

Web Mining

Web Usage Mining and Recommender Systems – Part 1 –

Prof. Dr. Christian Bizer

FSS 2023

Definition

Discovery of patterns in click-streams and associated data collected as a result of user interactions with one or more web sites or applications.

Typical Sources of Data

- 1. web server access logs
- 2. e-commerce and product-oriented user events (e.g., shopping cart changes, ad or product click-throughs, purchases)

3. user events on social network sites (e.g., likes, posts, comments)

Associated Data

- 1. page attributes, page content, site structure
- 2. additional domain knowledge and demographic data
- 3. user profiles or user ratings

Web Usage Data: The Oil of the New Economy

Get Traffic Analysis

Economic and Social Impact of Usage Data Collection

Who owns the usage data?

the user? private companies? government?

Who is allowed to use it for what?

- Companies for targetting users?
- Government for fighting COVID?
- Government for law enforcement?

Privacy law, and yes boxes

- Alternative: SOLID
 - decentral data collection and decentral rights tracking
 - difficult to deploy
 - https://solidproject.org/

Google COVID Lockdown Movement Tracking

Social Scoring of "trusthworthiness"

The Web Usage Mining Process

Universität Mannheim – Bizer: Web Usage Mining – FSS2023 (Version: 20.2.2023) – Slide 5

Chapter Outline

1. Usage Data Collection

2. Usage Data Preparation

- 1. User and Session Identification
- 2. Data Aggregation and Semantic Enrichment

3. Usage Mining Tasks

4. Recommender Systems

- 1. Collaborative Filtering
- 2. Content-based Recommendation
- 3. Model-based Recommendation
- 4. Hybrid Recommendation
- 5. Evaluating Recommender Systems
- 6. Attacks on Recommender Systems

1. Usage Data Collection

Server-Side Data Collection

- Traditional web server logs
 - Content: IP, timestamp, page URL, browser, ...
 - Format: text files, database
- Application Logs
 - Specific application events (e.g. change in shopping basket)
- Restricted to single server

Client-Side Data Collection

- via page tagging
 - often not restricted to single server
- via providing the application
- additional collectable data:
 - mouse movements
 - keyboard strokes
 - size of browser window

Page tagging

```
<script type="text/javascript">
   var _gaq = _gaq || [];
   _gaq.push(['_setAccount', 'UA-XXXXXX-X']);
   _gaq.push(['_trackPageview']);
   (function() {
      var ga = document.createElement('script'); ga.type
      ga.src = ('https:' == document.location.protocol ?
      var s = document.getElementsByTagName('script')[0]
   ))();
```


Providing the application

Google Photos

Recording Users Entering and Leaving the Site

Web server logs may extend beyond visits to the site and show

where a visitor was before (via HTTP Referer)

203.30.5.145 - - [01/Jun/2021:03:09:21 -0600] "GET /Calls/OWOM.html HTTP/1.0" 200 3942 "http://www.lycos.com/cgi-bin/pursuit?query=advertising+psychology-&maxhits=20&cat=dir" "Mozilla[en] (Win10; I)"

and where she went next (via URL Rewriting):

often used be search engines to get user feedback about search results

Content of a typical Apache web server log:

<ip_addr> - - <date><method><file><protocol><statuscode><bytes><referer><user_agent>

203.30.5.145 - - [01/Jun/2021:03:09:21 -0600] "GET /Calls/OWOM.html HTTP/1.0" 200 3942 "http://www.lycos.com/cgi-bin/pursuit?guery=advertising+psychology-&maxhits=20&cat=dir" "Mozilla/4.5 [en] (Win98; I)" 203.30.5.145 - - [01/Jun/2021:03:09:23 -0600] "GET /Calls/Images/earthani.gif HTTP/1.0" 200 10689 "http://www.acr-news.org/Calls/OWOM.html" "Mozilla/4.5 [en] (Win98; I)" 203.30.5.145 - - [01/Jun/2021:03:09:24 -0600] "GET /Calls/Images/line.gif HTTP/1.0" 200 190 "http://www.acr-news.org/Calls/OWOM.html" "Mozilla/4.5 [en] (Win98; I)" 203.252.234.33 - - [01/Jun/2021:03:12:31 -0600] "GET / HTTP/1.0" 200 4980 "" "Mozilla/4.06 [en] (Win95; I)" 203.252.234.33 - - [01/Jun/2021:03:12:35 -0600] "GET /Images/line.gif HTTP/1.0" 200 190 "http://www.acr-news.org/" "Mozilla/4.06 [en] (Win95; I)" 203.252.234.33 - - [01/Jun/2021:03:12:35 -0600] "GET /Images/red.gif HTTP/1.0" 200 104 "http://www.acr-news.org/" "Mozilla/4.06 [en] (Win95; I)" 203.252.234.33 - - [01/Jun/2021:03:12:35 -0600] "GET /Images/earthani.gif HTTP/1.0" 200 10689 "http://www.acr-news.org/" "Mozilla/4.06 [en] (Win95; I)"

Data Preparation

1. Data Cleansing

- remove irrelevant log entries and fields from server logs
 - usually: remove all log entries related to images or scripts
 - ignoring certain page-views / items
- remove log entries due to crawler navigation (>50% of all requests)

2. Data Integration

- synchronize data from multiple server logs (due to server farms)
- integrate semantics, e.g. meta-data (e.g., content labels), e-commerce and application server data, registration data

3. Data Transformation

- user identification
- session identification
- data aggregation / semantic enrichement

4. Data Reduction

sampling

Robot Detection

1. Identification via HTTP User-Agent Header

using list of known robots, e.g. from http://useragentstring.com/

2. Classification using Behavioural Features

- Accesses robots.txt file
- time on page
- navigation patters
- no download of images or scripts

Example of Web Crawler Traffic

Tan, Kumar: Discovery of Web Robot Sessions based on their Navigational Patterns. Data Mining and Knowledge Discovery 6(1),2002.

Universität Mannheim – Bizer: Web Usage Mining – FSS2023 (Version: 20.2.2023) – Slide 11

Mechanisms for User Identification

Method	Description	Privacy	Advantages	Disadvantages
		Concerns		
IP Address +	Assume each unique	Low	Always available. No	Not guaranteed to be
Agent	IP address/Agent		additional	unique. Defeated by
	pair is a unique user		technology required.	rotating IPs.
	T T	-		~
Embedded	Use dynamically	Low to	Always available.	Cannot capture
Session Ids	generated pages to	medium	Independent of IP	repeat visitors.
	associate ID with		addresses.	Additional overhead
	every hyperlink			for dynamic pages.
Registration	User explicitly logs	Medium	Can track	Many users won't
	in to the site.		individuals not just	register. Not
			browsers	available before
				registration.
Cookie	Save ID on the client	Medium to	Can track repeat	Can be turned off by
	machine.	high	visits from same	users.
			browser.	
Software	Program loaded into	High	Accurate usage data	Likely to be rejected
Agents	browser and sends		for a single site.	by users.
	back usage data.			

Examples of agents: apps, browsers, page tags (use javascript)

Mechanisms for Session Identification

Source: Spiliopoulou et al., 2003

Data Aggregation

aggregate log data in order to generate features that are suitable for the task at hand (identify robots, cluster users, ...)

Examples of possible Features

Attribute *lame	Description
totalPages	Total number of pages retrieved in a Web session
ImagePages	Total number of image pages retrieved in a Web session
TotalTime	Total amount of time spent by Web site visitor
RepeatedAccess	The same page requested more than once in a Web session
ErrorRequest	Errors in requesting for Web pages
GET	Percentage of requests made using GET method
POST	Percentage of requests made using POST method
HEAD	Percentage of requests made using HEAD method
Breadth	Breadth of Web traversal
Depth	Depth of Web traversal
MultilP	Session with multiple IP addresses
MultiAgent	Session with multiple user agents

Data Aggregation

Example of a User Pageview Matrix

Useful for discovering user groups (cluster analysis)

Universität Mannheim – Bizer: Web Usage Mining – FSS2023 (Version: 20.2.2023) – Slide 15

Basic Idea

Associate each requested page with one or more topics/ concepts to better understand user behavior.

The request for a page signals interest in the concept(s).

Aggregation Levels:

- Session level: set / sequence of pages → 1 concept or n concepts for example: user compares insurance offers

Concepts can be part of a concept hierarchy or ontology:

Useful for building/maintaining user profiles

Example: Semantic Enrichment

Input: User Pageview Matrix

	A.html	B.html	C.html	D.html	E.html
user1	1	0	1	0	1
user2	1	1	0	0	1
user3	0	1	1	1	0
user4	1	0	1	1	1
user5	1	1	0	0	1
user6	1	0	1	1	1

Input: Page Topic Matrix

	A.html	B.html	C.html	D.html	E.html
web	0	0	1	1	1
data	0	1	1	1	0
mining	0	1	1	1	0
business	1	1	0	0	0
intelligence	1	1	0	0	1
marketing	1	1	0	0	1
ecommerce	0	1	1	0	0
search	1	0	1	0	0
information	1	0	1	1	1
retrieval	1	0	1	1	1

	web	data	mining	business	intelligence	marketing	ecommerce	search	information	retrieval
user1	2	1	1	1	2	2	1	2	3	3
user2	1	1	1	2	3	3	1	1	2	2
user3	2	3	3	1	1	1	2	1	2	2
user4	3	2	2	1	2	2	1	2	4	4
user5	1	1	1	2	3	3	1	1	2	2
user6	3	2	2	1	2	2	1	2	4	4

Interests that Google Stores about Me

nterests Bicycles & Accessories, and 14 more Edit From your previous activity on Google Based on the websites you've visited	ore
We use interests from your activity on websites to tailor ads to you. How it works. Please note the listed categories do not include some of the ways ads may be tailored to you, including remarketing lists based on	Greece
visits to advertiser websites.	Health Insurance
	Inheritance & Estate Planning
	Insurance
Interest	Investing
Baden-Wuerttemberg	Parenting
Business News	Performing Arts
Canary Islands	Politics
Celleges & Universities	
Colleges & Universities Computers & Electronics	Primary & Secondary Schooling (K-12)
Coupons & Discount Offers	Search Engines
Dictionaries & Encyclopedias	Soccer
Education	Social Networks
Email & Messaging	Travel
Finance	Water Sports
Financial Markets	Weather
General Reference	

https://adssettings.google.com/

Example: Data Reduction

Only a subset of the location data send by Android phone is stored

Gc	ogle	2				
ocat	ion hi	story				
a		Feb	ruary 201	5))
Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4		6	7
	9	10	11	12	13	14
8						
8 15	16	17	18	19	20	21
		17 24	18 25	19 26	20 27	21 28
15	16		10.00	2255.00	67678	

https://maps.google.com/locationhistory/

3. Web Usage Mining Tasks

1. Website Personalization

- Personalized content and navigation elements
- Techniques: Classification, Re-Ranking, Sequential Pattern Mining

2. Marketing

- Discovery of associated products for cross-selling
 - Association rules, Sequential Pattern Mining
 - Placement of associated products on the same page
- Discovery of associated products in different price categories for up-selling
 - Association rules, Sequential Pattern Mining
- Identification of Customer Groups for Targeted Marketing
 - Clustering, Classification
- Personalized recommendations
 - Suggestions of similar items (e.g. pages or products)
 - Suggestions of items based on the preferences of similar users

Summary: Usage Mining Tasks and Techniques

2. Recommender Systems

Recommender Systems (RS) help to match users with items

- ease information overload
- sales assistance (guidance, advisory, persuasion,...)

Recommender Systems can be seen as a function

- Given:
 - User model (e.g. ratings, preferences, demographics, situational context)
 - Items (with or without description of item characteristics)
- Find:
 - Relevance/rating score. Used for determining the top-k items

Concrete system design depends on

- the availability of exploitable data
- domain characteristics

Application Domains of Recommender Systems

- Which music will I like?
- Which movie should I watch?
- Which book should I buy?
- Which news fit to my political position? (Filter bubbles)

When does a Recommender do a good Job?

1. User's Perspective

- Recommend me items that I like and did not know about
- Serendipity: Accident of finding something good while not specifically searching for it

2. Merchant's Perspective

- increase the sale of high-revenue items
- thus real-world recommender systems are not as neutral as the following slides suggest

User–Item Rating Matrix

	ltem1	ltem2
Alice	5	?
User1	2	1
User2	4	3

Demographic Recommendation

- offer cameras with American electricity plug to people from US
- offer Backstreet Boys albums to people under the age of 16

Contextual Recommendation (Location / Time of Day/Year)

- show holiday related advertisements based on user location
- send coupon to mobile user who passes by a shop

2.1 Collaborative Filtering

A standard approach to generate recommendations

- used by large e-commerce sites
- applicable in many domains (book, movies, DVDs, ..)

Basic Assumptions

- 1. users give ratings to catalog items (implicitly or explicitly)
- 2. customers who had similar tastes in the past, will have similar tastes in the future

Input: Matrix of given user-item ratings

Output types

- (Numerical) prediction indicating to what degree the current user will like or dislike a certain item (i.e., a rating itself)
- 2. Ranking: Top-k list of recommended items

	ltem1	ltem2	ltem3
Alice	5	3	4
User1	3	1	2
User2	4	3	4
User3	3	3	1

Explicit Ratings

Explicit ratings are probably the most precise ratings

Commonly used response scales:

- 1 to 5 Likert scales
- Like (sometimes also Dislike)

Main problems

- Users often not willing to rate items
 - number of ratings likely small
 - \rightarrow poor recommendation quality
- How to stimulate users to rate more items?
 - Example: Amazon Betterizer

Alternative

 Use implicit ratings (in addition to explicit ones)

Implicit Ratings

Events potentially interpretable as positive ratings

- items bought
- clicks, page views
- time spent on some page
- time a movie was watched ...

Advantage

- implicit ratings can be collected constantly by the web site or application in which the recommender system is embedded
- collection of ratings does not require additional effort from the user

Problem

- one cannot be sure whether the user behavior is correctly interpreted
- for example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else

Most deployed recommender systems rely on implicit ratings

Given an "active user" (Alice) and an item i not yet rated by Alice

- 1. find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past **and** who have rated item *i*
- 2. use their ratings of item *i* to predict, if Alice will like item *i*
- 3. do this for all items Alice has not seen and recommend the top-rated k items

Example: User–Item Rating Matrix

	ltem1	ltem2	ltem3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Questions we need to answer

- 1. How do we measure user similarity?
 - given that real-world user/item matrices are very sparse (>90% missing values)
- 2. How many neighbors should we consider?
 - hyperparameter k in KNN
- 3. How do we generate a prediction from the neighbors' ratings?
 - given that different people use the rating scale differently

	ltem1	ltem2	ltem3	Item4	ltem5
Alice	5		4	4	?
User1	3	1			3
User2	4		4	3	5
User3		3			
User4 😕	2		2		1

A popular similarity measure in user-based CF is the Pearson Correlation Coefficient

- a, b : users
- $r_{a,p}$: rating of user *a* for item *p*

P : set of items, **rated by both** *a* and *b*

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a) (r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

- Takes different usage of rating scale into account by comparing individual ratings to the user's average rating
- Note: For Pearson you need paired data, that is, we take only the ratings for the set of items, rated by both users (also to compute the average ratings)

Example: Measuring User Similarity

A popular similarity measure in user-based CF is the Pearson Correlation Coefficient

- a, b : users
- $r_{a,p}$: rating of user *a* for item *p*
- *P* : set of items, **rated by both** *a* and *b*

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a) (r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

	ltem1	ltem2	ltem3	ltem4	ltem5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim = 0.85
User2	4	3	4	3	5	sim = 0.70
User3	3	3	1	5	4	sim = 0.00
User4	1	5	5	2	1	sim = -0.79

Making Predictions

1. A simple prediction function:

$$pred(a,p) = \frac{\sum_{b \in N} sim(a,b) * r_{b,p}}{\sum_{b \in N} sim(a,b)}$$

- uses the similarity with a as a weight to combine ratings
- N is the number of similar users that should be considered (hyperparameter)

2. A prediction function that takes rating behavior into account:

$$pred(a, p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a, b) * (r_{b, p} - \overline{r_b})}{\sum_{b \in N} sim(a, b)}$$

- calculates whether the neighbors' ratings for the unseen item i are higher or lower than their average
- uses the similarity with a as a weight to combine rating differences
- add/subtract the neighbors' bias from the active user's average and use this as a prediction

Example: Making Predictions

- To make a prediction for Item5, we first decide which of the neighbours' ratings we take into account and apply the second formula from the previous slide
- In our our example, an obvious choice would be to take User1 and User2 as peer users to predict Alice's rating
- Hence the prediction for Alice's rating for Item5 based on the ratings of nearest neighbours User1 and User2 will be

pred(Alice, Item5) = 4 + ((0.85*(3-2.4) + 0.70*(5-3.8))) / (0.85 + 0.70)) = 4.87

	ltem1	ltem2	ltem3	ltem4	ltem5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim = 0.85
User2	4	3	4	3	5	sim = 0.70
User3	3	3	1	5	4	sim = 0.00
User4	1	5	5	2	1	sim = -0.79

Improving the Similarity / Prediction Functions

Neighborhood selection

use similarity threshold instead of fixed number of neighbors

Case amplification

- intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- implementation: $sim(a, b)^2$

Rating variance

- Agreement on commonly liked items is not so informative as agreement on controversial items
- Possible solution: Give more weight to items that have a higher variance

Number of co-rated Items

Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low

Memory-based and Model-based Approaches

User-based CF is said to be "memory-based"

- The rating matrix is directly used to find neighbors and make predictions
- To predict we compute user similarity online and collect the ratings of the most similar ones. Such a KNN approach is called lazy learning.
- This does not scale for large e-commerce sites, which have millions of customers

Model-based approaches

- We build a model offline
- We use the model we computed offline to make predictions online
- models are updated / re-trained periodically
- Examples
 - **1**. Item-based collaborative filtering
 - 2. Probabilistic methods
 - 3. Matrix factorization

Basic idea:

Use the similarity between items (and not users) to make predictions

Approach:

- 1. Look for items that have been rated similarly as Item5
- 2. Take Alice's ratings for these items to predict the rating for Item5

	ltem1	ltem2	ltem3	Item4	ltem5
Alice	(5)-	→ 3	4	(4)-	→ ?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Cosine Similarity

similarity metric to find similar items which focuses on non-zero rating pairs

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|} \qquad \qquad \vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

cosine similarity does not take the differences in the average rating behaviour of different users into account

Adjusted Cosine Similarity

- adjusts ratings by taking the average rating behavior of a user into account
- U: set of users who have rated both items a and b

$$sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Universität Mannheim – Bizer: Web Usage Mining – FSS2023 (Version: 20.2.2023) – Slide 41

Making Predictions

A common prediction function for item-based CF: Weight ratings by item similarity

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) * r_{u, i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

	item1	ltem2		Item4	Item5
Alice	(5)-	→ 3	4	(4)-	→ ?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

ratedItem(*u*) : Set of items rated by Alice

 r_{ui} : Alice's rating for items i

sim(i, p) : Similarity of item i with target item p

No need to adjust rating scale as we only use ratings by Alice

Offline Pre-Calculations for Item-Based Filtering

Item-based filtering does not solve the scalability problem itself, but as there are usually less items than users, we can pre-calculate the item similarities and store them in memory.

Neighborhood size is typically also limited to a specific size k

- An analysis of the MovieLens dataset indicates a k of 20 to 50 items is reasonable (Herlocker et al. 2002)
- Not all neighbors are taken into account for the prediction, as Alice most likely only rated a small subset of the neighbors

Memory requirements

- Up to n² pair-wise similarities to be memorized (n = number of items) in theory
- In practice, the memory requirements are significantly lower as
 - many items have no co-ratings (heavy metal and samba CDs)
 - neighborhood size often limited to k items above minimum similarity threshold

Collaborative Filtering Discussion

Pros:

- well-understood, works well in some domains
- requires no explicit item descriptions or demographic user profiles

Cons:

- -
- requires user community to give enough ratings (many real-world systems thus employ implicit ratings)
- no exploitation of other sources of recommendation knowledge (demographic data, item descriptions)
- Cold Start Problem
 - how to recommend new items?
 - what to recommend to new users?
- Approaches for dealing with the Cold Start Problem
 - ask/force users to rate a set of items
 - use another method or combination of methods (e.g., content-based, demographic or simply non-personalized) until enough ratings are collected (see hybrid recommendation)

Literature

- Bing Liu: Web Data Mining. Chapter 12: Web Usage Mining. 2011.
- Jannach, et al.: Recommender Systems: An Introduction. 2011.
- Charu Aggarwal: Recommender Systems: The Textbook. 2016.

