

Web Data Integration Introduction to the Student Projects

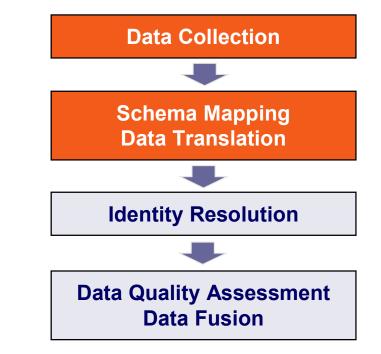
Universität Mannheim – Bizer/Brinkmann/Peeters: Web Data Integration – HWS2024 (Version: 26.9.2024)

Agenda

- 1. Overview
 - Phase I: Data Collection and Data Translation
 - Phase II: Identity Resolution
 - Phase III: Data Fusion
- 2. Details about Phase I: Data Collection and Data Translation
 - Requirements
 - Examples
 - Data Sources
- 3. Group Formation
- 4. Start of Group Work

Overview Student Projects

 Phase I: Data Collection and Data Translation

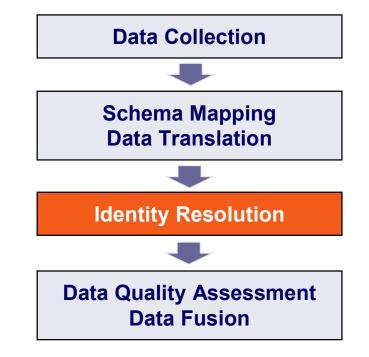

Duration: now till October 16th

Tasks:

- 1. Find a partner (groups of five)
- 2. Decide on a use case
- 3. Collect data from the Web
- 4. Profile your data and write outline about profile
- 5. Generate integrated schema (target schema)
- 6. Convert all your data into the integrated schema using MapForce

Result: All data is represented using a single unified schema

• one XML file per data source


Overview Student Projects

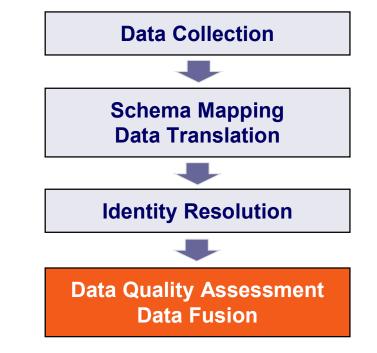
Phase II: Identity Resolution
 Duration: October 16th – November 13th

Tasks: Extend Java project template to

- 1. Identify records in different data sets that describe the same entity
- 2. Experiment with different combinations of similarity measures
- 3. Use blocking to speed up the comparisons
- 4. Evaluate quality of your approach

Result: Correspondences between records in different data sets that describe the same entity

Overview Student Projects


Phase III: Data Fusion

Duration: November 14th – November 28th Tasks: Extend Java project template to

- 1. Merge data and resolve data conflicts
- 2. Experiment with different conflict resolution strategies
- 3. Measure the quality and completeness of the final fused data set

Results:

- 1. Fused data set in which each real-world entity is described by only a single record and these records contain no data conflicts
- 2. Project report (12 pages) summarizing the results of the phases 1-3

Final Presentations

- Dates: December 4th and December 5th
- Overview of your use case
- Explain your data
- Explain the strategies that you used in each step
- Discuss the quality of your solution of each step

Grading of the Projects (IE683, 3 ECTS)

Individual contribution to:

70%: Project work

- quality of your solution
- systematic experimentation with different alternatives
- systematic evaluation of experiments
- quality of written report

30%: Final presentation

- structure
- slides
- discussion

Please submit table on who did what together with the report.

Coaching Sessions

- Ralph and Alex will give you tips and answer questions concerning your project.
- Registration via email to Ralph and Alex is mandatory!
 - until Monday night (min. 2 days before the coaching session)!
 - including the questions that you like to discuss
- Ralph and Alex will assign you a time slot for the Wednesdays/Thursdays coaching session and inform you about the slot via email.

Schedule

Week	Wednesday	Thursday
04.09.2024	Lecture: Introduction to Web Data Integration	- no lecture -
11.09.2024	Lecture: Structured Data on the Web	Lecture: Data Exchange Formats
18.09.2024	Lecture: Data Exchange Formats	Lecture: Schema Mapping
25.09.2024	Lecture: Schema Mapping	Project: Introduction to Student Projects
02.10.2024	Exercise: Introduction to MapForce	Coaching: Schema Mapping
09.10.2024	Project: Feedback about Project Outlines	Lecture: Identity Resolution
16.10.2024	Lecture: Identity Resolution	Exercise: Identity Resolution
23.10.2024	Project Work: Identity Resolution	Coaching: Identity Resolution
30.10.2024	Project Work: Identity Resolution	Coaching: Identity Resolution
06.11.2024	Lecture: Data Quality and Data Fusion	Lecture: Data Quality and Data Fusion
13.11.2024	Exercise: Data Quality and Data Fusion	Project Work: Data Quality and Data Fusion
20.11.2024	Project Work: Data Quality and Fusion	Coaching: Data Quality and Fusion
27.11.2024	Project Work: Data Quality and Fusion	Coaching: Data Quality and Fusion
04.12.2024	Presentation of Project Results	Presentation of Project Results
12.12.2024	Final Exam	

Administrative Requirement – Exam Registration

- To receive a grade for your project, you must register for the IE683 "exam" through Portal2 (different exam as IE670).
- The registration period is from the 23rd of October to the 6th of November.

Details about Phase I: Data Collection and Data Translation

- Duration: now October 18th
- Today
 - 1. Form teams of five people
 - 2. Decide on a domain/use case
 - 3. Start data collection and profiling
- Until Sunday, October 6th, 23:59
 - Send a 4 page abstract on your project (details next slide)
- Wednesday, October 9th, 15:30-17:00
 - You get feedback on your abstract (if necessary)
- Wednesday, October 2nd, 15:30-17:00
 - 1. Introduction to MapForce
 - 2. Start using MapForce to translate data to target schema

You should integrate:

- 1. 3 different data sets
- 2. at least 2,500 entities described in total (in joint dataset)
 - but more are better, good: >10,000 but <100,000</p>
- 3. at least 1,000 entities should be contained in at least two datasets
 - please estimate based on small sample
- 4. at least 8 attributes in joint dataset
 - entities should be identifiable by attribute combinations of at least two attributes,
 e.g. name+birthdate, ID attributes do not count, but are good supervision
- 5. at least 5 attributes should be contained in at least two datasets
 - some attributes (other than name) should be contained in three datasets (for fusion by voting)

- 6. ideally, at least one of your attributes is a list attribute
 - actors of a movie, directors of a company, songs on a CD

Project Abstracts

- Purpose of project abstract
 - check whether your ideas are feasible
 - proof that you fulfill the requirements (last slide)
- Content
 - 1. Brief description of use case
 - 2. Explanation how the datasets fulfill the requirements
 - 1. Schema and basic profile of each dataset
 - number of records per class
 - attributes with high percentage of missing values
 - 2. Integrated schema and overlap with input schemata
 - 3. Explanation why enough entities are likely contained in multiple datasets
- Submit via email to Ralph Peeters, Alexander Brinkmann and Christian Bizer
- Deadline: Sunday, October 6th, 23:59

1. Schema and Basic Profile of each Data Set

Table 1. Datasets

Dataset	Source(*)	Format	# of entities	# of attributes	List of attributes (**)
IMDB	Download URL	CSV	17,000	10	title, director (MV), year,
DBpedia	Dbpedia.org/sparql	xml	23,500	8	name, birthDate, activeYears,
Freebase	Download URL	CSV	11,000	14	first name, surname, spouse,

(*) Should explain where from and how you got the data

(**) Mark attributes with >30% missing values (MV)

2. Integrated Schema and Overlap with Input Schemata

Table 2. Attribute Intersection with Integrated Schema

Attribute name	Attribute type	Datasets in which the attribute is found
name	string	dataset1, dataset2, dataset3,.dataset4 (use proper dataset names)
director	string/list	dataset1, dataset3
year	date	dataset2, dataset3, dataset4

Requirements for the Final Project Report

- 12 pages (sharp!) counted without title page, table of content, literature list
 - Every extra page (including appendix pages) will reduce your mark by 0.33
- Due to Sunday, 1st December 2024, 23:59
 - Send by email to Chris, Ralph and Alex
- You must use latex template of Springer CS Proceedings
 - http://www.springer.com/de/it-informatik/lncs/conference-proceedingsguidelines
- Also submit
 - your code and
 - (a subset) of your data
 - the who did what table
- Please cite sources properly if you use any
 - Preferred citation style [Author, year]

Possible Use Cases for Student Projects

- Movies
 - budget, actors, directors, oscar nominations...
- Companies
 - performance, sector, key persons, Panama papers data
- Musicians
 - first name, last name, birth date, birth place, bands, albums ...
- Songs
 - title, album, artist, releases, producer, composer...
- Books (most boring!)
 - title, author(s), number of pages, language, publisher, translator, ...

Example Use Case 1: Movies

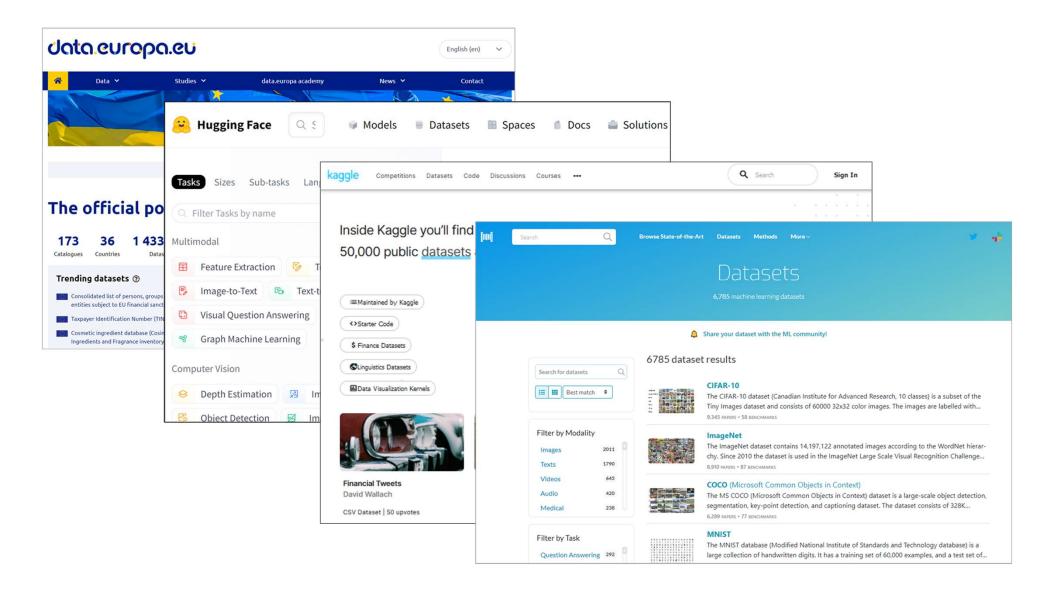
- Individual Data Sets contain
 - Movies
 - Actors
 - Directors
 - Oscar Nominations & Wins
 - Golden Globe Nominations & Wins
- Integrated dataset will contain
 - 1. Movies with release date, budget,... and awards nominated/won
 - 2. lists of actors and directors per movie

Example Use Case 1: Movies

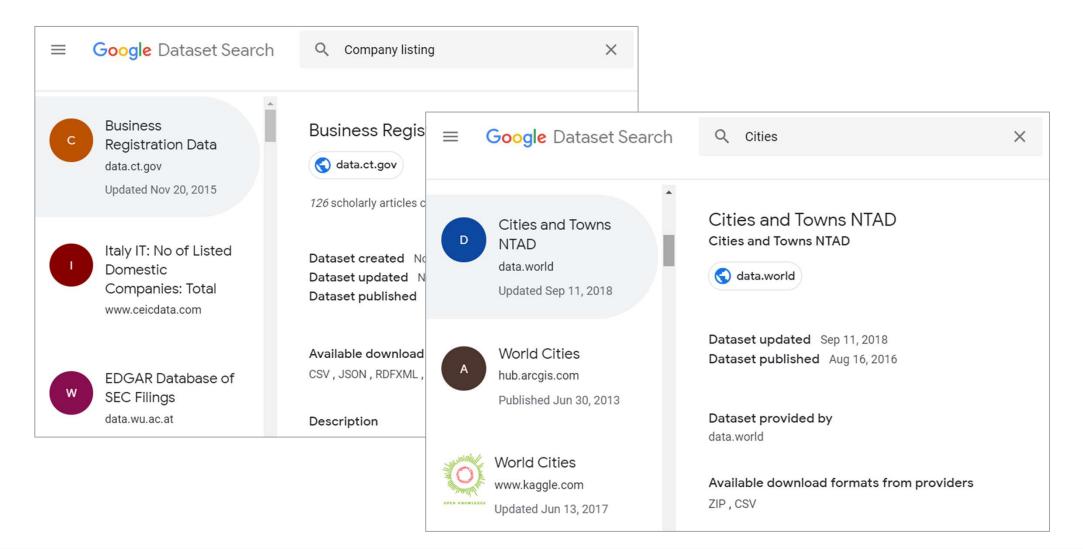
- Lists of Oscar/Golden Globe nominees and winners
 - http://aggdata.com/awards/oscar
 - http://aggdata.com/awards/golden_globes
 - http://www.amstat.org/publications/jse/datasets/oscars.dat.txt
- List of The Guardian greatest films (by Genre)
 - http://www.guardian.co.uk/news/datablog/2010/oct/16/greatestfilms-of-all-time
- A large movie list
 - https://github.com/vlandham/vlandham.github.com/blob/master/ vis/movie/data/movies_all.csv

Example Use Case 1: Movies

- Movie data from DBpedia
- Issue a SPARQL query against http://dbpedia.org/sparql

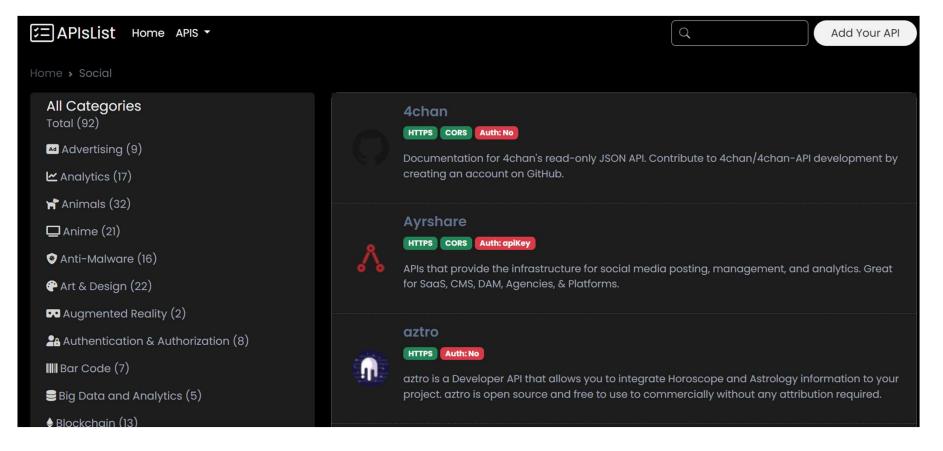

• Result can be stored as CSV, JSON, XML, ...

- Goal: Combine multiple datasets into a single dataset having the following attributes:
 - company name
 - website
 - founding date
 - headquarters country (regional branch vs. company)
 - headquarters city
 - industry (single taxonomy)
 - Assets (normalized)
 - revenue (normalized)
 - founders (list)


Sources of Data about Companies

- Forbes data set with top 2000 companies worldwide
 - https://www.kaggle.com/ash316/forbes-top-2000-companies
- Open Data 500 Companies data set with 500 US located companies
 - https://www.kaggle.com/govlab/open-data-500-companies
- Kaggle data set with 7.1M companies
 - https://www.kaggle.com/kaleab1/companies
- Companies data from DBpedia

• Data Portals


- Google Dataset Search
 - https://toolbox.google.com/datasetsearch

Google

• Web APIs

- e.g., apislist.com lists many public APIs
- requires some additional effort (using the API and getting the data)
- hotels, restaurants, real-estate

- DBpedia, Wikidata and other Linked Data sources
- Look at a single resource
 - http://dbpedia.org/resource/2001:_A_Space_Odyssey_%28film%29
- Look which properties are there (preferable dbpedia-owl)
- Construct a SPARQL query
- Go to http://dbpedia.org/sparql and get the data
- Hint: use OPTIONAL for properties that are not present for all entities:

```
SELECT ?title ?budget ?gross ?director
WHERE { ?x a dbo:Film .
OPTIONAL {?x dbo:gross ?gross . }
```


- Schema.org data that has been crawled from multiple web sites.
 - Product, local business, hotel, job posting,
 - <u>http://www.webdatacommons.org/structureddata/</u>
- Data per Website as JSON-Tables
 - <u>http://webdatacommons.org/structureddata/schemaorgtables/</u>

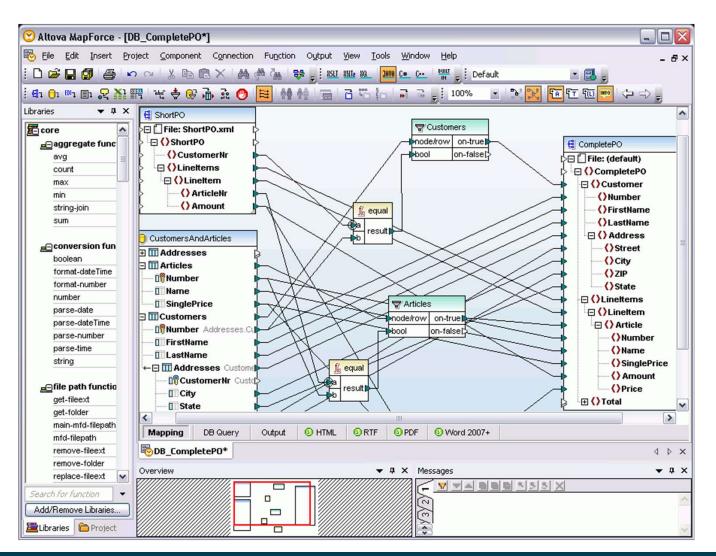
Class Name	Total Number of	Top Classes (Entity Count)	Total File Size	Quad File
http://schema.org/AdministrativeArea	Quads: 1,724,857 URLs: 85,625 Hosts: 63	http://schema.org/AdministrativeArea (100,671) http://schema.org/GeoCoordinates (84,152) http://schema.org/Country (83,851) http://schema.org/Continent (83,567)	23 MB	<u>schemaorgAdministrativeArea.nq.gz</u> (<u>sample</u>)
http://schema.org/Airport	Quads: 80,258,863 URLs: 963,538 Hosts: 99	http://schema.org/Airport (26,764,415) http://schema.org/PostalAddress (9,238) http://schema.org/Product (1,290) http://schema.org/Offer (1,283)	961 MB	<u>schemaorgAirport.nq.gz</u> (<u>sample</u>)
http://schema.org/PostalAddress	Quads: 776,573,609 URLs: 13,475,055 Hosts: 131,064	http://schema.org/PostalAddress (48,086,763) http://schema.org/LocalBusiness (16,641,260) http://schema.org/GeoCoordinates (12,345,942) http://schema.org/Place (9,071,774)	14,364 MB	<u>schemaorgPostalAddress.nq.gz</u> (<u>sample</u>)
http://schema.org/Product	Quads: 2,829,523,589 URLs: 48,314,143 Hosts: 104,118	http://schema.org/Product (287,815,069) http://schema.org/Offer (221,781,710) http://schema.org/AggregateRating (38,398,548) http://schema.org/Review (26,209,678)	62,179 MB	schemaorgProduct.nq.gz (sample)

Class-Specific Subsets of the Schema.org Data

Universität Mannheim – Bizer/Brinkmann/Peeters: Web Data Integration – HWS2024 (Version: 26.9.2024)

- 1. Have a look at your input data
 - Which entities exist? What attributes do they have?
- 2. Check input data against project requirements (see Slide 12)
 - Create the tables for the project abstract (see Slide 14)
- 3. Apply schema integration method from lecture
 - Rules of Thumb or Spaccapietra, et al.

Creating an Integrated Schema


Hint: Create an example XML file

- using the integrated schema
- for some data from each input source
- in order to check if integrated schema can represent input data.

</movies>

Outlook: Exercise Next Wednesday

- 1. Introduction to MapForce by Alex and Ralph
- 2. Start translating your data into the unifying schema using MapForce

...and now

- 1. Team formation
 - a. Students with team:
 - \rightarrow Put your name in the list
 - b. Students without team
 - → Let us know and we will assign you

Are there any open issues? Are there any questions?

- 2. Agree on use case
- 3. Start collecting data

