs:label "Person";
    rdfs:subClassOf <http://xmlns.com/foaf/0.1/Agent> ;
    rdfs:subClassOf <http://xmlns.com/wordnet/1.6/Agent> .
```

Documentation of Vocabulary Terms

The documentation of a vocabulary is published on the Web in machine-readable form and can be used as a clue for schema matching.

- Name of a vocabulary term
 - ex1:name rdfs:label "A person's name"@en .
 - ex2:hasName rdfs:label "The name of a person"@en .
 - ex2:hasName rdfs:label "Der Name einer Person"@de .
- Additional description of the term
 - ex1:name rdfs:comment "Usually the family name"@en .
 - ex2:name rdfs:comment"Usual order: family name, given name"@en .

Publish Correspondences on the Web

Vocabularies are (partly) connected via vocabulary links.

Vocabulary Link

```
<http://dbpedia.org/ontology/Person>
owl:equivalentClass
<http://xmlns.com/foaf/0.1/Person> .
```

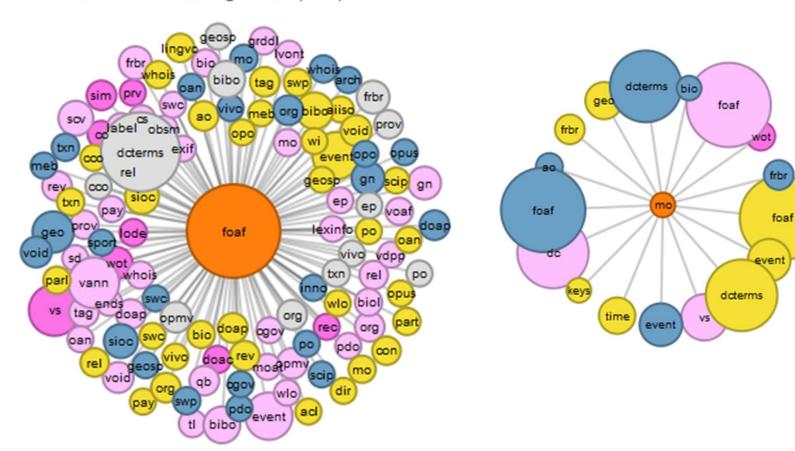
- Terms for representing correspondences
 - owl:equivalentClass, owl:equivalentProperty,
 - rdfs:subClassOf, rdfs:subPropertyOf
 - skos:broadMatch, skos:narrowMatch

Deployment of Vocabulary Links

Vocabulary links:

Vocabularies referencing "foaf" (119)

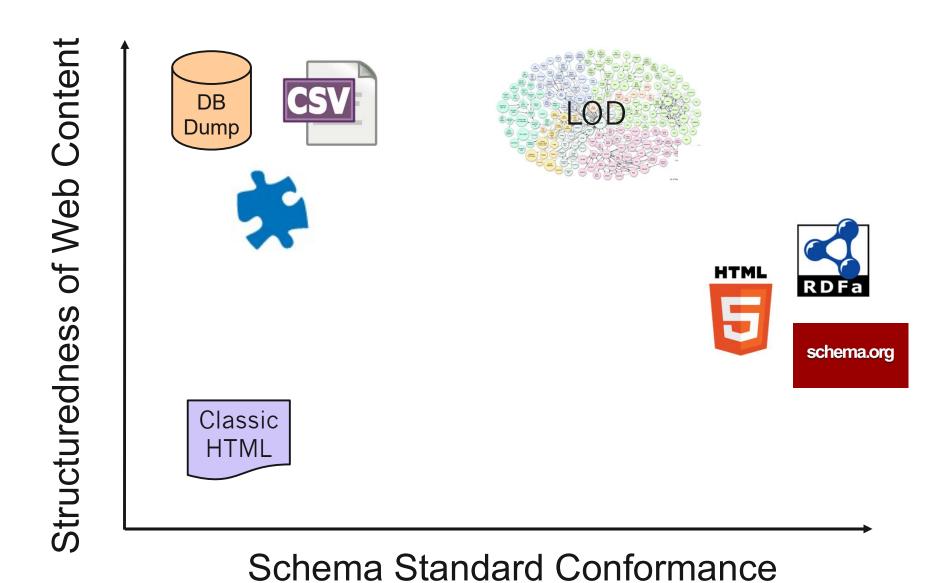
Vocabularies referenced by "mo" (17)



Similar to
Used by
Relies on
Metadata vocabulary
Extends
Specializes
Generalizes
Has equivalences with
Has disjunctions with

Source: Linked Open Vocabularies, https://lov.linkeddata.es/dataset/lov/

Summary: Structuredness and Standard Conformance



Please form Teams for the Student Projects (IE683)

- Teams of five students realize a data integration project including
 - 1. data gathering
 - 2. schema mapping and data translation
 - 3. identity resolution
 - 4. data quality assessment and data fusion
 - Slide set about student projects is online on course page.
 - teams write a 12-page report about their project, present project results
 - you may choose their own application domain and data sets
 - minimum 3 data sets with a good degree of overlap in attributes and instances
 - in addition, we will propose some suitable data sets from the domains of
 - films and actors, products and e-shops, restaurants, geographic information
 - 3 ECTS (70 % written project report, 30 % presentation of project results)
 - Teams will be registered in the lecture on Wednesday, September 28th.
 - remaining students will be grouped into additional teams in the lecture

7. References

Schema Integration

- Leser, Naumann: Informationsintegration. Chapter 5.1, dpunkt Verlag, 2007.
- Spaccapietra, et al.: Model Independent Assertions for Integration of Heterogeneous Schemas.
 VLDB, 1992.

Data Translation

- Doan, Halevy, Ives: Principles of Data Integration. Chapter 5.10, Morgan Kaufmann, 2012.
- Leser, Naumann: Informationsintegration. Chapter 5.2, DBunkt Verlag, 2007.

Schema Matching

- Doan, Halevy, Ives: Principles of Data Integration. Chapter 5, Morgan Kaufmann, 2012.
- Dong, Srivastava: Big Data Integration. Chapter 2. Morgan & Claypool Publishers, 2015.
- Euzenat, Shvaiko: Ontology Matching. Springer, 2013.
- Melnik, et al.: Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching. ICDE, 2002.
- Doan: iMAP: Discovering complex semantic Matches between Database Schemas. SIGMOD, 2004.
- Rahm, Madhavan, Bernstein: Generic Schema Matching, Ten Years Later. VLDB, 2011.
- Rinser, Lange, Naumann: Cross-lingual Entity Matching and Infobox Alignment in Wikipedia.
 Information Systems (IS) 38(6):887–907, 2013.

References

Table Annotation

- Suhara, et al.: Annotating columns with pre-trained language models. SIGMOD, 2022.
- Deng, et al.: TURL: table understanding through representation learning. PVLDB 2020.
- Cutrona, et al.: Results of SemTab 2021. CEUR-WS 3102, 2021.

Data Spaces and Data Lakes

- Hai, Rihan, Christoph Quix, and Matthias Jarke: Data lake concept and systems: a survey. arXiv:2106.09592 (2021).
- Sawadogo, Pegdwendé, and Jérôme Darmont: On data lake architectures and metadata management. Journal of Intelligent Information Systems, 2021.
- Franklin, M., Halevy, A., and Maier, D.: From Databases to Dataspaces
 A new Abstraction for Information Management. SIGMOD Rec., 2005.

Schema Standardization on the Web

- Bizer, et al.: Deployment of RDFa, Microdata, and Microformats on the Web A
 Quantitative Analysis. 12th International Semantic Web Conference, 2013.
- Schmachtenberg, et al: Adoption of the linked data best practices in different topical domains. 13th International Semantic Web Conference, 2014.