
Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 1

Web Mining

Web Content Mining:
Named Entity Recognition

Simone Paolo Ponzetto

FSS 2024

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 2

Information Extraction

− Information extraction (IE) is the automatic identification of
selected types of entities, relations, or events in free text

− Traditionally, IE tasks tasks are the following:
• Named entity recognition and classification (NERC)
• Coreference resolution
• Relation extraction
• Event extraction

− The following tasks loosely belong to IE:
• Keywords/keyphrase extraction
• Terminology extraction
• Collocation extraction

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 3

Outline

1. Named Entity Recognition
2. Evaluation
3. RNNs

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 4

Supervised Named Entity Recognition

− In information extraction, a named entity is a real-world
object, such as a person, location, organization, product,
etc., that can be denoted with a proper name. It can be
abstract or have a physical existence.

− Named-entity recognition (NER) is a subtask of information
extraction that seeks to locate and classify named
entities mentioned in unstructured text into pre-defined
categories such as person names, organizations,
locations, medical codes, time expressions, quantities,
monetary values, percentages, etc.

Wikipedia, released under Creative Commons Attribution-ShareAlike License 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 5

Named Entity Recognition

− PERson, LOCation, ORGanization, TIME

− Q: What type of NLP task would NER be (from the machine
learning perspective)?

Eastern Ukraine is gripped by an armed separatist uprising, with pro-Russian
protesters occupying government buildings in more than a dozen towns and cities,
despite an ongoing ”anti-terror” operation launched by the Ukrainian military.
Vyacheslav Ponomaryov is the self-proclaimed pro-Russian mayor of Sloviansk,
Donetsk region, the stronghold of the separatist movement in eastern Ukraine. He was
involved in the seizure of a group of military observers from the Organization for
Security and Co-operation in Europe (OSCE). One of the best-known leaders of the
uprising, Igor Strelkov directs armed pro-Russian activists in eastern Ukraine,
especially in Sloviansk. The word is he works for the GRU (Russian military intelligence
agency), and his real name is Igor Girkin. He was born in 1970 and registered in
Moscow.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 6

Rule-Based Named Entity Recognition

− Large number of extraction patterns / rules
− Each pattern detects some type of named entities

− Unfortunately, most rules have exceptions...

[capitalized-word]+[’Corp.’] ⇒ Organization
[’Mr.’][capitalized-word]+⇒ Person
[in|at|on][capitalized-word]+⇒ Location

“She lost hope she would ever meetMr. Right One.” (Person?)
“God only knows what goes on in Putin’s mind.” (Location?)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 7

Building a Named-Entity Tagger

− We can add additional rules to handle exceptions

− E.g., gazetteers: word lists for each of the NER categories
− Some potential gazetteer rules:

− Problem: Gazetteers are always incomplete
− Generally, too many rules, difficult to maintain, etc.

[cap-word-names-gazetteer]+[cap-word-surnames-gazetteer]+

Personal names: Aaliyah, Aaron, Abbey, ..., Zygmunt, Zyta
Surnames: Abbott, Abney, Abraham, ..., Zysett, Zyskowsky Organizations:
Abbott Laboratories, Abercrombie & Fitch, Association for Computational
Linguistics, . . . , WorldCom, World Help Foundation
Locations: Alabama, Arkansas, ..., Zimbabwe

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 8

Supervised Named Entity Recognition

− We need: a corpus manually annotated with named entities
− Annotations done according to annotation standard

• The most renowned annotation standard: MUC-7
(Chinchor & Robinson, 1997)

− MUC-7 named entity types
• Entity names (ENAMEX) – Person, Organization, Location
• Temporal expressions (TIMEX) – Date, Time
• Quantities (NUMEX) – Monetary value, Percentage

− Annotation of named entities is not particularly demanding
• No need to hire experts (e.g., linguists)
• Virtually any native speaker can annotate (after training)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 9

Supervised Named Entity Recognition

− NER is a prototypical sequence labelling task
• But named entities are generally multi-token expressions
• Q: What labels do we assign to individual tokens?

− We need to make a distinction between the first token of a
named entity and all other tokens
• Q: Why?

• „British Broadcast Channel’s La Liga” – one or two organizations?

Barcelona’s/ORG draw/O with/O Atletico/ORG Madrid/ORG at/O Camp/LOC
Nou/LOC was/O not/O expected/O, says/O British/ORG Broadcast/ORG
Channel’s/ORG La/ORG Liga/ORG football expert Andy/PER West/PER.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 10

Supervised Named Entity Recognition

− NER is a prototypical sequence labelling task
• But named entities are generally multi-token expressions

− B-I-O annotation scheme
• B – Begins a named entity (i.e., first NE token)
• I – Inside a named entity (i.e., second and subsequent NE tokens)
• O – Outside of a named entity (i.e., token is not part of any NE)

• „British Broadcast Channel’s La Liga” – two organizations!

Barcelona’s/B-ORG draw/O with/O Atletico/B-ORG Madrid/I-ORG at/O
Camp/B-LOC Nou/I-LOC was/O not/O expected/O, says/O British/B-ORG
Broadcast/I-ORG Channel’s/I-ORG La/B-ORG Liga/I-ORG football expert
Andy/B-PER West/I-PER.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 11

Supervised Named Entity Recognition

Supervised approaches to NER:
1. Token-level classification

• Naive Bayes, SVM, Logistic regression, Feed-forward NN
• Cannot use labels from both token sides as features

2. Sequence labelling
• Hidden Markov Models (HMM), Conditional Random Fields (CRF)

• Require manual feature design
• Recurrent (or gated convolutional) neural networks

• Word embeddings as input, no feature design
• State-of-the-art results

Common features (for feature-based learning algorithms):
• Linguistic features: word, lemma, POS-tag, sentence start,

capitalization, ...
• Gazetteer features: is gazetteer entry, starts gazetteer entry, inside of

a gazetteer entry (for all gazetteers)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 12

Named Entity Recognition – Document Level

− Sequence models predict BIO labels at the sentence level
− Thus, it’s possible to have different labels for the same

named entity at the document level

− Enforcing document-level consistency improves NER
performance

Eastern Ukraine is gripped by an armed separatist uprising. Vyacheslav Ponomaryov is
the self-proclaimed pro-Russian mayor of Sloviansk, Donetsk region, the stronghold of
the separatist movement in eastern Ukraine. He was involved in the seizure of a group
of military observers from the Organization for Security and Co-operation in Europe
(OSCE). One of the best-known leaders of the uprising, Igor Strelkov directs armed pro-
Russian activists in eastern Ukraine, especially in Sloviansk.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 13

Outline

1. Named Entity Recognition
2. Evaluation
3. RNNs

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 14

Named Entity Recognition Evaluation

− Comparing system predicted Named Entities (NEs) with gold-
annotated Nes
• In terms of precision, recall, and F-score

1. Lenient (aka MUC) evaluation
• System NE and gold NE need to be of the same type and overlap in

token spans in order to count as a match (i.e., true positive)

2. Strict (aka Exact) evaluation
• System NE and gold NE need to be of the same type and exactly the

same token span order to count as a match (i.e., true positive)

− State-of-the-art NER performance (coarse-grained entity
types) is around 94% F-score for English, and significantly
less for other languages

Gold: „The Faculty of Business Informatics and Mathematics issued a diploma...”
Sys1: „The Faculty of Business Informatics and Mathematics issued a diploma...”
Sys2: „The Faculty of Business Informatics and Mathematics issued a diploma...”

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 15

Named Entity Recognition Evaluation

The F1 score is
the harmonic mean of
the precision and
recall.

𝐹! =
2

recall"! + precision"!

𝐹! = 2
recall ⋅ precision
recall + precision

𝐹! =
tp

tp + 12 (fp + fn)

Wikipedia, released under Creative Commons Attribution-ShareAlike License 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 16

I. Surface string and entity type match

Gold Standard System Prediction

Token Entity Type Token Entity Type

in O in O

New B-LOC New B-LOC

York I-LOC York I-LOC

. O . O

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 17

II. System hypothesized an entity

Gold Standard System Prediction

Token Entity Type Token Entity Type

an O an O

Awful O Awful B-ORG

Headache O Headache I-ORG

in O in O

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 18

III. System misses an entity

Gold Standard System Prediction

Token Entity Type Token Entity Type

in O in O

Palo B-LOC Palo O

Alto I-LOC Alto O

, O , O

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 19

Note

§ Note that considering only this 3 scenarios, and discarding every
other possible scenario we have a simple classification
evaluation that can be measured in terms of false negatives, true
positives and false positives, and subsequently compute
precision, recall and f1-score for each named-entity type.

§ But of course we are discarding partial matches, or other
scenarios when the NER system gets the named-entity surface
string correct but the type wrong, and we might also want to
evaluate these scenarios again at a full-entity level.

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 20

IV. System assigns the wrong entity type

Gold Standard System Prediction

Token Entity Type Token Entity Type

I O I O

live O live O

in O in O

Palo B-LOC Palo B-ORG

Alto I-LOC Alto I-ORG

, O , O

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 21

V. System gets the boundaries of the surface string wrong

Gold Standard System Prediction

Token Entity Type Token Entity Type

Unless O Unless B-PER

Karl B-PER Karl I-PER

Smith I-PER Smith I-PER

resigns O resigns O

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 22

VI. System gets the boundaries and entity type wrong

Gold Standard System Prediction

Token Entity Type Token Entity Type

Unless O Unless B-ORG

Karl B-PER Karl I-ORG

Smith I-PER Smith I-ORG

resigns O resigns O

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 23

CoNLL: NER task

§ The Language-Independent Named Entity Recognition
task introduced at CoNLL-2003 measures the performance of
the systems in terms of precision, recall and f1-score, where:

§ “precision is the percentage of named entities found by the
learning system that are correct. Recall is the percentage of
named entities present in the corpus that are found by the
system. A named entity is correct only if it is an exact match
of the corresponding entity in the data file.”

§ so basically it only considers scenarios I, II and III, the others
described scenarios are not considered for evaluation.

By David S. Batista (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/), licensed under a CC BY-NC-SA 4.0 International License

http://www.aclweb.org/anthology/W03-0419
http://www.aclweb.org/anthology/W03-0419
http://creativecommons.org/licenses/by-nc-sa/4.0/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 24

Outline

1. Named Entity Recognition
2. Evaluation
3. RNNs

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 25

Recurrent Neural Networks (RNNs)

• Martin & Jurafsky (2023): A network that contains a cycle within
its network connections, meaning that the value of some unit is
directly, or indirectly, dependent on its own earlier outputs as an
input

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 26

Recurrent neural networks

§ Recurrent neural networks are neural models that explicitly
take into account the sequences
■ Sequences of words in a sentence, sentences in a paragraph, etc.

General RNN model:
§ Input: sequence of input vectors (e.g., word embeddings):

x1, ..., xn
§ RNN is a function that converts an arbitrary size sequence

x1, ..., xn into a fixed size output vector yn
■ Analogously, the subsequence x1, ..., xi will produce the output yi

§ The output vector yi-1 of the previous step (i-1) is combined
with the current input xi to produce the output yi

§ The RNN network is, at time step i, represented with its
current state si

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 27

Elman (1990) Recurrent Neural Network (RNN)

• The goal is to learn a representation of a sequence by
maintaining a hidden state vector that act as form of memory (or
context) to encode the sequence seen so far

• The hidden layer includes a recurrent connection as part of its
input

• The hidden state vector is computed from both a current input
vector and the previous hidden state vector.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 28

Elman (1990) Recurrent Neural Network (RNN)

● Input vector from the current time step and the hidden state
vector from the previous time step are mapped to the hidden
state vector of the current time step:

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 29

Elman (1990) Recurrent Neural Network (RNN)

● Hidden-to-hidden and input to hidden weights are shared
across the different time steps

● Weights are adjusted so that the RNN is learning how to
incorporate incoming information and maintain a state
representation summarizing the input seen so far

● RNN does not have any way of knowing which time step it is
on: RNN is “only” learning how to transition from one time
step to another and maintain a state representation that will
minimize its loss.

Source: R
ao D

. & M
cM

ahan (2019): N
atural Language Processing w

ith PyTorch: Build Intelligent Language Applications U
sing D

eep

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 30

Elman (1990) or “Simple” RNN

● input vector representing the current
input at time step t

● hidden units
● output

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 31

Elman (1990) or “Simple” RNN

• W: weights from the input layer to the hidden
layer

• U:weights from the previous hidden layer to
the current hidden layer

• V: weights from the hidden layer to the
output layer

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 32

Unrolling the simple RNN

● Network layers are copied for each time step, while the weights
U, V and W are shared in common across all time steps.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 33

Forward inference

§ Forward inference (mapping a sequence of inputs to a sequence
of outputs) requires an inference algorithm that proceeds from
the start of the sequence to the end

§ The matrices U, V and W are shared across time, while new
values for h and y are calculated with each time step.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 34

A RNN Language Model

opened theirwords / one-hot vectors the students

books
laptops

word embeddings

a zoo

output distribution

hidden states

is the initial hidden state

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 35

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t

can (in theory) use
information from many
steps back

• Model size doesn’t
increase for longer input

• Same weights applied on
every timestep, so there is
symmetry in how inputs are
processed

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps back

A RNN Language Model

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 36

Generating with an RNN LM

Also known as autoregressive generation or causal LM generation

§ Sample a word in the output from the softmax distribution that
results from using the beginning of sentence marker, <s>, as the
first input

§ Use the word embedding for that first word as the input to the
network at the next time step, and then sample the next word in
the same fashion

§ Continue generating until the end of sentence marker, </s>, is
sampled or a fixed length limit is reached

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 37

Using a language model as generator through sampling

§ First proposed by Shannon (1951) and Miller and Selfridge
(1950)

§ Simple example: unigram case

10 CHAPTER 3 • N-GRAM LANGUAGE MODELS

or machine translation. Nonetheless, because perplexity often correlates with such
improvements, it is commonly used as a quick check on an algorithm. But a model’s
improvement in perplexity should always be confirmed by an end-to-end evaluation
of a real task before concluding the evaluation of the model.

3.3 Sampling sentences from a language model

One important way to visualize what kind of knowledge a language model embodies
is to sample from it. Sampling from a distribution means to choose random pointssampling

according to their likelihood. Thus sampling from a language model—which rep-
resents a distribution over sentences—means to generate some sentences, choosing
each sentence according to its likelihood as defined by the model. Thus we are more
likely to generate sentences that the model thinks have a high probability and less
likely to generate sentences that the model thinks have a low probability.

This technique of visualizing a language model by sampling was first suggested
very early on by Shannon (1951) and Miller and Selfridge (1950). It’s simplest to
visualize how this works for the unigram case. Imagine all the words of the English
language covering the probability space between 0 and 1, each word covering an
interval proportional to its frequency. Fig. 3.3 shows a visualization, using a unigram
LM computed from the text of this book. We choose a random value between 0 and
1, find that point on the probability line, and print the word whose interval includes
this chosen value. We continue choosing random numbers and generating words
until we randomly generate the sentence-final token </s>.

0 1

0.06

the

.06

0.03

of
0.02

a
0.02

to in

.09 .11 .13 .15
…

however
(p=.0003)

polyphonic
p=.0000018

…0.02

.66 .99
…

Figure 3.3 A visualization of the sampling distribution for sampling sentences by repeat-
edly sampling unigrams. The blue bar represents the relative frequency of each word (we’ve
ordered them from most frequent to least frequent, but the choice of order is arbitrary). The
number line shows the cumulative probabilities. If we choose a random number between 0
and 1, it will fall in an interval corresponding to some word. The expectation for the random
number to fall in the larger intervals of one of the frequent words (the, of, a) is much higher
than in the smaller interval of one of the rare words (polyphonic).

We can use the same technique to generate bigrams by first generating a ran-
dom bigram that starts with <s> (according to its bigram probability). Let’s say the
second word of that bigram is w. We next choose a random bigram starting with w
(again, drawn according to its bigram probability), and so on.

3.4 Generalization and Zeros

The n-gram model, like many statistical models, is dependent on the training corpus.
One implication of this is that the probabilities often encode specific facts about a

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 38

Generating with an RNN LM

my favorite season is

…

favorite season is

sample sample sample

spring

sample

spring

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 39

Common RNN architectures used in NLP

9.6 • SUMMARY: COMMON RNN NLP ARCHITECTURES 17

9.6 Summary: Common RNN NLP Architectures

We’ve now introduced the RNN, seen advanced components like stacking multiple
layers and using the LSTM version, and seen how the RNN can be applied to various
tasks. Let’s take a moment to summarize the architectures for these applications.

Fig. 9.15 shows the three architectures we’ve discussed so far: sequence la-
beling, sequence classification, and language modeling. In sequence labeling (for
example for part of speech tagging), we train a model to produce a label for each
input word or token. In sequence classification, for example for sentiment analysis,
we ignore the output for each token, and only take the value from the end of the
sequence (and similarly the model’s training signal comes from backpropagation
from that last token). In language modeling, we train the model to predict the next
word at each token step. In the next section we’ll introduce a fourth architecture, the
encoder-decoder.

…

Encoder RNN

Decoder RNN

Context

…

x1 x2 xn

y1 y2 ym

…

RNN

x1 x2 xn

…y1 y2 yn

…

RNN

x1 x2 xn

y

…

RNN

x1 x2 xt-1

…x2 x3 xt

a) sequence labeling b) sequence classification

c) language modeling d) encoder-decoder
Figure 9.15 Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map
each input token xi to an output token yi. In sequence classification we map the entire input sequence to a single
class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence x to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.

9.7 The Encoder-Decoder Model with RNNs

In this section we introduce a new model, the encoder-decoder model, which is used
when we are taking an input sequence and translating it to an output sequencex that
is of a different length than the input, and doesn’t align with it in a word-to-word
way. Recall that in the sequence labeling task, we have two sequences, but they are

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 40

RNNs as language models
9.2 • RNNS AS LANGUAGE MODELS 7

Input
Embeddings

Softmax over
Vocabulary

So long and thanks for

long and thanks forNext word all

…

Loss

…

…

RNN
h

y

Vh

e

Figure 9.6 Training RNNs as language models.

where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word. So at time t the CE loss is the negative log
probability the model assigns to the next word in the training sequence.

LCE(ŷt ,yt) = � log ŷt [wt+1] (9.11)

Thus at each word position t of the input, the model takes as input the correct se-
quence of tokens w1:t , and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token wt+1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens w1:t+1 to estimate the probability of
token wt+2. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.teacher forcing

The weights in the network are adjusted to minimize the average CE loss over
the training sequence via gradient descent. Fig. 9.6 illustrates this training regimen.

9.2.3 Weight Tying

Careful readers may have noticed that the input embedding matrix E and the final
layer matrix V, which feeds the output softmax, are quite similar. The columns of E

represent the word embeddings for each word in the vocabulary learned during the
training process with the goal that words that have similar meaning and function will
have similar embeddings. And, since the length of these embeddings corresponds to
the size of the hidden layer dh, the shape of the embedding matrix E is dh ⇥ |V |.

The final layer matrix V provides a way to score the likelihood of each word in
the vocabulary given the evidence present in the final hidden layer of the network
through the calculation of Vh. This results in dimensionality |V |⇥ dh. That is, the
rows of V provide a second set of learned word embeddings that capture relevant
aspects of word meaning. This leads to an obvious question – is it even necessary
to have both? Weight tying is a method that dispenses with this redundancy andWeight tying

simply uses a single set of embeddings at the input and softmax layers. That is, we

(training)

9.4 • STACKED AND BIDIRECTIONAL RNN ARCHITECTURES 11

So long

<s>

and

So long and

?Sampled Word

Softmax

Embedding

Input Word

RNN

Figure 9.9 Autoregressive generation with an RNN-based neural language model.

9.4 Stacked and Bidirectional RNN architectures

Recurrent networks are quite flexible. By combining the feedforward nature of un-
rolled computational graphs with vectors as common inputs and outputs, complex
networks can be treated as modules that can be combined in creative ways. This
section introduces two of the more common network architectures used in language
processing with RNNs.

9.4.1 Stacked RNNs

In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs

the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3 yn

x1 x2 x3 xn

RNN 1

RNN 2

 RNN 3

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

(generation)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 41

RNNs for sequence labeling

8 CHAPTER 9 • RNNS AND LSTMS

dispense with V and use E in both the start and end of the computation.

et = Ext (9.12)

ht = g(Uht�1 +Wet) (9.13)

yt = softmax(E|
ht) (9.14)

In addition to providing improved model perplexity, this approach significantly re-
duces the number of parameters required for the model.

9.3 RNNs for other NLP tasks

Now that we’ve seen the basic RNN architecture, let’s consider how to apply it to
three types of NLP tasks: sequence classification tasks like sentiment analysis and
topic classification, sequence labeling tasks like part-of-speech tagging, and text

generation tasks, including with a new architecture called the encoder-decoder.

9.3.1 Sequence Labeling

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence, like the part-of-speech tagging and
named entity recognition tasks from Chapter 8. In an RNN approach to sequence
labeling, inputs are word embeddings and the outputs are tag probabilities generated
by a softmax layer over the given tagset, as illustrated in Fig. 9.7.

Janet will back the bill

NNDTVBMDNNPArgmax

Embeddings

Words

e

h
Vh

y

RNN
Layer(s)

Softmax over
tags

Figure 9.7 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U, V and W weight matrices
that comprise the network. The outputs of the network at each time step represent
the distribution over the POS tagset generated by a softmax layer.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 42

RNNs for sequence classification

9.3 • RNNS FOR OTHER NLP TASKS 9

To generate a sequence of tags for a given input, we run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

9.3.2 RNNs for Sequence Classification

Another use of RNNs is to classify entire sequences rather than the tokens within
them. This is the set of tasks commonly called text classification, like sentiment
analysis or spam detection, in which we classify a text into two or three classes
(like positive or negative), as well as classification tasks with a large number of
categories, like document-level topic classification, or message routing for customer
service applications.

To apply RNNs in this setting, we pass the text to be classified through the RNN
a word at a time generating a new hidden layer at each time step. We can then take
the hidden layer for the last token of the text, hn, to constitute a compressed repre-
sentation of the entire sequence. We can pass this representation hn to a feedforward
network that chooses a class via a softmax over the possible classes. Fig. 9.8 illus-
trates this approach.

x1

RNN

hn

x2 x3 xn

Softmax

FFN

Figure 9.8 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach we don’t need intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. The output from the
softmax output from the feedforward classifier together with a cross-entropy loss
drives the training. The error signal from the classification is backpropagated all the
way through the weights in the feedforward classifier through, to its input, and then
through to the three sets of weights in the RNN as described earlier in Section 9.1.2.
The training regimen that uses the loss from a downstream application to adjust the
weights all the way through the network is referred to as end-to-end training.end-to-end

training

Another option, instead of using just the last token hn to represent the whole
sequence, is to use some sort of pooling function of all the hidden states hi for eachpooling

word i in the sequence. For example, we can create a representation that pools all

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 43

Bidirectional RNNs: motivation

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 44

Bidirectional RNNs

terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 45

Bidirectional RNNs

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTM or GRU computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 46

“Vanilla” Bidirectional RNNs vs. for sequence classification

9.4 • STACKED AND BIDIRECTIONAL RNN ARCHITECTURES 13

RNN 2

RNN 1

x1

y2y1 y3 yn

concatenated
outputs

x2 x3 xn

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

state of the RNN as the input to a subsequent feedforward classifier. A difficulty
with this approach is that the final state naturally reflects more information about
the end of the sentence than its beginning. Bidirectional RNNs provide a simple
solution to this problem; as shown in Fig. 9.12, we simply combine the final hidden
states from the forward and backward passes (for example by concatenation) and
use that as input for follow-on processing.

RNN 2

RNN 1

x1 x2 x3 xn

hn
→

h1
←

hn
→

Softmax

FFN

h1
←

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

9.4 • STACKED AND BIDIRECTIONAL RNN ARCHITECTURES 13

RNN 2

RNN 1

x1

y2y1 y3 yn

concatenated
outputs

x2 x3 xn

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

state of the RNN as the input to a subsequent feedforward classifier. A difficulty
with this approach is that the final state naturally reflects more information about
the end of the sentence than its beginning. Bidirectional RNNs provide a simple
solution to this problem; as shown in Fig. 9.12, we simply combine the final hidden
states from the forward and backward passes (for example by concatenation) and
use that as input for follow-on processing.

RNN 2

RNN 1

x1 x2 x3 xn

hn
→

h1
←

hn
→

Softmax

FFN

h1
←

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 47

Multi-layer RNNs

terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1

Abigail See

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 48

The Problem with Vanilla RNNs (or Elman/Simple RNNs)

§ The inability to retain information for long-range predictions:

– at each time step we simply updated the hidden state vector
regardless of whether it made sense;

– RNN has no control over which values are retained and which
are discarded in the hidden state;

● that is entirely determined by the input;

● there is no way to decide if the update is optional or not

§ Vanishing (and) exploding gradients

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 49

Vanishing gradient intuition

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 50

Vanishing gradient intuition

?

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 51

Vanishing gradient intuition

chain rule!

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 52

Vanishing gradient intuition

chain rule!

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 53

Vanishing gradient intuition

chain rule!

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 54

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 55

Why is vanishing gradient a problem?

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 56

The Problem with Vanilla RNNs (or Elman/Simple RNNs)

§ Simple (Elman) architecture suffers from a problem known as
vanishing gradients
■ Error signals from later steps in the sequence diminish quickly in the

backpropagation algorithm
■ Thus, the updates for early inputs that come from errors in later

steps are very small

§ Solution: Gated architectures
■ Do not update the whole state at every step
■ Gate vectors define which parts of the new state are taken from the

previous state and which from the current input
■ Ex.: Long short-term memory (LSTM), Gated Recurrent Unit (GRU)

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 57

Intuition behind the gating mechanism

● Suppose that you were adding two quantities, a and b, but
you wanted to control how much of b gets into the sum:

● λ is a value between 0 and 1.
● λ acts as a “switch” or a “gate” in controlling the amount of

b that gets into the sum.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 58

A simple gate example

● Elman RNN:

● A gated version of Elman RNN:

– function λ controls how much of the current input gets to update the
state ht−1;

– function λ is context-dependent.

● Incorporate not only conditional updates, but also forgetting of
the values in the previous state ht−1

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 59

LSTM intuitions

Memory cell:
– Internal state serves as a memory

Gates:
– Pointwise multiplication in gates regulates how much is passed

through, based on inputs. This way, for instance, an LSTM can learn:

– when to reset its memory

– when to let the input in

– when to let the output out

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 60

Long Short-Term Memory Networks (LSTMs)

1. Explicitly splits the RNN state intwo two halves: si = [ci; hi]
■ ci is the „memory cell”, whereas hi is the „working memory”

2. Introduces differentiable gating mechanisms – smooth
functions that simulate logical gates.
■ Forget gate: decides which parts of the memory cell should be

forgotten due to new input
■ Input/add gate: decides how much of the current input xi should be

written to the memory cell ci

■ Output gate: decides which parts of the memory cell should be
copied to the current hidden state / working memory

■ Gate vectors themselves are computed from the current input xi and
the previous state of the working memory hi-1

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 61

Long Short-Term Memory Networks (LSTMs)

ct-1

ht-1

ct

ht

ft
it ot

ct

t
~cCompute the

forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 62

Gates: common design pattern

§ All gates consist of a feed-forward layer, a sigmoid
activation function, and a pointwise multiplication with the
layer being gated

§ Sigmoid as the activation function pushes its outputs to
either 0 or 1.

§ Combined with a pointwise multiplication it acts a sort of
binary mask:
■ Values in the layer being gated that align with values near 1 in the

mask are passed through nearly unchanged
■ Values corresponding to lower values are essentially erased

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 63

Forget gate

§ It computes a weighted sum of the previous state’s hidden
layer and the current input and passes that through a
sigmoid

§ The mask is then multiplied element-wise by the context
vector to remove the information that is no longer required
from the context (i.e., the memory cell)

9.5 • THE LSTM 15

in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U f ht�1 +W f xt) (9.20)

kt = ct�1 � ft (9.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (9.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (9.23)

jt = gt � it (9.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (9.25)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = s(Uoht�1 +Woxt) (9.26)

ht = ot � tanh(ct) (9.27)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 64

Input/add gate

§ Computes first the actual information we need to extract
from the previous hidden state and current inputs (similar
to what we did in vanilla RNNs)

§ Generates the mask to select the information to add to the
current context

§ Add this to the modified context vector to get the new
context vector

9.5 • THE LSTM 15

in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U f ht�1 +W f xt) (9.20)

kt = ct�1 � ft (9.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (9.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (9.23)

jt = gt � it (9.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (9.25)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = s(Uoht�1 +Woxt) (9.26)

ht = ot � tanh(ct) (9.27)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

9.5 • THE LSTM 15

in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U f ht�1 +W f xt) (9.20)

kt = ct�1 � ft (9.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (9.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (9.23)

jt = gt � it (9.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (9.25)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = s(Uoht�1 +Woxt) (9.26)

ht = ot � tanh(ct) (9.27)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

9.5 • THE LSTM 15

in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U f ht�1 +W f xt) (9.20)

kt = ct�1 � ft (9.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (9.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (9.23)

jt = gt � it (9.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (9.25)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = s(Uoht�1 +Woxt) (9.26)

ht = ot � tanh(ct) (9.27)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 65

Output gate

§ Create a mask to select information from the memory cell
that is required for the current hidden state

9.5 • THE LSTM 15

in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate isforget gate

to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator �,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

ft = s(U f ht�1 +W f xt) (9.20)

kt = ct�1 � ft (9.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt = tanh(Ught�1 +Wgxt) (9.22)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = s(Uiht�1 +Wixt) (9.23)

jt = gt � it (9.24)

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt (9.25)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = s(Uoht�1 +Woxt) (9.26)

ht = ot � tanh(ct) (9.27)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 66

Bringing it all together…

16 CHAPTER 9 • RNNS AND LSTMS

+

xt

ht-1

ct

ht

ct

ht

ct-1

ht-1

xt

tanh

+ σ

tanh

σ

σ
+

+
+

i

g

f

o

⦿
⦿ ⦿

LSTM

ct-1

Figure 9.13 A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, ht�1, and the previous context, ct�1. The outputs are a new hidden
state, ht and an updated context, ct .

h

x xt xtht-1

ht ht

ct-1

ct

ht-1

(b)(a) (c)

�

g

z

a

�

g

z LSTM
Unit

a

Figure 9.14 Basic neural units used in feedforward, simple recurrent networks (SRN), and
long short-term memory (LSTM).

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

The increased complexity of the LSTM units is encapsulated within the unit
itself. The only additional external complexity for the LSTM over the basic recurrent
unit (b) is the presence of the additional context vector as an input and output.

This modularity is key to the power and widespread applicability of LSTM units.
LSTM units (or other varieties, like GRUs) can be substituted into any of the network
architectures described in Section 9.4. And, as with simple RNNs, multi-layered
networks making use of gated units can be unrolled into deep feedforward networks
and trained in the usual fashion with backpropagation. In practice, therefore, LSTMs
rather than RNNs have become the standard unit for any modern system that makes
use of recurrent networks.

Universität Mannheim – Simone Ponzetto: Web Content Mining – FSS2024 (Version: 11.3.2024) – Slide 67

Web Content Mining

What we covered today

■ Named Entity Recognition
■ Evaluation
■ RNNs

