

Web Mining

Introduction to the Web Mining Projects (IE 684)

Christian Bizer / Simone Ponzetto Alexander Brinkmann / Raph Peeters

FSS 2023

Outline

- 1. Information about Final Exam (IE671)
- 2. Feedback on Lecture and Exercise (IE671)
- 3. Introduction to the Web Mining Projects (IE684)
- 4. Group Formation (IE684)

1. Information about Final Exam (IE671)

- Date: June 16th; Duration: 60 minutes
- 3 blocks of questions on Web Usage Mining, Web Structure Mining, Web Content Mining
 - 10 points per block, several questions per block
- Content: open questions that
 - check whether you have understood the content of the lecture
 - we try to cover all major chapters of the lecture, including recommender systems, network metrics, community detection, machine learning on graphs, sentiment analysis, named entity recognition
 - require you to describe the ideas behind algorithms or apply the methods
 - What is the advantage or problem of X compared to Y?
 - How do methods react to this special pattern in the data?
 - Given the following data/graph. Please calculate
 - might require you to do some simple calculations
 - you need to be able to use the most relevant formulas
 - you are not allowed to use a calculator (so only simple formulas can be applied)

3. Introduction to the Student Projects

Goals

- Gain practical experience on any of the topics that we have seen in the lecture, namely:
 - 1. Web Usage Mining (including Recommender Systems)
 - 2. Web Structure Mining (including Social Network Analysis, Machine Learning on Graphs)
 - **3. Web Content Mining** (including Sentiment Analysis, Hate Speech Detection)
- Get to know additional current tools and methods

What is expected from you

- To find an interesting Web mining problem of your choice
- To find a solution for the problem using
 - any of the Web mining methods that we have seen so far plus some additional task-specific techniques
 - <u>other</u> Web mining methods which might be helpful for solving the problem and build on what we learned in class

Overview

Teams of five students

- 1. realize a Web mining project
- 2. write 12 page report about the project and the methods employed in the project
- present the project results to the other students (10 minutes presentation + 5 minutes discussion)

Final mark for the course

- 70 % project report (including code)
- 30 % oral presentation

Schedule

Week	Topic / Deadline				
18.04.2023	Kickoff Session and Team Formation / Registration				
23.04.2023, 23:59	Submission of project outlines				
25.04.2023, 10:15	Feedback on the project outlines (if necessary)				
05.05.2023, 13:45	Coaching session				
12.05.2023, 13:45	Coaching session				
19.05.2023, 13:45	Coaching session				
25.05.2023, 13:45	Coaching session				
26.05.2023, 23:59	Submission of project reports				
30.05.2023, 10:15	Presentation of project results				
16.06.2023	Final exam				

Step 1: Team Formation

- You can form a team with other students of your choice
 - Each team must consist of 5 students
- If you do not find a team yourself, we will assign you to a team in the kickoff session

Process:

- **1.** Find 5 fellow students you want to do the project with
- 2. Register your team before the kickoff meeting on 18.4.2023 in the provided spreadsheet (see mail)

People who do not have a team

- will be assigned to existing teams or
- grouped into new teams at the kickoff session on 18.4.2023

Step 2: Project Outlines

- Write 3 pages (sharp!) project outline
 - include a project name and your team number on the first page
 - using Springer Computer Science Proceedings layout or Word
- Submit the project outline until 23.04.2023, 23:59 using the "tasks" submission in our ILIAS group

The project outline needs to answer the following questions:

- **1.** What is the problem you are solving?
- 2. What data will you use?
 - Where will you get it?
 - How will you gather it?

3. How will you solve the problem?

- What preprocessing steps will be required?
- Which algorithms you plan to use? Be as specific as you can!

4. How will you evaluate, measure success?

Step 3: Feedback and Coaching Sessions

- After submitting your outline, we will give you feedback (if required) on Tuesday, 25.04.2023, 10:15-11:45
- Later, Alex and Ralph will give you tips and answer questions concerning your project during the coaching sessions.
- Coaching sessions are optional: please send Alex and Ralph an email if you want to attend until Monday night including your questions
- We will afterwards inform you about your slot via email.
- You are required to attend at least one coaching session.

Step 4: Project Reports

- Max. 12 pages (sharp!): title, toc or list of references do not count.
- Every additional page (including appendices) and every day of late submission downgrades your mark by 0.3
- Due Friday, 26.05.2023, 23:59. Submit as an "tasks" submission via ILIAS
- Outline for project summaries:
 - **1.** Introduction: problem/task formulation, research questions and objective
 - 2. Methodology: describe the methods that you used and why you choose them
 - **3.** Experimental setting: structure and statistics of the data set, evaluation measures
 - 4. Evaluation and discussion of the results: How do your results compare to existing solution?
 - 5. Conclusions (what can we learn from your work?) and future direction (what would you do differently, or additionally, why?)

Requirements

- You must use the <u>Springer Computer Science Proceedings layout template</u>.
- Please cite sources properly. Preferred citation style [Author, year].
- Also submit your code and links to the dataset. Alternatively, you can submit a link to a GitHub archive

Step 5: Project Presentations

- Present your project in front of your fellow students
- Covers the contents of your report, this time in a "presentation" format
- Format
 - 10 minutes presentation: each team member presents for 2-4 minutes
 - 5 minutes Question/Answer slot everybody can (should) ask questions
- Submit your slides in ILIAS (via the corresponding "tasks") after your presentation
- All students / project members must attend all sessions and presentations

Where to find datasets for Web Usage Mining?

MovieLens

- 1M Dataset: 6.000 users, 3.900 movies, 1 million ratings
- 10M Dataset: 71.000 users, 10.600 movies, 10 million ratings

Netflix Challenge

100M Dataset: 500.000 users, 18.000 movies, 100M ratings

Amazon Product Reviews

- 230M product reviews including star ratings
- https://nijianmo.github.io/amazon/

Microsoft MIND

- 160k English news articles and
- 15 million impression logs by 1 million users
- https://msnews.github.io/

Papers with Code

- collects benchmark datasets
- https://paperswithcode.com/datasets? task=recommendation-systems

Web 2.0 Platforms offer plenty of rating and usage data

e.g. LastFM, Wikipedia, ...

Benchmark Results: Recommender Systems

https://paperswithcode.com/task/recommendation-systems

Benchr	narks		Add a Result							
These lead	erboards are used to tra	ack progress in Recommendation Sy	stems							
Trend	Dataset	Best Model	Search Q Browse State-of-the-Art Datasets Methods More V We are hiring:	y #						
	MovieLens 1M	🏆 GLocal-K	Recommendation Systems on MovieLens 20M							
	MovieLens 20M	🝷 VASP	Leaderboard Dataset							
	MovieLens 100K	T GHRS	View nDCG@100 V by Date V for All models	~						
	MovieLens 10M	🏆 Bayesian timeSVD++ flipped	0.45 H+Vamp Gated V45P							
	Netflix	🍷 H+Vamp Gated	0 0.44 0 0.42 0 0.42 Mult-VAE PR							
:	Douban Monti	🝷 GLocal-K	0.42							
	Flixster Monti	🝷 IGMC	Jan'18 May'18 Sep'18 Jan'19 May'19 Sep'19 Jan'20 May'20 Sep'20 Jan'21 ● Other models → Models with highest nDCC@100 Filter: untagged							
	Gowalla	🏆 Rank-GeoFM	Extra	e Resu						
	Million Song Dataset	₹ EASE	1 VASP 0.448 0.414 0.552 * Shallow Parallel Path for Top-N Recommendation (VASP)	f						

Where to find datasets for Web Structure Mining?

Stanford Large Network Dataset Collection

- Social networks: Facebook, Google+
- Citation networks: Arxiv, US Patents
- Product co-purchasing network: Amazon
- http://snap.stanford.edu/data/index.html

Scientific Network Data Repository

- networks from 30+ categories ranging from biology to social networking
- https://networkrepository.com/

Web Data Commons and Common Crawl Hyperlink Networks

- Different aggregation levels
- http://webdatacommons.org/hyperlinkgraph/
- https://commoncrawl.org/connect/blog/

The Koblenz Network Collection

- hundreds of networks about various topics
- http://konect.cc/

Project Ideas for Machine Learning with Graphs

see term projects of Stanford CS224W students

https://medium.com/stanford-cs224w

Universität Mannheim – Bizer/Ponzetto/Brinkmann/Peeters: Web Mining – Student Projects – FSS2023 (Version: 17.4.2023) – Slide 16

Where to find datasets for Web Content Mining?

SemEval datasets

- Multiple datasets on text understanding task like sentiment analysis (e.g., from Twitter)
- http://alt.qcri.org/semeval{2014-2021}/

Amazon Review Data

- Amazon product metadata and reviews
- https://nijianmo.github.io/amazon/index.html
- https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Web Data Commons

- Product/hotel/restaurant reviews as part of Microdata dataset
- http://www.webdatacommons.org/structureddata/

Academictorrents.com

- Various large data sets
- e.g. Enron Email Bag of Words, Arizona State University Twitter Data Set

Kaggle

- Tons of datasets on a variety of topics
- https://www.kaggle.com/datasets

Crawl your own data

Papers with code

https://paperswithcode.com/task/sentiment-analysis

Sent	iment Analys	is					🕑 Edit			
893 papers with code • 36 benchmarks • 71 datasets										
Sentiment analysis is the task of classifying the polarity of a given text. For instance, a text- based tweet can be categorized into either "positive", "negative", or "neutral". Given the text and accompanying labels, a model can be trained to predict the correct sentiment Further readings: • Sentiment Analysis Based on Deep Learning: A Comparative Study										
Benchmarks Add a Result These leaderboards are used to track progress in Sentiment Analysis						Content				
Trend	Dataset	Best Model	Paper (Code	Compare	曽 Datasets 品 Subtasks 凾 Libraries				
	SST-2 Binary classification	🏆 SMART-RoBERTa Large	6	0	See all	Papers - Most impleme	ented			

Huggingface Datasets Hub - Task Sentiment Analysis

<u>https://huggingface.co/datasets?task_ids=task_ids:sentiment-classification&sort=downloads</u>

Check out the solutions to your task that other people have tried.

- by investigating the state-of-the-art for your task on Papers with Code
- by looking through the discussion groups and code of related Kaggle competitions
- search for survey papers about your task on Google Scholar: "task name + survey". Select recent and frequently cited ones.

Google

Get Additional Advice from a Stanford Professor

Christopher Potts

How to evaluate your model?

https://www.youtube.com/watch?v=TxTbIROT9IY

How to structure your project report?

- https://www.youtube.com/watch?v=DZNwO-p5PGY
- How to present the results of your project?
 - https://www.youtube.com/watch?v=GGx7klcahzY

Questions?

4. Team Formation and Next Steps

- 1. Anybody without a team?
- **2.** People with teams:
 - Meet in your team now!
 - Agree on use case
 - Decide on or collect data
 - Write project outline

