Web Mining

Introduction to the Web Mining Projects (IE 684)

Christian Bizer / Simone Ponzetto
Alexander Brinkmann / Raph Peeters

FSS 2023
1. Information about Final Exam (IE671)
2. Feedback on Lecture and Exercise (IE671)
3. Introduction to the Web Mining Projects (IE684)
4. Group Formation (IE684)
1. Information about Final Exam (IE671)

- **Date**: June 16th; **Duration**: 60 minutes

- **3 blocks of questions on Web Usage Mining, Web Structure Mining, Web Content Mining**
 - 10 points per block, several questions per block

- **Content: open questions that**
 - check whether you have understood the content of the lecture
 - we try to cover all major chapters of the lecture, including recommender systems, network metrics, community detection, machine learning on graphs, sentiment analysis, named entity recognition
 - require you to describe the ideas behind algorithms or apply the methods
 - What is the advantage or problem of X compared to Y?
 - How do methods react to this special pattern in the data?
 - Given the following data/graph. Please calculate
 - might require you to do some simple calculations
 - you need to be able to use the most relevant formulas
 - you are not allowed to use a calculator (so only simple formulas can be applied)
3. Introduction to the Student Projects

Goals
- Gain practical experience on any of the topics that we have seen in the lecture, namely:
 1. **Web Usage Mining** (including Recommender Systems)
 2. **Web Structure Mining** (including Social Network Analysis, Machine Learning on Graphs)
 3. **Web Content Mining** (including Sentiment Analysis, Hate Speech Detection)
- Get to know additional current tools and methods

What is expected from you
- To find an interesting Web mining problem of your choice
- To find a solution for the problem using
 - any of the Web mining methods that we have seen so far
 - plus some additional task-specific techniques
 - other Web mining methods which might be helpful for solving the problem and build on what we learned in class
Overview

- **Teams of five students**
 1. realize a Web mining project
 2. write 12 page report about the project and the methods employed in the project
 3. present the project results to the other students (10 minutes presentation + 5 minutes discussion)

- **Final mark for the course**
 - 70 % project report (including code)
 - 30 % oral presentation
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic / Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.04.2023</td>
<td>Kickoff Session and Team Formation / Registration</td>
</tr>
<tr>
<td>23.04.2023, 23:59</td>
<td>Submission of project outlines</td>
</tr>
<tr>
<td>25.04.2023, 10:15</td>
<td>Feedback on the project outlines (if necessary)</td>
</tr>
<tr>
<td>05.05.2023, 13:45</td>
<td>Coaching session</td>
</tr>
<tr>
<td>12.05.2023, 13:45</td>
<td>Coaching session</td>
</tr>
<tr>
<td>19.05.2023, 13:45</td>
<td>Coaching session</td>
</tr>
<tr>
<td>25.05.2023, 13:45</td>
<td>Coaching session</td>
</tr>
<tr>
<td>26.05.2023, 23:59</td>
<td>Submission of project reports</td>
</tr>
<tr>
<td>30.05.2023, 10:15</td>
<td>Presentation of project results</td>
</tr>
<tr>
<td>16.06.2023</td>
<td>Final exam</td>
</tr>
</tbody>
</table>
Step 1: Team Formation

- You can form a team with other students of your choice
 - Each team must consist of 5 students
- If you do not find a team yourself, we will assign you to a team in the kickoff session

Process:

1. Find 5 fellow students you want to do the project with
2. Register your team before the kickoff meeting on 18.4.2023 in the provided spreadsheet (see mail)

People who do not have a team

- will be assigned to existing teams or
- grouped into new teams at the kickoff session on 18.4.2023
Step 2: Project Outlines

- **Write 3 pages (sharp!) project outline**
 - include a project name and your team number on the first page
 - using Springer Computer Science Proceedings layout or Word

- **Submit the project outline until 23.04.2023, 23:59 using the “tasks“ submission in our ILIAS group**

- **The project outline needs to answer the following questions:**
 1. What is the problem you are solving?
 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
 3. How will you solve the problem?
 - What preprocessing steps will be required?
 - Which algorithms you plan to use? Be as specific as you can!
 4. How will you evaluate, measure success?
Step 3: Feedback and Coaching Sessions

- After submitting your outline, we will give you feedback (if required) on Tuesday, 25.04.2023, 10:15-11:45

- Later, Alex and Ralph will give you tips and answer questions concerning your project during the coaching sessions.

- Coaching sessions are optional: please send Alex and Ralph an email if you want to attend until Monday night including your questions.

- We will afterwards inform you about your slot via email.

- You are required to attend at least one coaching session.
Step 4: Project Reports

- Max. 12 pages (sharp!): title, toc or list of references do not count.
- Every additional page (including appendices) and every day of late submission downgrades your mark by 0.3
- Due Friday, 26.05.2023, 23:59. Submit as an “tasks” submission via ILIAS
- Outline for project summaries:
 1. Introduction: problem/task formulation, research questions and objective
 2. Methodology: describe the methods that you used and why you choose them
 3. Experimental setting: structure and statistics of the data set, evaluation measures
 4. Evaluation and discussion of the results: How do your results compare to existing solution?
 5. Conclusions (what can we learn from your work?) and future direction (what would you do differently, or additionally, why?)

- Requirements
 - You must use the Springer Computer Science Proceedings layout template.
 - Please cite sources properly. Preferred citation style [Author, year].
 - Also submit your code and links to the dataset. Alternatively, you can submit a link to a GitHub archive
Step 5: Project Presentations

- Present your project in front of your fellow students

- Covers the contents of your report, this time in a “presentation” format

- Format
 - 10 minutes presentation: each team member presents for 2-4 minutes
 - 5 minutes Question/Answer slot – everybody can (should) ask questions

- Submit your slides in ILIAS (via the corresponding “tasks”) after your presentation

- All students / project members must attend all sessions and presentations
Where to find datasets for Web Usage Mining?

- **MovieLens**
 - 1M Dataset: 6,000 users, 3,900 movies, 1 million ratings
 - 10M Dataset: 71,000 users, 10,600 movies, 10 million ratings

- **Netflix Challenge**
 - 100M Dataset: 500,000 users, 18,000 movies, 100M ratings

- **Amazon Product Reviews**
 - 230M product reviews including star ratings
 - https://nijianmo.github.io/amazon/

- **Microsoft MIND**
 - 160k English news articles and
 - 15 million impression logs by 1 million users
 - https://msnews.github.io/

- **Papers with Code**
 - Collects benchmark datasets

- **Web 2.0 Platforms offer plenty of rating and usage data**
 - E.g. LastFM, Wikipedia, …
Benchmark Results: Recommender Systems

https://paperswithcode.com/task/recommendation-systems
Where to find datasets for Web Structure Mining?

- **Stanford Large Network Dataset Collection**
 - Social networks: Facebook, Google+
 - Citation networks: Arxiv, US Patents
 - Product co-purchasing network: Amazon

- **Scientific Network Data Repository**
 - Networks from 30+ categories ranging from biology to social networking
 - https://networkrepository.com/

- **Web Data Commons and Common Crawl Hyperlink Networks**
 - Different aggregation levels
 - http://webdatacommons.org/hyperlinkgraph/
 - https://commoncrawl.org/connect/blog/

- **The Koblenz Network Collection**
 - Hundreds of networks about various topics
 - http://konect.cc/
Project Ideas for Machine Learning with Graphs

- see term projects of Stanford CS224W students

https://medium.com/stanford-cs224w
Where to find datasets for Web Content Mining?

- **SemEval datasets**
 - Multiple datasets on text understanding task like sentiment analysis (e.g., from Twitter)

- **Amazon Review Data**
 - Amazon product metadata and reviews

- **Web Data Commons**
 - Product/hotel/restaurant reviews as part of Microdata dataset
 - http://www.webdatacommons.org/structureddata/

- **Academictorrents.com**
 - Various large data sets
 - e.g. Enron Email Bag of Words, Arizona State University Twitter Data Set

- **Kaggle**
 - Tons of datasets on a variety of topics
 - https://www.kaggle.com/datasets

- **Crawl your own data**
Benchmark Results: Sentiment Analysis

- Papers with code
 - https://paperswithcode.com/task/sentiment-analysis

- Huggingface Datasets Hub - Task Sentiment Analysis
 - https://huggingface.co/datasets?task_ids=task_ids:sentiment-classification&sort=downloads
Where to Find Information about Additional Methods?

Check out the solutions to your task that other people have tried.

- by investigating the state-of-the-art for your task on Papers with Code
- by looking through the discussion groups and code of related Kaggle competitions
- search for survey papers about your task on Google Scholar: “task name + survey”. Select recent and frequently cited ones.
Get Additional Advice from a Stanford Professor

- How to evaluate your model?
 - https://www.youtube.com/watch?v=TxTbIROT9lY

- How to structure your project report?
 - https://www.youtube.com/watch?v=DZNwO-p5PGY

- How to present the results of your project?
 - https://www.youtube.com/watch?v=GGx7klcahzY
Questions?
4. Team Formation and Next Steps

1. Anybody without a team?

2. People with teams:
 - Meet in your team now!
 - Agree on use case
 - Decide on or collect data
 - Write project outline