

Web Mining

Introduction to the Web Mining Projects (IE 684)

Christian Bizer / Simone Ponzetto Keti Korini / Alexander Brinkmann

FSS 2024

Outline

- 1. Information about Final Exam (IE671)
- 2. Introduction to the Web Mining Projects (IE684)
- 3. Group Formation (IE684)

1. Information about Final Exam (IE671)

- Date: June 7th; Duration: 60 minutes; 3 ECTS
- 3 blocks of questions on Web Usage Mining, Web Structure Mining, Web Content Mining
 - 10 points per block, several questions per block
- Content: open questions that
 - check whether you have understood the content of the lecture
 - we try to cover all major chapters of the lecture, including recommender systems, network metrics, community detection, machine learning on graphs, sentiment analysis, named entity recognition
 - require you to describe the ideas behind algorithms or apply the methods
 - What is the advantage or problem of X compared to Y?
 - How do methods react to this special pattern in the data?
 - Given the following data/graph. Please calculate
 - might require you to do some simple calculations
 - you need to be able to use the most relevant formulas
 - you are not allowed to use a calculator (so only simple formulas can be applied)
 Universität Mannheim Bizer/Ponzetto/Korini/Brinkmann: Web Mining Student Projects FSS2024 (Version: 19.3.2024) Slide 3

2. Introduction to the Student Projects

Goals

- Gain practical experience on the topics that we have covered in the lecture:
 - 1. Web Usage Mining (including Recommender Systems)
 - Web Structure Mining (including Social Network Analysis, Machine Learning on Graphs)
 - Web Content Mining (including Sentiment Analysis, Hate Speech Detection, Named Entity Recognition)
- Get to know additional current tools and methods

What is expected from you

- To find an interesting Web mining problem of your choice
- To find a solution for the problem using
 - any of the Web mining methods that we have seen so far plus some additional task-specific techniques
 - other Web mining methods which might be helpful for solving the problem and build on what we learned in class

Overview

Teams of five students

- 1. realize a Web mining project
- write 12-page report about the project and the methods employed in the project
- 3. present the project results to the other students (10 minutes presentation + 5 minutes discussion)

Final mark for the course

- 70 % project report (including code)
- 30 % oral presentation

Schedule

Week	Topic / Deadline
19.03.2024	Kickoff Session and Team Formation
12.04.2024, 23:59	Submission of project outlines
18.04.2024, 13:45	Feedback on the project outlines (if necessary)
30.04.2024	Coaching session
07.05.2024	Coaching session
14.05.2024	Coaching session
17.05.2024, 23:59	Submission of project reports
21.05.2024, 10:15	Presentation of project results
07.06.2024	Final exam

Step 1: Team Formation

- You can form a team with other students of your choice
 - Each team must consist of 5 students
- If you do not find a team yourself, we will assign you to a team in the kickoff session
- Process:
 - 1. Find 5 fellow students you want to do the project with
 - 2. Send Keti and Alex a mail with your preferred team or with a request that you are looking for a team till Thursday the 21st of March 2024.
- People who do not have a team
 - will be assigned to existing teams or grouped into new teams by Friday the 22nd of March 2024

Step 2: Project Outlines

- Write 3 pages (sharp!) project outline
 - include a project name and your team number on the first page
 - using Springer Computer Science Proceedings layout or Word
- Send the project outline until 12.04.2024, 23:59 via mail to Keti and Alex
- The project outline needs to answer the following questions:
 - 1. What is the problem you are solving?
 - 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
 - 3. How will you solve the problem?
 - What preprocessing steps will be required?
 - Which algorithms you plan to use? Be as specific as you can!
 - 4. How will you evaluate, measure success?
 Universität Manrheim Bizer/Ponzetto/Korini/Brinkmann: Web Mining Student Projects FSS2024 (Version: 19.3.2024) Slide 8

Step 3: Feedback and Coaching Sessions

- After submitting your outline, we will give you feedback (if required) on Thursday, 18.04.2023
- Later, Keti and Alex will give you tips and answer questions concerning your projects during the coaching sessions.
- Coaching sessions are optional: please send Keti and Alex an email if you want to attend until Monday night including your questions
- They will afterwards inform you about your slot via email.
- You are required to attend at least one coaching session.

Step 4: Project Reports

- Max. 12 pages (sharp!): title, toc or list of references do not count.
- Every additional page (including appendices) and every day of late submission downgrades your mark by 0.3
- Due Friday, 17.05.2023, 23:59. Send by mail to Chris, Simone, Keti and Alex.
- Outline for project summaries:
 - 1. Introduction: problem/task formulation, research questions and objective
 - 2. Methodology: describe the methods that you used and why you choose them
 - 3. Experimental setting: structure and statistics of the data set, evaluation measures
 - 4. Evaluation and discussion of the results: How do your results compare to existing solution?
 - 5. Conclusions (what can we learn from your work?) and future direction (what would you do differently, or additionally, why?)
- Requirements
 - You must use the <u>Springer Computer Science Proceedings layout template</u>.
 - Please cite sources properly. Preferred citation style [Author, year].
 - Also submit your code and links to the dataset. Alternatively, you can submit a link to a GitHub archive
 Universität Mannheim Bizer/Ponzetto/Korini/Brinkmann: Web Mining Student Projects FSS2024 (Version: 19.3.2024) Slide 10

Step 5: Project Presentations

- Present your project in front of your fellow students
- Covers the contents of your report, this time in a "presentation" format
- Format
 - 10 minutes presentation: each team member presents for 2-4 minutes
 - 5 minutes Question/Answer slot everybody can (should) ask questions
- Submit your slides via mail to Keti and Alex
- All students / project members must attend all sessions and presentations

Where to find datasets for Web Usage Mining?

MovieLens

- 1M Dataset: 6.000 users, 3.900 movies, 1 million ratings
- 10M Dataset: 71.000 users, 10.600 movies, 10 million ratings

Netflix Challenge

■ 100M Dataset: 500.000 users, 18.000 movies, 100M ratings

Amazon Product Reviews

- 230M product reviews including star ratings
- https://nijianmo.github.io/amazon/

Microsoft MIND

- 160k English news articles and
- 15 million impression logs by 1 million users
- https://msnews.github.io/

Papers with Code

- collects benchmark datasets
- https://paperswithcode.com/datasets? task=recommendation-systems

Web 2.0 Platforms offer plenty of rating and usage data — Bizer/Ponzetto/Korini/Brinkmann: Web Mining – Student Projects – FSS2024 (Version: 19.3.2024) – Slide 12

Benchmark Results: Recommender Systems

https://paperswithcode.com/task/recommendation-systems

Where to find datasets for Web Structure Mining?

Stanford Large Network Dataset Collection

- Social networks: Facebook, Google+
- Citation networks: Arxiv, US Patents
- Product co-purchasing network: Amazon
- http://snap.stanford.edu/data/index.html

Scientific Network Data Repository

- networks from 30+ categories ranging from biology to social networking
- https://networkrepository.com/

Web Data Commons and Common Crawl Hyperlink Networks

- Different aggregation levels
- http://webdatacommons.org/hyperlinkgraph/
- https://commoncrawl.org/connect/blog/

The Koblenz Network Collection

- hundreds of networks about various topics
- http://konect.cc/

Project Ideas for Machine Learning with Graphs

see term projects of Stanford CS224W students

https://medium.com/stanford-cs224w

Where to find datasets for Web Content Mining?

SemEval datasets

- Multiple datasets on text understanding task like sentiment analysis (e.g., from Twitter)
- http://alt.qcri.org/semeval{2014-2021}/

Amazon Review Data

- Amazon product metadata and reviews
- https://nijianmo.github.io/amazon/index.html
- https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Web Data Commons

- Product/hotel/restaurant reviews as part of Microdata dataset
- http://www.webdatacommons.org/structureddata/

Academictorrents.com

- Various large data sets
- e.g. Enron Email Bag of Words, Arizona State University Twitter Data Set

Kaggle

- Tons of datasets on a variety of topics
- https://www.kaggle.com/datasets
- Crawhyourt ownedataizer/Ponzetto/Korini/Brinkmann: Web Mining Student Projects FSS2024 (Version: 19.3.2024) Slide 16

Benchmark Results: Sentiment Analysis

Papers with code

https://paperswithcode.com/task/sentiment-analysis

- Huggingface Datasets Hub Task Sentiment Analysis
 - https://huggingface.co/datasets?task_ids=task_ids:sentiment-classification&sort=downloads

Where to Find Information about Additional Methods?

Check out the solutions to your task that other people have tried.

- by investigating the state-of-the-art for your task on Papers with Code
- by looking through the discussion groups and code of related Kaggle competitions
- search for survey papers about your task on Google Scholar: "task name + survey". Select recent and frequently cited ones.

Get Additional Advice from a Stanford Professor

Christopher Potts

- How to evaluate your model?
 - https://www.youtube.com/watch?v=TxTbIROT9IY
- How to structure your project report?
 - https://www.youtube.com/watch?v=DZNwO-p5PGY
- How to present the results of your project?

Universität Mannheim – Bizer/Ponzetto/Korini/Brinkmann: Web Mining Student Projects – FSS2024 (Version: 19.3.2024) – Slide 19 https://www.youtube.com/watch?v=GGX7klcahzY

Questions?

4. Team Formation and Next Steps

1. Anybody without a team?

- 2. People with teams:
 - Meet in your team now!
 - Agree on use case
 - Decide on or collect data
 - Write project outline

