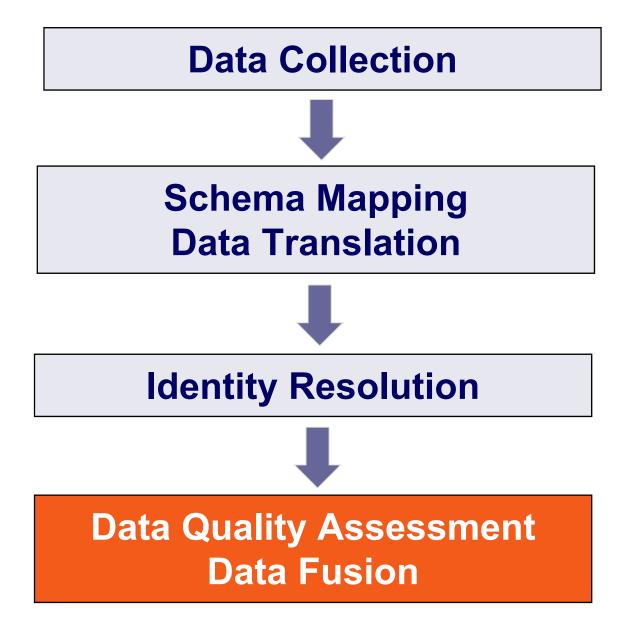


The Data Integration Process



Outline

- 1. Introduction
- 2. Data Provenance
- 3. Data Quality Assessment
- 4. Data Fusion
- 5. References

1. Introduction

Information providers on the Web have

- different levels of knowledge
- different views of the world
- different intentions

Therefore,

- 1. information on the Web is partly wrong, biased, outdated, incomplete, and inconsistent.
- 2. every piece of information on the Web needs to be considered as a claim by somebody, not as a fact.
- 3. the information consumer needs to make up her mind which claims to use for a certain task.

Example: Area and Population of Monaco

Area: Different claims and different conversions

en.wikipedia.org	2.02 sq km	0.78 sq miles
www.state.gov	1.95 sq km	0.8 sq miles
www.atlapedia.com	1.94 sq km	1 sq mile

(1.95 sq km = 0.753 sq miles)

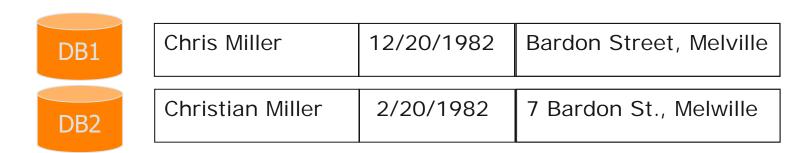
Population in 2004: Different claims and sparse meta-information

Year	Value	Meta-information	Webpage
2004	32,270	(July 2004 est.)	http://www.cia.gov/cia/publications/factbook/geos/mn.html
2003	32,130	(est.)	http://www.greenfacts.org/studies/climate_change/index.htm
2003	30,000		http://www.tlfq.ulaval.ca/axl/europe/monaco.htm
2000	31,842		http://en.wikipedia.org/wiki/Monaco

Source: Peter Bunemann

Definition: Data Conflict

Multiple records that describe the same real-world entity provide different values for the same attribute.

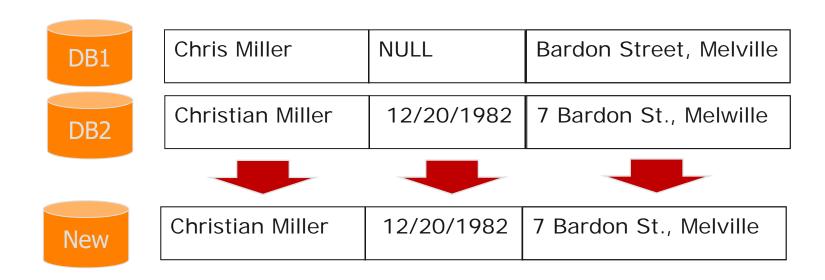


Reasons for data conflicts:

- 1. Data creation: Typos, measurement errors, erroneous information extraction
- 2. Data currency: Different points in time, missing updates
- 3. Data semantics: Different definitions of concepts (like population)
- 4. Data representation: Different coding of values ("Mrs." vs. "2")
- 5. Data integration: Wrong data translation or identity resolution
- 6. Actual disagreement of data providers: Subjective attributes (like cuteness)

Definition: Data Fusion

Given multiple records that describe the same real-world entity, create a single record while resolving conflicting data values.



- Goal: Create a high quality record.
- But what does high data quality actually mean?

Data Quality

Data quality is a multi-dimensional construct which measures the fitness for use of data for a specific task.

Fitness for use

- 1. has many dimensions
 - accuracy, timeliness, completeness, understandability, ...
- 2. is task-dependent
 - you verify information more tightly when you invest 1 million €
- 3. is subjective
 - some people are more paranoid than others

Data Quality Assessment

Content-based Metrics

- use information to be assessed itself as quality indicator
- examples: constraints and consistency rules, statistical outlier detection

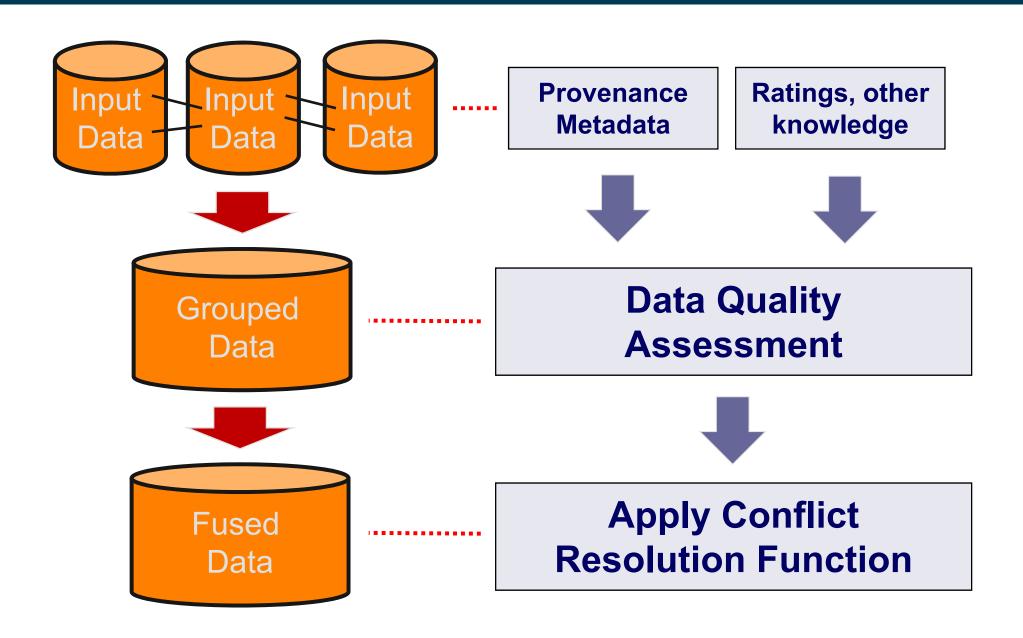
Provenance-based Metrics

- employ provenance meta-information about the circumstances in which information was created as quality indicator
- examples: "Disbelieve everything a vendor says about its competitor" or
 "Do not use information that is older than one week"

Rating-based Metrics

- rely on explicit or implicit ratings about information itself, information sources, or information providers
- examples: "Only read news articles having at least 100 Facebook likes",
 "Accept recommendations from a friend on restaurants, but distrust him on computers", "Prefer content from websites having a high PageRank"

Summary: Elements of the Data Fusion Process



2. Data Provenance

Provenance is information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability or trustworthiness.

Source: W3C PROV Specification

Provenance information = Important data quality indicator

Outline of this Subsection

- 1. Simple Attribution versus Full Provenance Chains
- 2. Publishing Provenance Information on the Web
- 3. Representing Provenance Metadata together with Integrated Data

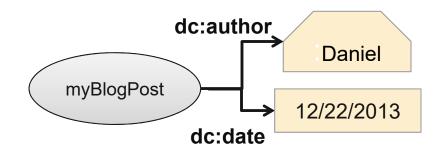
2.1 Simple Attribution versus Full Provenance Chains

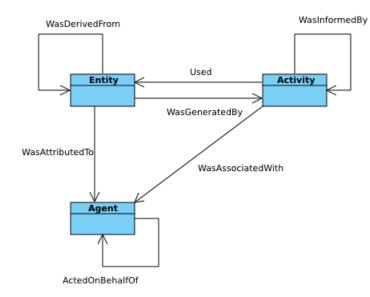
1. Simple Attribution:

- state who created a document/data item and when it was created
- standard: Dublin Core vocabulary

2. Full Provenance Chains

- Describe the full process of data creation / reuse / integration / aggregation
- standard: W3C PROV Specification
- alternative name: Data Lineage (explain why something is in a query result)





- Factors for the decision between both alternatives:
 - Will the users be interested in all the details?
 - Yes for law suits and investing. No for deciding which chewing gum to buy
 - Can target applications understand/reason about all details?

Application Area in which Provenance Matters

- Web-based Information Systems
 - display origin of data or documents
 - filter, rank or fuse data or documents using provenance as quality indicator
 - explain result creation process

Science

- it is important to know how the results of a publication were obtained
- trace scientific workflows

Law

- explain which information was used for a conclusion (e.g. for court cases)
- prove that information could legally be used for something (e.g. deporting people)
- license / attribution of documents or data
- remixing music or films

2.2 Publishing Provenance Information on the Web

In the context of the Web, you always know the URL from which you downloaded things. Some sites also give you Last-Modified information.

HTTP-Response

Which vocabularies should websites use to publish more detailed provenance information?

Dublin Core

- The Dublin Core vocabulary defines terms for representing simple attribution information
 - creator, contributor, publisher, date, rights, format, language, ...
- Dublin Core®

- The terms are used in different technical contexts
 - HTML, Linked Data, proprietary library formats
 - Example of a Linked Data document:

http://dbpedia.org/data/Alec_Empire

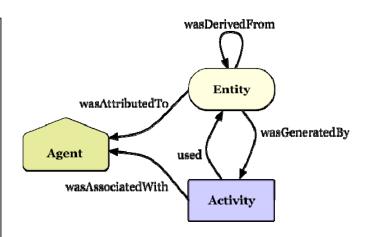
```
# Metadata and Licensing Information
<http://dbpedia.org/data/Alec_Empire>
    rdfs:label "RDF document describing Alec Empire";
    rdf:type foaf:Document;
    dc:publisher <http://dbpedia.org/resource/DBpedia>;
    dc:date "2017-07-13"^^xsd:date;
    dc:rights <http://en.wikipedia.org/wiki/WP:GFDL>.

# The Document Content
<http://dbpedia.org/resource/Alec_Empire>
    foaf:name "Empire, Alec";
    rdf:type foaf:Person;
    rdfs:comment "Alec Empire (born May 2, 1972) is a German musician..."@en;
...
```

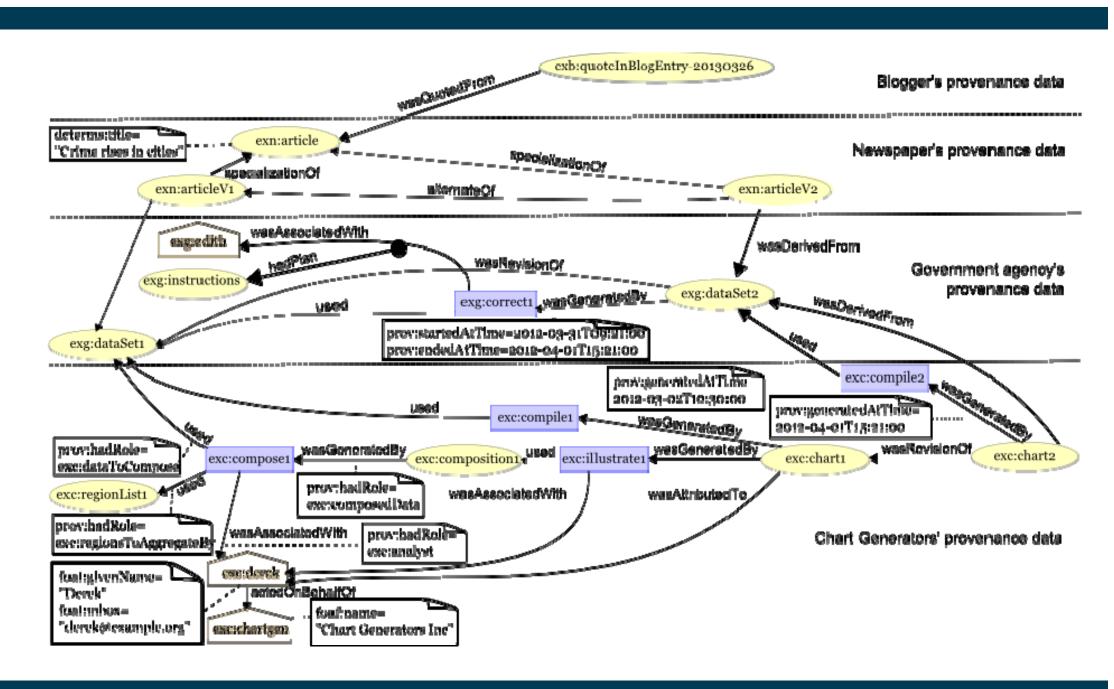
W3C PROV

- The W3C PROV vocabulary defines terms for representing complex provenance chains
- Example of a PROV XML document:

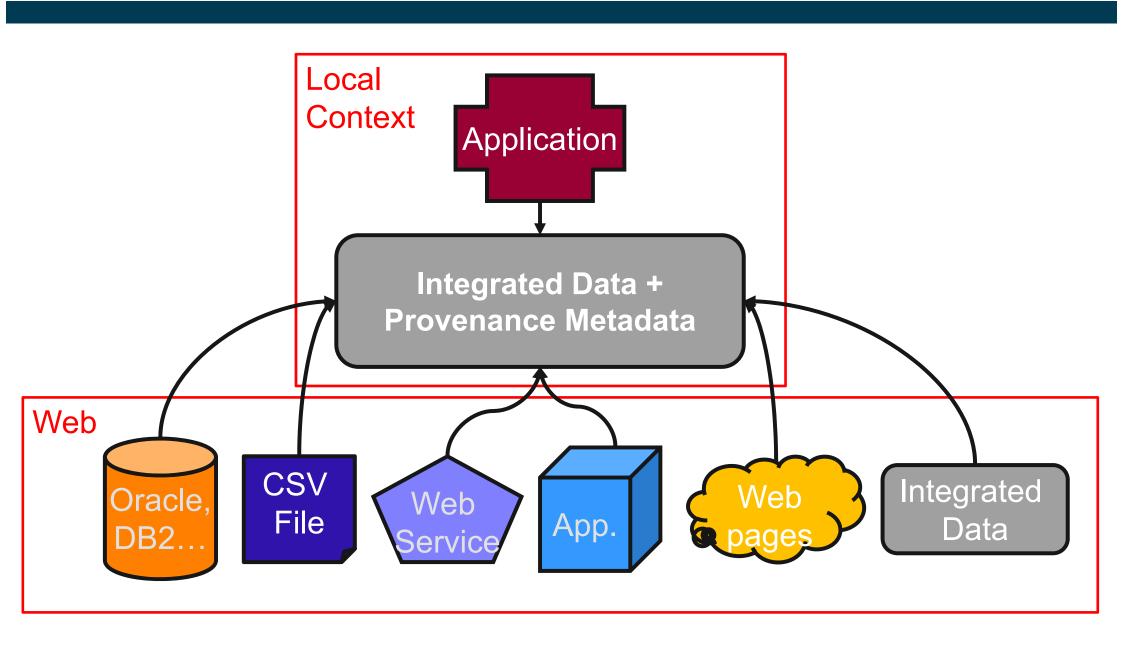
```
orov:document>
 <!-- Entities -->
 contity prov:id="exn:article">
       <dct:title>Crime rises in cities</dct:title>
 </prov:entity>
 <!-- Agents -->
 contagent prov:id="exc:derek">
     <foaf:givenName>Derek Smith</foaf:givenName>
     <foaf:mbox>mailto:derek@example.org</foaf:mbox>
 </prov:agent>
<!-- Activities -->
 cprov:activity prov:id="exc:compile1"/>
<!-- Usage and Generation -->
cprov:wasGeneratedBy>
     cprov:entity prov:ref="exn:article"/>
     compile1"/>
</prov:wasGeneratedBy>
 <!-Agent's Responsibility -->
v:wasAssociatedWith>
     compile1"/>
     cprov:agent prov:ref="exc:derek"/>
:wasAssociatedWith>
```

More Complex Example: W3C PROV



2.3 Representing Provenance Metadata together with Integrated Data



Relational Data Model

- Alternative 1: Record-Level Provenance (coarse grained, fast queries)
- Alternative 2: Value-Level Provenance (fine grained, but slow queries)
- Alternative 3: Employ special database engine which implements extended relational data model with a pointer to provenance information for each attribute value (e.g. Stanford Trio Database)

Physicians with Record-Level Provenance

<u>Key</u>	Name	Street	ProvID
1425	Dr. Mark Smith	14 Main Street	001
4217	Mark Smith	12 Main St.	002

Physicians with Value-Level Provenance

Key	<u>Attribute</u>	Value	<u>ProvID</u>	
1425	Name	Dr. Mark Smith	001	
1425	Name	Mark Smith	002	
1425 Street		14 Main Street	001	

Provenance Table

<u>ProvID</u>	Source	Date
001	www.mark- smith.com	12/6/2017 18:42:12
002	www.doc- find.com	12/1/2017 12:21:54

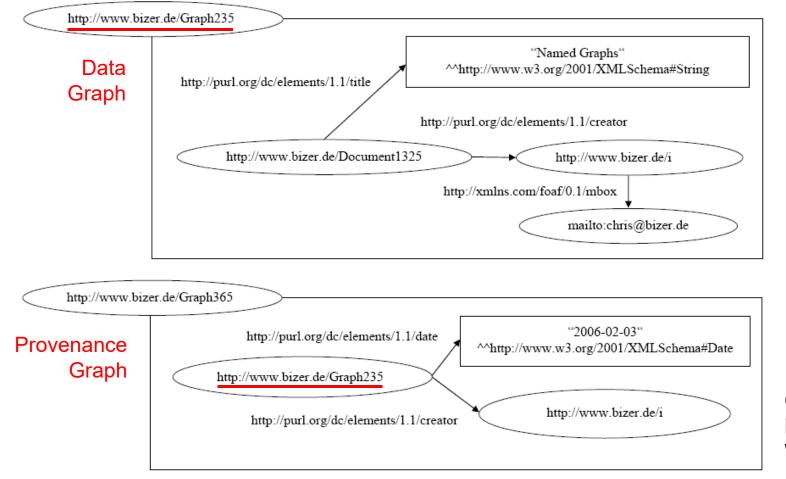
XML Data Model

Represent provenance using multiple value elements and references to provenance elements.

```
<physician>
 <name>
   <value prov="prov01">Dr. Mark Smith</value>
   <value prov="prov02">Mark Smith</value>
 </name>
 <address>
   <street>
     <value prov="prov01">14 Main Street</value>
     <value prov="prov02">12 Main St.</value>
   </street>
   <city> ... </city>
 </address>
</physician>
ovenance id= "prov01">
   <source>http://www.marksmith.com/index.htm</source>
   <date>06 Nov 2017 14:06:11 GMT</date>
ovenance id= "prov02">
```

RDF Data Model

- Group triples into Named Graphs (= set of triples that is identified by a URI)
- Provide provenance information by talking about a graph in another graph
- Named Graphs can be queried using the SPARQL keyword GRAPH



Carroll, Bizer, Hayes, Stickler: Named Graphs. Journal of Web Semantics, 2005.

3. Data Quality

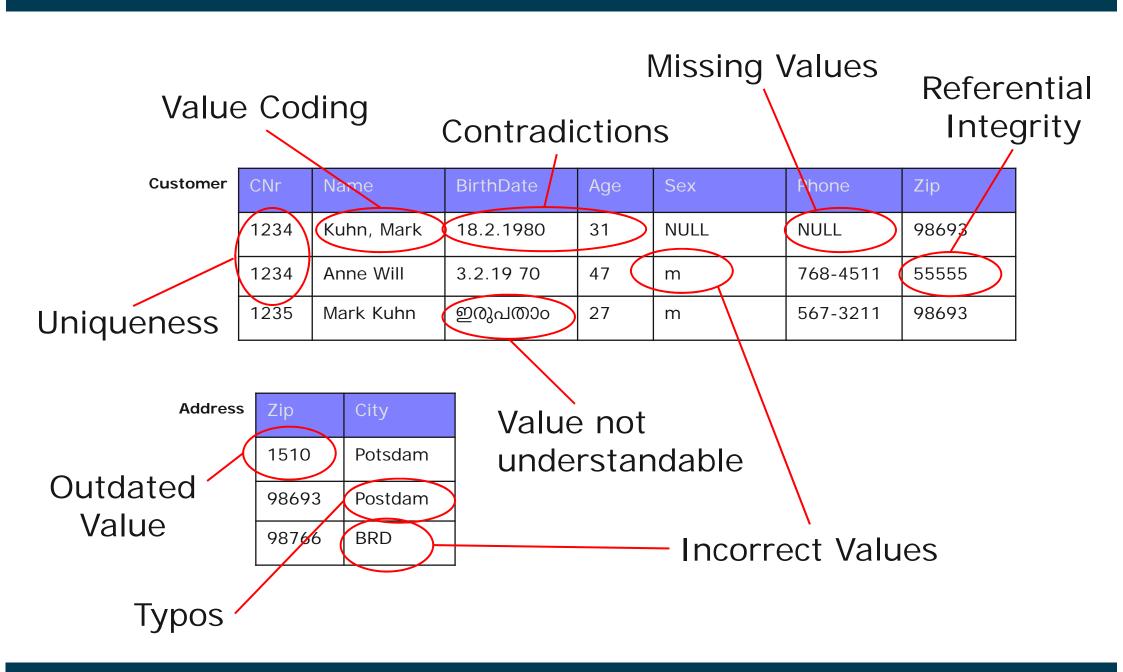
Data quality is a multi-dimensional construct which measures the "fitness for use" of data for a specific task.

- Which quality dimensions matter depends on the task
- The required level of quality depends on the task and the user

Outline of this Subsection

- 3.1 Data Quality Dimensions
- 3.2 Data Quality Assessment

Different Types of Data Quality Problems



Data Quality in the Enterprise and Web Context

Enterprise Context

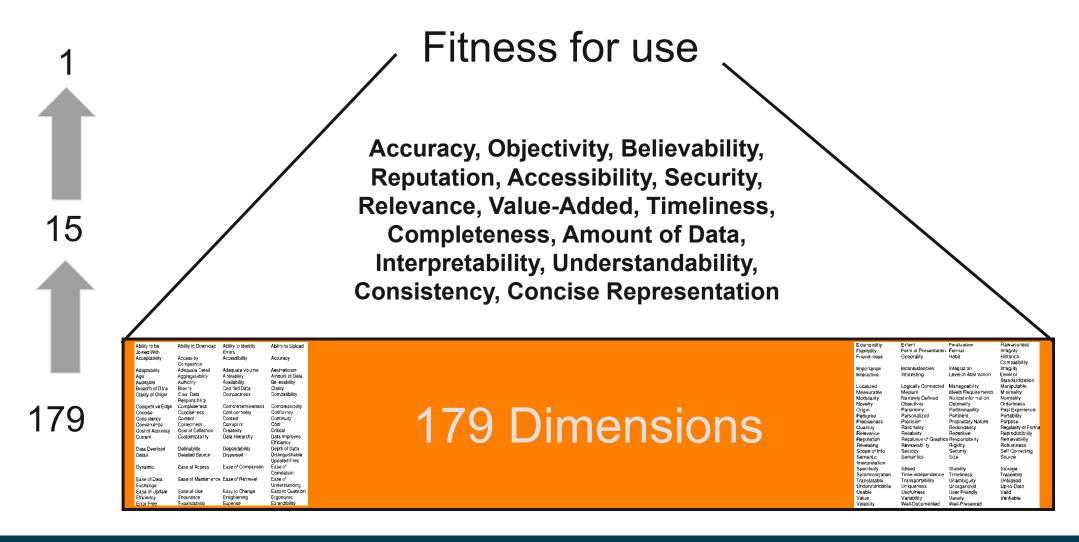
- the goal is to establish procedures and rules that guarantee high quality data production, quality monitoring, and regular data cleansing
- pioneering research by MIT Total Data Quality Management (TDQM) program
- consequences of low data quality:
 - A.T. Kearny: 25%-40% of the operational costs result from low data quality as low quality data leads to wrong management decisions
 - US postal service: out of 100.000 mass-letters, 7.000 cannot be delivered because of wrong address
 - SAS: Only 18% of all German companies trust their data

Web Context

- large number of data sources, but no possibility to influence data providers
- thus, focus on identifying the high-quality subset of the available data
- challenge: Quality indicators often spare and unreliable

3.1 Data Quality Dimensions

As part of the MIT Total Data Quality Management (TDQM) program, [Wang/Strong1996] asked managers which data quality dimensions matter for their tasks:



Category	IQ Criteria	TDQM	MBIS	Weikum	$\overline{\mathrm{DWQ}}$	\mathbf{SCOUG}	Chen
Content-	Accuracy	Yes	Yes	Yes	Yes	Yes	Yes
related	Documentation					Yes	
Criteria	Relevancy	Yes	Yes		Yes		Yes
	Value-Added	Yes				Yes	
	Completeness	Yes	Yes	Yes	Yes	Yes	Yes
	Interpretability	Yes			Yes		
Technical	Timeliness	Yes	Yes	Yes	Yes	Yes	Yes
Criteria	Reliability			Yes			
	Latency			Yes			Yes
	Performability			Yes		Yes	
	Response time		Yes	Yes			Yes
	Security	Yes		Yes	Yes		
	Accessibility	Yes	Yes	Yes	Yes	Yes	
	Price		Yes	Yes		Yes	
	Customer Support					Yes	
Intellectual	Believability	Yes	Yes	Yes	Yes	Yes	
Criteria	Reputation	Yes	Yes		Yes		
	Objectivity	Yes					
Instantiation	Verifiability			Yes			
related	Amount of data	Yes	Yes				Yes
Criteria	Understandability	Yes	Yes				
	Concise represent.	Yes					
	Consistent represent.	Yes	Yes	Yes	Yes	Yes	

Source: Felix Naumann

Content-related Data Quality Dimensions

...concern the actual data.

Accuracy

is the extent to which data is correct, reliable, and certified free of error [WS96]

Timeliness

is the extent to which the age of the data is appropriate for the task at hand [WS96]

Completeness

 is the extent to which data is not missing and is of sufficient breadth, depth, and scope for the task at hand [WS96]

Interpretability

 is the extent to which data is in appropriate languages, symbols, and units, and the definitions are clear [WS96]

Documentation

is the amount and usefulness of documents with metadata

Relevancy (or relevance)

is the extent to which data is applicable and helpful for the task at hand [WS96]

Value-Added

is the extent to which data is beneficial and provides advantages from its use [WS96]

Technical Data Quality Dimensions

...concern software and hardware used to access the data.

- Accessibility (or availability)
 - Is the extent to which data are available or easily and quickly receivable [WS96]
- Latency
 - is the amount of time in seconds from issuing the query until the first data item reaches the user
- Response time
 - measures the delay in seconds between submission of a query by the user and reception of the complete response from the IS
- Price
 - is the amount of money a user has to pay for a query
 - is the extent to which the cost of collecting appropriate data is reasonable [WS96]
- Security
 - is the extent to which access to data is restricted appropriately to maintain its security [WS96]

Intellectual Data Quality Dimensions

...concern subjective aspects.

Believability

is the extent to which data is regarded as true, real, and credible [WS96]

Objectivity

is the extent to which data is unbiased, unprejudiced, and impartial [WS96]

Reputation

 is the extent to which data is trusted or highly regarded in terms of its source or content [WS96]

Reliability

is the degree to which the user can trust the information

Instantiation-related Data Quality Dimensions

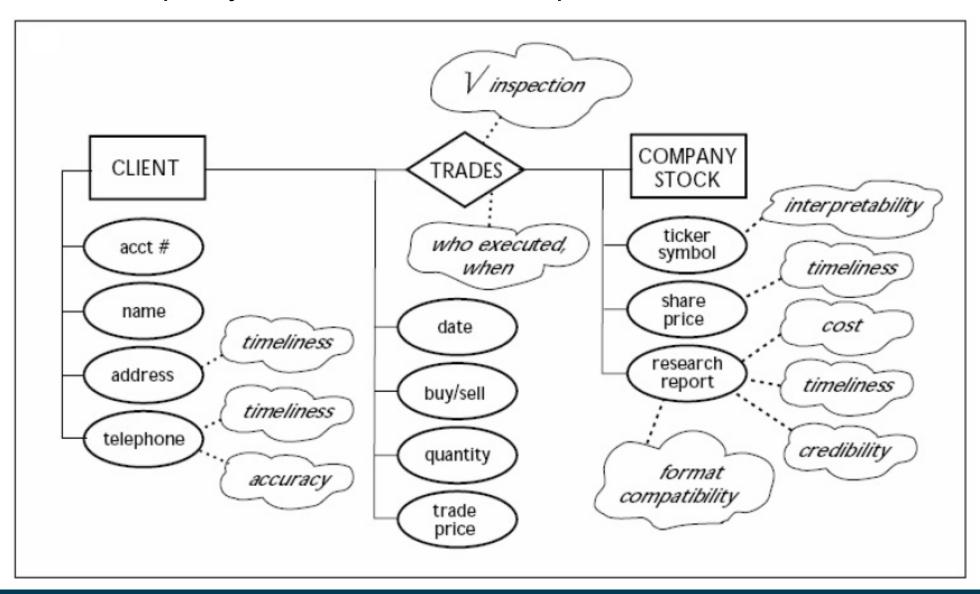
...concern the representation of data.

Amount of data

- is the extent to which the quantity or volume of available data is appropriate [WS96]
- Representational conciseness
 - is the extent to which data is compactly represented without being overwhelming [WS96]
- Representational consistency
 - is the extent to which data is always represented in the same format and are compatible with previous data [WS96]
- Understandability (ease of understanding)
 - is the extent to which data are clear without ambiguity and easily comprehended [WS96]
- Verifiability (traceability, lineage)
 - is the extent to which data are well documented, verifiable, and easily attributed to a source [WS96]

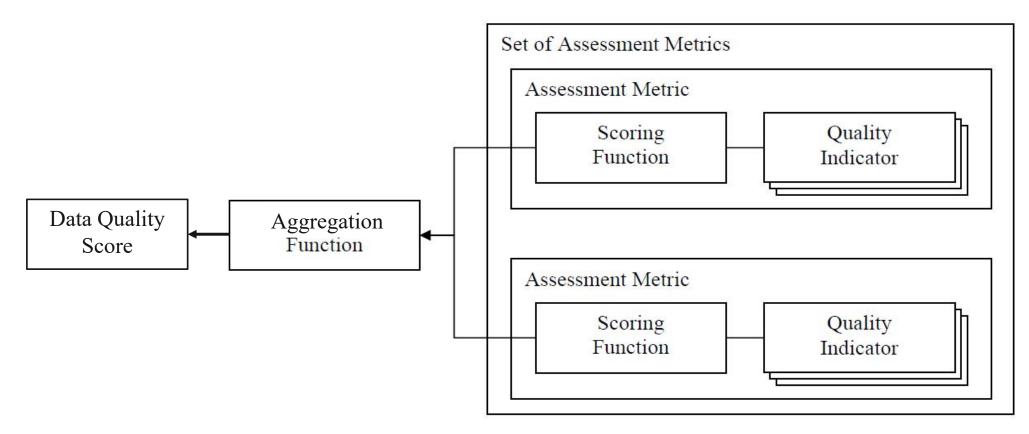
Relevancy of Data Quality Dimensions

Which quality dimensions matter depends on the task at hand.



3.2. Data Quality Assessment

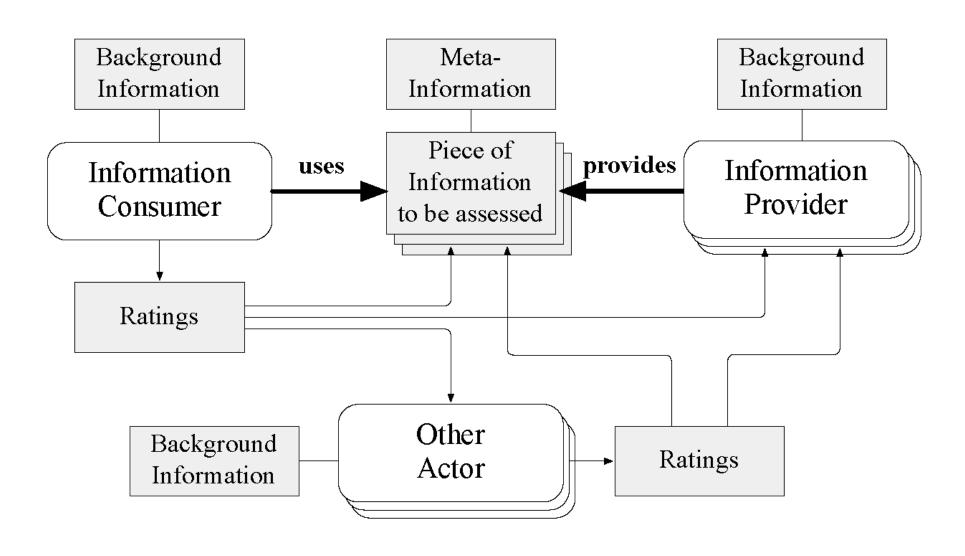
Various domain-specific heuristics are used to measure data quality.



The applicability of specific heuristics depends on

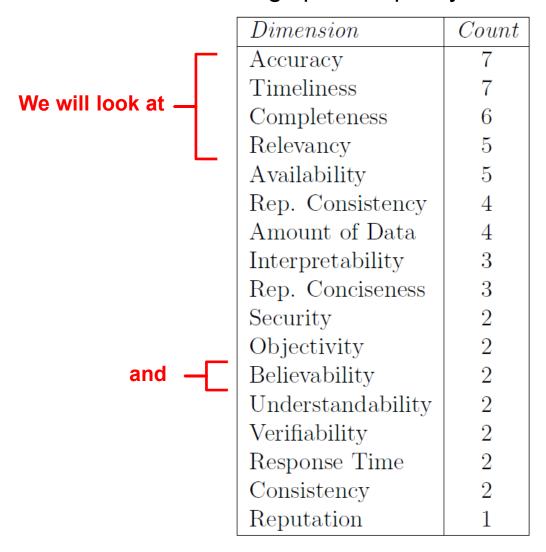
- 1. Availability of quality indicators (like provenance information or ratings)
- 2. Quality of quality indicators (fake ratings, sparse provenance information)

Quality Indicators in the Web Context



Examples of Data Quality Assessment Metrics

Number of DQ classification schemata containing specific quality dimensions:



Source: Bizer, 2007

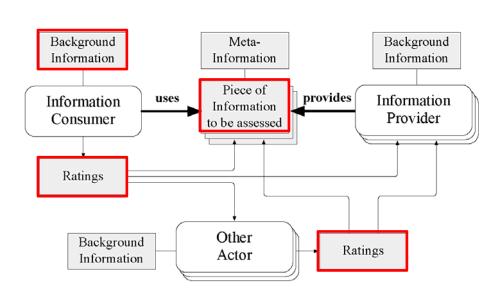
Assessing Data Accuracy

– Definition:

- Accuracy is the extent to which data is correct, reliable, and free of error
- Also called: Truth Discovery

– Assessment Methods:

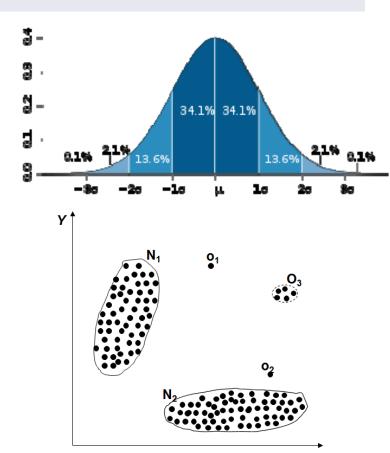
- 1. Outlier detection
- 2. Constraint testing
- 3. Lookup tables / reference data
- 4. Expert- or user ratings
- Relevant quality indicators:



Outlier Detection

An outlier is a individual data instance that is anomalous with respect to the rest of the data.

- Outliers can be considered as errors and be assigned a low quality score
- Techniques
 - statistical distributions, clustering, classification
- Challenges
 - the exact notion of an outlier is different for different application domains
 - an individual may be a outlier w.r.t. a single attribute or a combination of multiple attributes
 - normal behaviour keeps evolving over time
 - natural outliers: Population of Mexico City

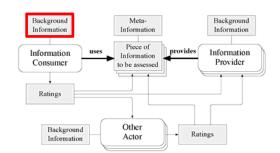


- More information
 - Chandola, et al.: Anomaly Detection: A Survey. ACM Computing Surveys, 2009.

Constraint Testing

Match data against constraints and consistency rules in order to detect errors.

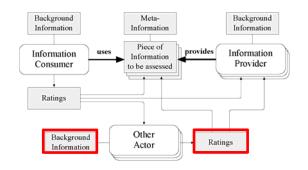
- Examples of consistency rules
 - if person is in middle school, then age is (likely) below 25
 - if area code is 131, then the city should be Edinburgh
- Examples of constraints
 - books must have at least one author
 - the age of humans should be between 0 and 130
 - disbelieve everything a vendor says about its competitor.
- Rule and constraint acquisition
 - define rules and constraints manually
 - or learn from examples e.g. using association analysis (see lecture Data Mining)
- More information
 - Fan, Geerts: Foundations of Data Quality Management. Morgan & Claypool, 2012.

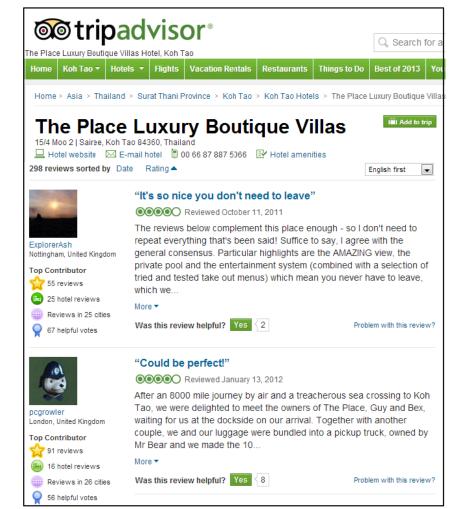


Ratings

Data is often filtered or ranked based on ratings provided by users or experts.

- Various scoring functions exist
 - practical systems often use simple, easily understandable functions
- Challenges:
 - Motivate users to rate
 - data
 - data providers
 - data sources
 - 2. Quality of the ratings
 - fake ratings
 - clueless raters





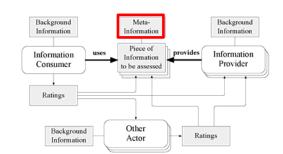
Implicit Ratings

- Events potentially interpretable as positive ratings
 - clicks, page views
 - time spent on some page
 - items bought, ...
- Advantage
 - large amounts of implicit ratings can be collected constantly by the application
 - collection of ratings does not require additional effort from the user
- Problem
 - one cannot be sure whether the user behavior is correctly interpreted
 - for example, a user might not like all the books he or she has bought;
 the user also might have bought a book for someone else
- More details: Web Mining Lecture Chapter: Recommender Systems

Assessing Data Timeliness

The assessment of the timeliness of data usually requires provenance data.

- Provenance metadata
 - HTTP Last-Modified
 - dc:date
- Fallbacks if no timestamps are available
 - propagate timestamps to data without timestamps
 - e.g. two tables provide same profit for a company, only one table has a timestamp
 - Zhang, Chakrabarti: InfoGather+, SIGMOD 2013.
 - use rules instead of timestamps
 - Number of children: Prefer higher value, as number of children of a person usually grows
 - Employee salaries: Prefer higher values, as salaries usually do not decrease



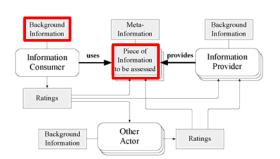
Assessing Data Completeness

– Definition:

- The extent to which data is not missing and is of sufficient breadth, depth, and scope for the task at hand
- Density: Fraction of attributes filled
- Coverage: Fraction of real-world objects represented

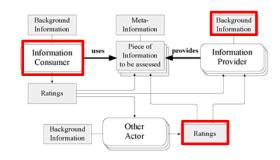
Assessment:

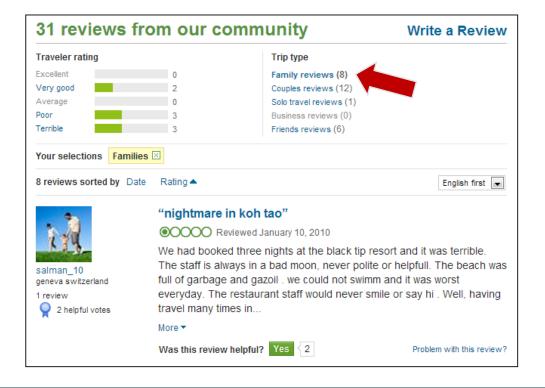
- Density
 - Sample data source and calculate density from sample
- Coverage
 - hard to calculate as overall number of real-world objects is unknown in many cases: Countries: OK; Products or people: Problematic
 - fallback: Prefer data sources that describe more entities



Assessing Data Relevancy

- Definition:
 - The extent to which data is applicable and helpful for the task at hand
- Assessment:
 - Example: TripAdvisor
 - Filter reviews based on background information about information provider
 - Example: Google
 - Rank webpages based on search terms and PageRank score
 - See lecture Information Retrieval





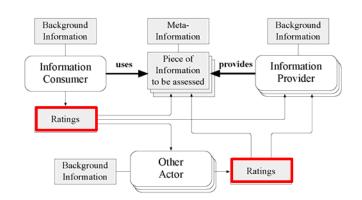
Assessing Believability / Trustworthiness

Definition

- The extent to which data is <u>regarded</u> as true, real, and credible.
- Subjective dimension which depends on the individual user

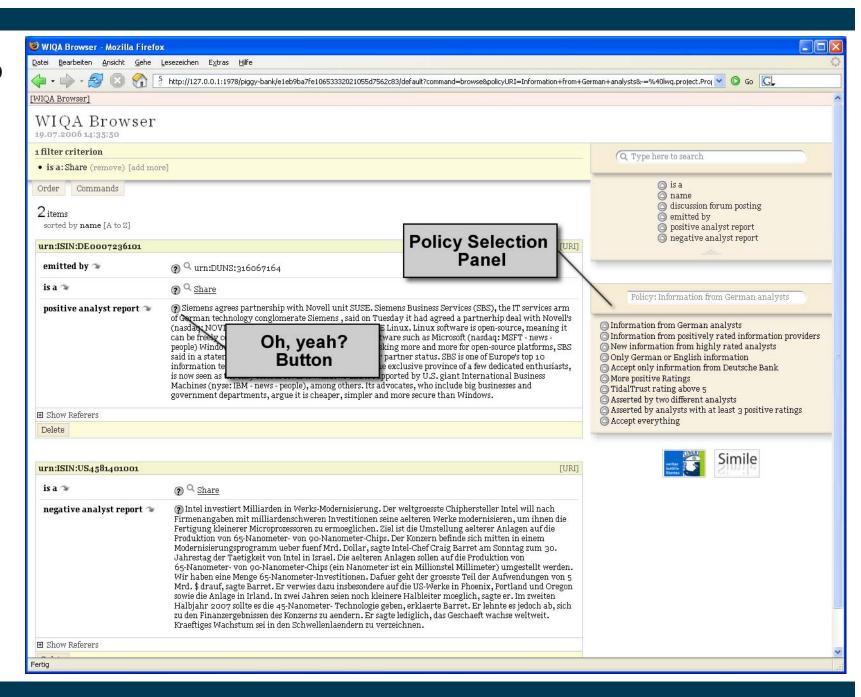
Assessment:

- Individual experience with the data
- Fallbacks:
 - corporate guidance about sources
 - trust networks
- Explanations about the data quality assessment process
 - in order to trust data, the users must understand why the system regards data to be high quality
 - Tim Berners-Lee's "Oh, yeah?"-button

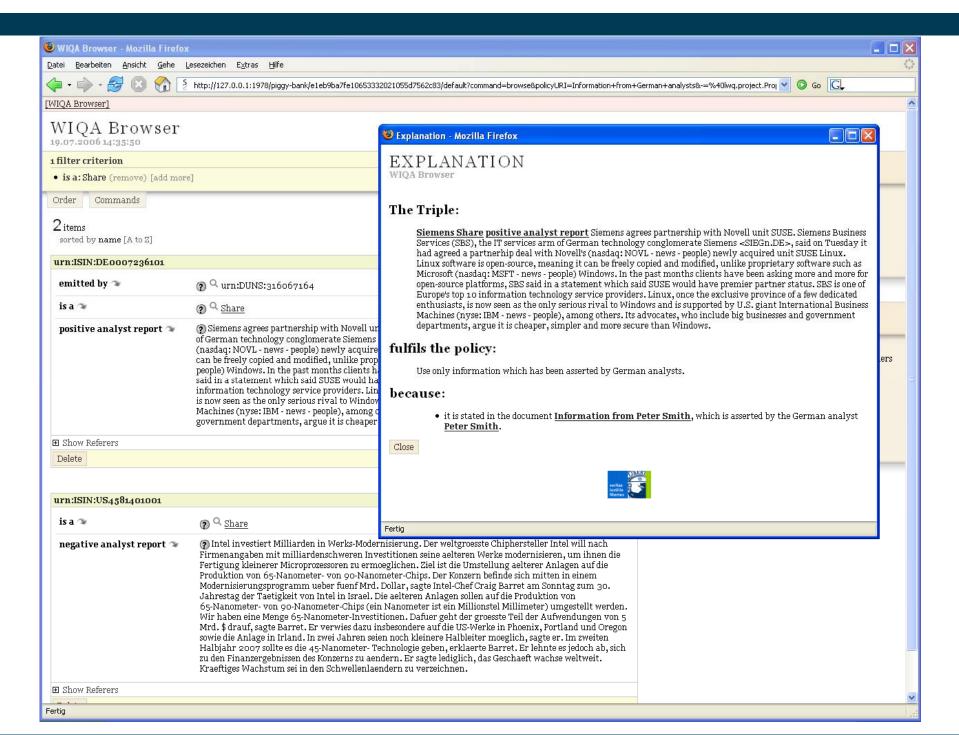


Prototype: The WIQA - Browser

- Enables users to employ different quality assessment policies
- Can explain assessment results



Explanation about an Assessment Decision



Example Explanation

The triple:

 Siemens AG has positive analyst report: "As Siemens agrees partnership with Novell unit SUSE ..."

fulfills the policy:

 Accept only information that has been asserted by people who have received at least 3 positive ratings.

because:

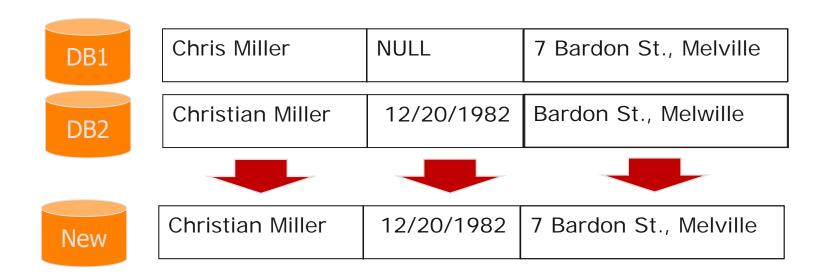
- it was asserted by Peter Smith and
- Peter Smith has received positive ratings from
 - Mark Scott who works for Siemens.
 - David Brown who works for Intel.
 - John Maynard who works for Financial Times.

Summary

- Data quality assessment is essential for Web data integration as errors accumulate:
 - 1. Quality of the external data sources (everybody can publish on the Web)
 - 2. Quality of the integration process (wrong mappings, wrong identity resolution)
- Many data quality problems only become visible when we integrate data from multiple sources
- A wide range of different quality assessment heuristics can be used
 - content-based, provenance-based, rating-based metrics
- The applicability of the heuristics depends on
 - the availability of quality indicators (like provenance information or ratings)
 - quality of quality indicators (fake ratings, coarse grained provenance)
- Many systems only try to assess the accuracy and the timeliness of Web data and ignore the other quality dimensions

4. Data Fusion

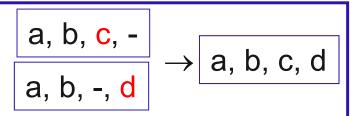
Given multiple records that describe the same real-world entity, create a single record while resolving conflicting data values.



- Goal: Create a single high quality record.
- Two basic fusion situations: Uncertainty and Contradiction

4.1 Uncertainty and Contradiction

NULL values indicate that a source is uncertain about a value.



Complementary records → Take information

$$\begin{array}{c}
a, b, c, -\\
a, b, -, -
\end{array}$$

Subsumed records
Remove subsumed

$$a, b, -, a, b, -, a, b, -, -$$

Identical records

Remove duplicate

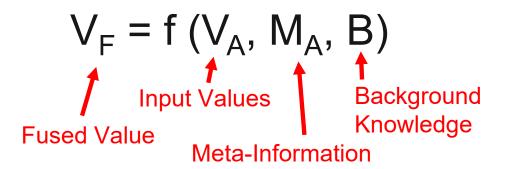
$$\begin{array}{c}
a, b, c, -\\
a, e, -, d
\end{array}$$

$$\rightarrow a, f(b,e), c, d$$

Conflicting records Apply conflict resolution function

4.2 Conflict Resolution Functions

- Conflict resolution functions are attribute-specific
 - you define a specific function for each attribute that should be fused



- There is a wide range of different functions that fit different requirements
- Functions differ in regard to the data types, they can be applied for
 - numerical values (e.g. population of a place)
 - nominal values (e.g. name of a person)
 - value sets (e.g. actors performing in a movie)
- Two main groups of conflict resolution functions
 - 1. Functions that rely only on the data values to be fused
 - 2. Functions that rely on provenance data, ratings, or information quality scores

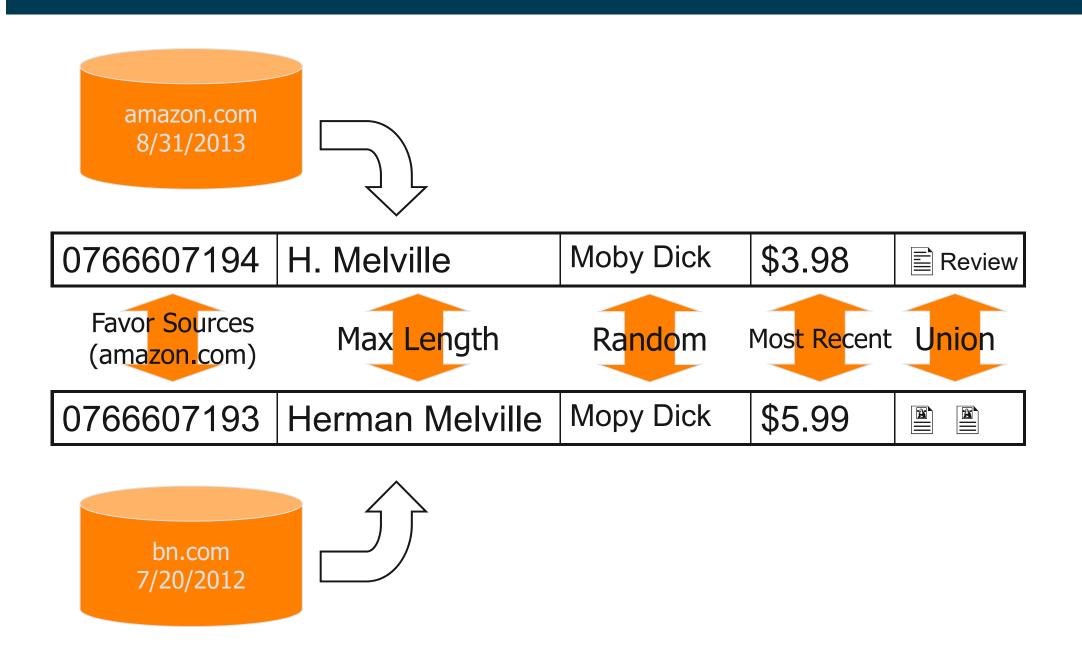
Functions that rely on the Data Values

Function	Explanation	Use Case	
Vote	Majority decision (one vote per site or page?)	Capital city	
ClusteredVote	Choose centroid / medoid of largest cluster	Population of city	
Average, Median	Calculate average/median of all values	Rating	
Longest, Shortest	Choose longest / shortest value	First name	
Max, Min	Take maximal, minimal value	Number of children	
Union	Union of all values (A ∪ B ∪ C)	Product Reviews	
Intersection	Intersection of all values (A ∩ B ∩ C)	Movie Actors	
IntersectionKSources	Values must appear in at least k sources	Movie Actors	
ChooseDepending	Choose depending on value of other attribute (See: Fan Geerts, 2012)	city & zip, e-mail employer	
MostComplete	Choose value from record that is most complete	People's addresses	
MostAbstract, MostSpecific	Use a taxonomy / ontology	Location	
Random	Fallback: Choose random value		

Functions that rely on Provenance, Ratings, or IQ Scores

Function	Explanation		
Favor Sources	Take first non-null value in particular order of sources Example: Use Eurostat for GDP, alternatively use Wikipedia		
MostRecent	Choose most recent (up-to-date) value Example: Address, NumChildren		
MostActive	Choose value that is most often accessed/edited Example: Prefer Wikipedia page with more edits		
FavorSources basedOnRatings	Calculate quality of sources from ratings, take value from source with highest score or all values from sources with scores above specific threshold		
MaxIQ	Choose the value with the highest quality score. Score might cover multiple quality dimensions, e.g. timeliness and believability of a source		
TopkIQ	Choose the top K values with the highest quality scores		
ClusterVoteAfter Filtering	Filter values using quality scores and apply clustered vote afterwards		

Example: Complete Conflict Resolution Heuristic



4.3 Evaluation of Data Fusion Results

- 1. Data Centric Evaluation Measures
 - Density
 - Consistency
- 2. Ground Truth Based Evaluation Measures
 - Accuracy

Density

Density measures the fraction of non-NULL values.

$$density_{Column} = \frac{|non-NULL\ values\ in\ column|}{|rows\ in\ table|}$$

$$density_{Table} = \frac{|non-NULL\ values\ in\ table|}{|columns|*|rows|}$$

- As a result of schema normalization, translated data sets often contain many null values (empty columns)
- We are interested in the density increase after fusion
 - 1. Measure density of table A or column C₁
 - 2. Fuse table A with table B
 - 3. Measure density of resulting table A' or column C₁'

Consistency

A data set is consistent if it is free of conflicting information.

$$consistency_{Column} = \frac{|non-conflicting\ values\ in\ column|}{|real-world\ entities\ described|}$$

$$consistency_{Table} = \frac{|non-conflicting\ values\ in\ table|}{|columns|*|real-world\ entities\ described|}$$

Measurement:

- 1. Combine multiple tables using entity correspondences
 - group records that refer to same real-world entity
- 2. Calculate fraction of non-conflicting attribute values
 - same attribute value is provided by all data sources

Accuracy

Accuracy: Fraction of correct values selected by conflict resolution function.

$$accuracy = \frac{|correct\ values\ |}{|all\ values\ |}$$

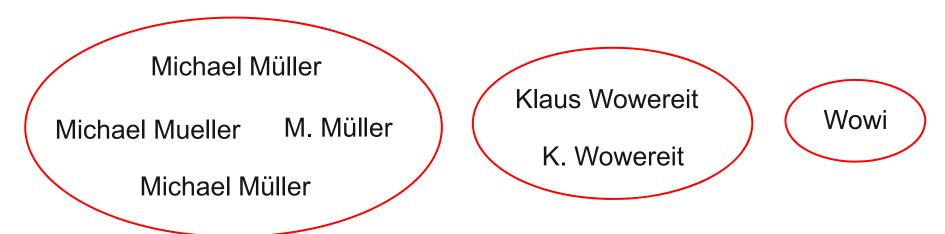
$$error\ rate = 1 - accuracy$$

Measurement:

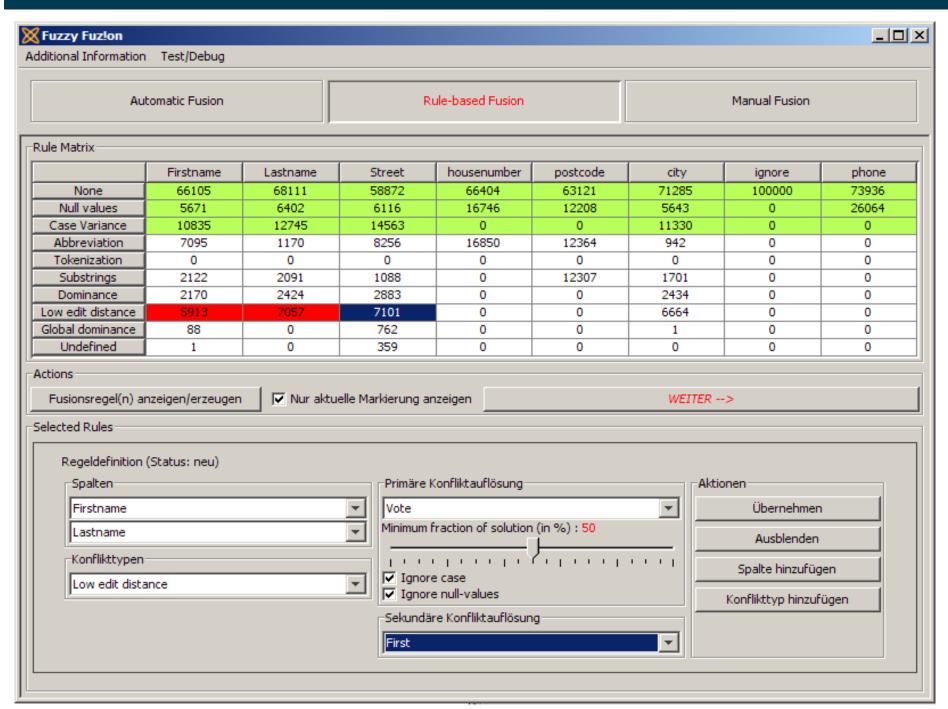
- Build Ground Truth
 - Manually determine correct values for a subset of the records
 - Alternative: Use/buy correct data from external provider
 - Can be tricky as this requires you or external provider to know the truth!
- 2. Compare values selected by fusion function with true values

How to Treat Similar Values?

- Treatment of similar values matters for calculating consistency and accuracy.
- Approach:
 - 1. Calculate similarity of values
 - using an appropriate similarity function (see Chapter Identity Resolution)
 - 2. Treat all values above threshold as equal
- Example: Mayor of Berlin

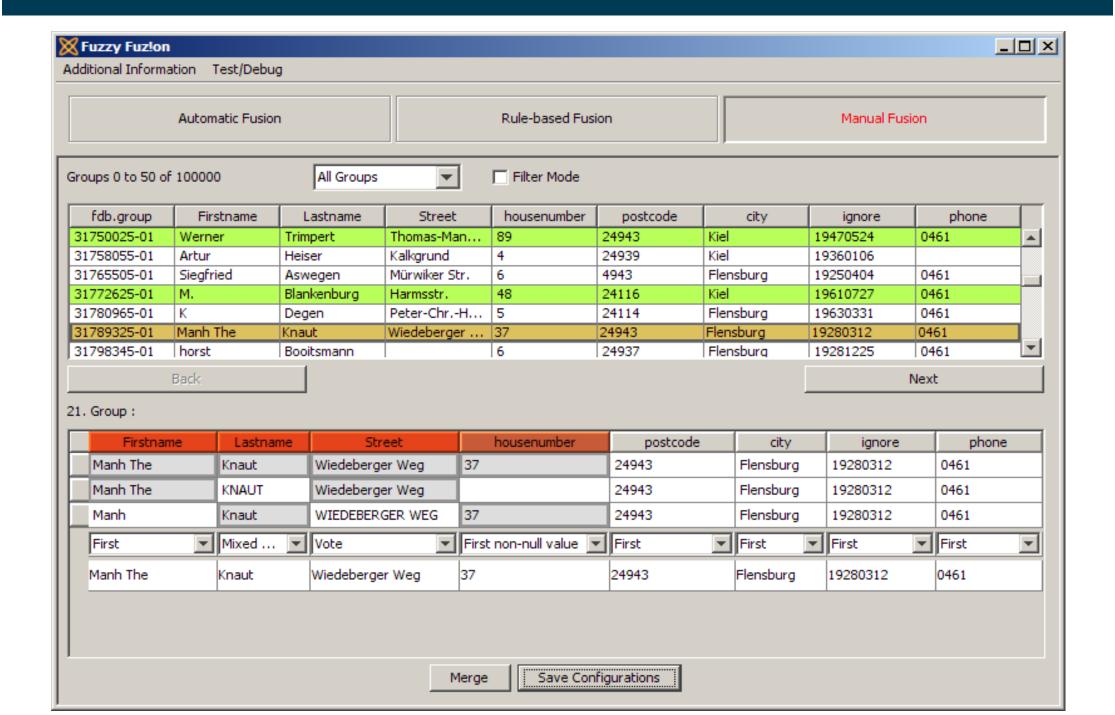


4.4. Example Data Fusion Tool: Fuz!on



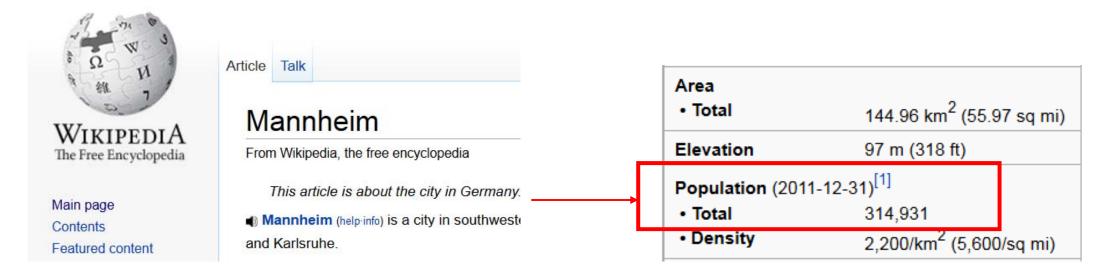
Prototype developed at Hasso Plattner Institute

Manual Fusion of Record Groups in Fuz!on



4.5 Case Study: DBpedia Cross Language Data Fusion

- Infoboxes in different Wikipedia editions contain conflicting values.
- Which value to prefer?



Cross-Lingual Data in DBpedia

DBpedia

- DBpedia extracts structured data from Wikipedia in **119 languages**.
- DBpedia contains lots of data conflicts, inherited from Wikipedia.
- Identity resolution is solved by Wikipedia inter-language links.
- Schema heterogeneity problem is solved by community-created mappings from infoboxes to DBpedia ontology.

Goal: Fuse Data between different Language Editions

Which value to prefer

- maximum?
- average?
- most frequent?
- from the specific language edition?
- most recent?
- inserted by most trusted author?
- edited most times?
- combination of the above?

data itself

prove nance

Population of Mannheim in 8 DBpedia language editions

Provenance Metadata from the Wikipedia Revision Dumps

- We extract provenance metadata from the Wikipedia revision dumps of the Top10 languages
 - File size of revision dumps: > 6 TByte for English, >2 TByte for German
- Extracted metadata
 - Last edit timestamp of a fact
 - Number of edits of a fact
 - Author of the last edit
 - Author edit count
 - Author registration date

Provenance metadata

```
ru: Mannheim: population Total
        lastedit
                       2011-12-22T00:50:21Z
        propeditcnt
        autheditcnt
                       1136639
                       2009-12-18T02:08:09Z
        authregdate
nl:Mannheim:populationTotal
        lastedit
                       2007-12-09T16:41:06Z
       propeditcnt
                       1
        autheditcnt
                       73
        authreqdate
                       2007-04-05T08:54:19Z
```

Learning Conflict Resolution Functions

- Ground Truth: Geonames, public geographical database
- Learning: Choose function with <u>smallest mean absolute error</u> with respect to gold standard.
- Tested conflict resolution functions
 - 1. Maximum
 - 2. Average
 - 3. English prefer values from English DBpedia
 - 4. Vote choose the most frequent value
 - MostRecent fact last edit timestamp
 - 6. MostActive fact number of edits of a property
 - 7. MostActive author author edit count
 - 8. MostSenior author author registration date

DBpedia Case Study: Results

Property	Dataset	Count	Learned Fusion Function	Error, %	Error, %, en.dbpedia
			Vote		
populationTotal	cities1000-Germany *	7330	(most frequent value)	0.3029	0.6796
populationTotal	cities 1000 - Netherlands	493	Maximum Value	2.1933	3.5714
populationTotal	countries	243	Maximum Value	2.1646	6.3485
country	cities1000-Italy	1078	Vote	0.0000	1.2060
country	cities1000-Brazil	1119	Max author edit count	9.8302	30.9205
country	cities1000-Germany	7638	Vote	0.0131	0.6415

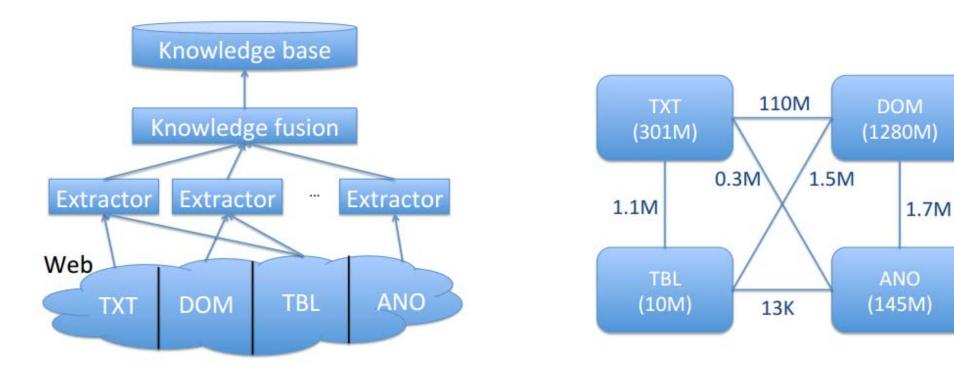
^{* &}quot;cities 1000" are cities with population > 1000

- Error: Mean absolute percentage error between chosen value and ground truth
- Error en.dbpedia: Mean absolute percentage error between value in English
 Dbpedia and gold standard

Volha Bryl, Christian Bizer: Learning Conflict Resolution Strategies for Cross-Language Wikipedia Data Fusion. 4th Workshop on Web Quality @ WWW 2014.

4.6 Case Study: Google Knowledge Vault

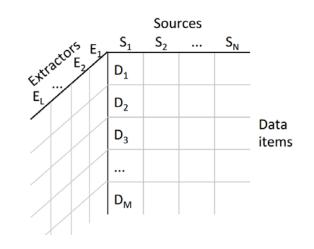
- uses 12 different extractors to extract 6.4 billion triples
 (1.6 billion unique triples) from 1 billion page Web crawl
- extracted data is fused to extend the Freebase knowledge base



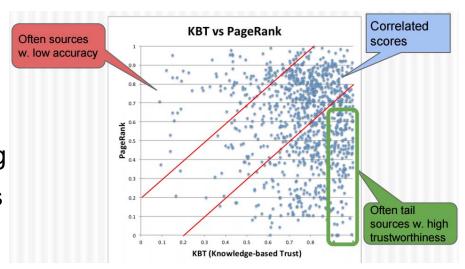
Luna Dong, et al.: From Data Fusion to Knowledge Fusion. VLDB 2014.

Google Knowledge Vault

- uses probabilistic model to iteratively determine quality of triples, sources, and extractors
- result: 90 million triples with p>0.9 that were not in Freebase before



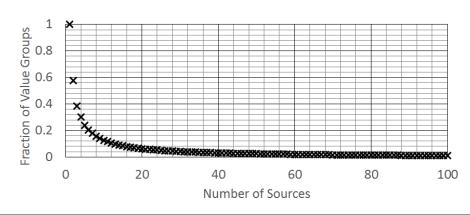
- Knowledge-based Trust
 - determine trustworthiness of a data source by comparing its content with a knowledge base (ground truth)
 - result: Better than PageRank in identifying
 - tail websites with high trustworthiness
 - gossip websites



Luna Dong, et al.: Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion. SIGKDD 2014. Luna Dong, et al.: Knowledge-based Trust: Estimating the Trustworthiness of Web Sources. VLDB 2015.

Summary: Data Fusion

- Data Fusion addresses uncertainty (missing values) as well as contradictions (data conflicts)
- Appropriate conflict resolution function depends on
 - data type of the values
 - availability of quality-related metadata
 - availability of overlapping data
- On the Web, we often encounter long-tailed distributions
 - lots of overlapping data for head entities (New York)
 - hardly any data to fuse for tail entitles (some village)
 - example: Web tables matched to DBedia
 - conflict resolution function cannot do anything in 40% of the cases as there is only a single value ⁽³⁾



Final Exam (IE670, 3 ECTS)

- Date and Time
 - Wednesday, 17.12.2018, 08:30
 - Room A5 B1.44
- Duration
 - 60 minutes
- Format
 - 5-6 open questions that show that you have understood the content of the lecture
 - all lecture slide sets are relevant
 - including structured data on the Web and
 - data exchange formats
 - one question will require you to write XPath or SPARQL queries
 - we want precise answers, not all you know about the topic

5. References

Provenance

- Dublin Core Metadata Element Set. http://dublincore.org/documents/dces/, 2012.
- Gil, Miles: PROV Model Primer, http://www.w3.org/TR/prov-primer/, 2013.
- Doan, Halevy, Ives: Principles of Data Integration. Chapter 14, Morgan Kaufmann, 2012.
- Cui, Widom: Lineage tracing for general data warehouse transformations. VLDB Journal, 2003.

Data Quality

- Wang, Strong: Beyond accuracy: What data quality means to data consumers. JMIS, 1996.
- Naumann, Rolker: Assessment Methods for Information Quality Criteria. Conference on Information Quality, 2000.
- Rahm & Do: Data Cleaning: Problems and Current Approaches, IEEE Bulletin, 2000.
- Ziawasch et al.: Detecting data errors: where are we and what needs to be done? VLDB 2016.
- Fan, Geerts: Foundations of Data Quality Management. Morgan & Claypool, 2012.
 (Focus: integrity rules)
- Chandola et al.: Anomaly Detection: A Survey. ACM Computing Surveys, 2009.
- Aggarwal: Managing and Mining Uncertain Data. Springer, 2010. (Focus: probabilistic models)

References

Data Fusion

- Bleiholder, Naumann: Data Fusion. ACM Computing Surveys, 2008.
- Li , Gao, Meng, et al.: Survey on Truth Discovery. arXiv, 2015.
- Leser, Naumann: Informationsintegration. Chapter 8.3, dpunkt Verlag, 2007.
- Dong, Srivastava: Big Data Integration. Chapter 4. Morgan & Claypool, 2015.
- Ganti, Das Sarma: Data Cleaning: A Practical Perspective. Morgan & Claypool, 2013.
- Bleiholder, Naumann: Conflict Handling Strategies in an Integrated Information System.
 IIWeb, 2006.
- Luna Dong & Felix Naumann: Data Fusion. Tutorial at VLDB 2009.
 Slides: http://dc-pubs.dbs.uni-leipzig.de/files/dataFusion_vldb.pdf
- Luna Dong, et al.: From Data Fusion to Knowledge Fusion. VLDB 2014.
- Theo Rekatsinas: Tutorial Data Integration and Machine Learning. SIGMOD 2018.
 Chapter ML for DF. https://thodrek.github.io/di-ml/sigmod2018/slides/05_MLforDF.pdf

Data Fusion Evaluation Datasets

 Luna Dong: Data Sets for Data Fusion Experiments http://lunadong.com/fusionDataSets.htm