Web Mining

Introduction to the Web Mining Projects (IE 684)

Christian Bizer / Simone Ponzetto
Keti Korini / Alexander Brinkmann

FSS 2024
Outline

1. Information about Final Exam (IE671)
2. Introduction to the Web Mining Projects (IE684)
3. Group Formation (IE684)
1. Information about Final Exam (IE671)

- **Date:** June 7th; **Duration:** 60 minutes; **3 ECTS**

- **3 blocks of questions on Web Usage Mining, Web Structure Mining, Web Content Mining**
 - 10 points per block, several questions per block

- **Content:** open questions that
 - check whether you have understood the content of the lecture
 - we try to cover all major chapters of the lecture, including recommender systems, network metrics, community detection, machine learning on graphs, sentiment analysis, named entity recognition
 - require you to describe the ideas behind algorithms or apply the methods
 - What is the advantage or problem of X compared to Y?
 - How do methods react to this special pattern in the data?
 - Given the following data/graph. Please calculate
 - might require you to do some simple calculations
 - you need to be able to use the most relevant formulas
 - you are not allowed to use a calculator (so only simple formulas can be applied)
2. Introduction to the Student Projects

- **Goals**
 - Gain practical experience on the topics that we have covered in the lecture:
 1. **Web Usage Mining** (including Recommender Systems)
 2. **Web Structure Mining** (including Social Network Analysis, Machine Learning on Graphs)
 3. **Web Content Mining** (including Sentiment Analysis, Hate Speech Detection, Named Entity Recognition)
 - Get to know additional current tools and methods

- **What is expected from you**
 - To find an interesting Web mining problem of your choice
 - To find a solution for the problem using
 - any of the Web mining methods that we have seen so far
 - plus some additional task-specific techniques
 - other Web mining methods which might be helpful for solving the problem and build on what we learned in class
Overview

- Teams of five students
 1. realize a Web mining project
 2. write 12-page report about the project and the methods employed in the project
 3. present the project results to the other students (10 minutes presentation + 5 minutes discussion)

- Final mark for the course
 - 70 % project report (including code)
 - 30 % oral presentation
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic / Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.03.2024</td>
<td>Kickoff Session and Team Formation</td>
</tr>
<tr>
<td>12.04.2024, 23:59</td>
<td>Submission of project outlines</td>
</tr>
<tr>
<td>18.04.2024, 13:45</td>
<td>Feedback on the project outlines (if necessary)</td>
</tr>
<tr>
<td>30.04.2024</td>
<td>Coaching session</td>
</tr>
<tr>
<td>07.05.2024</td>
<td>Coaching session</td>
</tr>
<tr>
<td>14.05.2024</td>
<td>Coaching session</td>
</tr>
<tr>
<td>17.05.2024, 23:59</td>
<td>Submission of project reports</td>
</tr>
<tr>
<td>21.05.2024, 10:15</td>
<td>Presentation of project results</td>
</tr>
<tr>
<td>07.06.2024</td>
<td>Final exam</td>
</tr>
</tbody>
</table>
Step 1: Team Formation

- You can form a team with other students of your choice
 - Each team must consist of 5 students

- If you do not find a team yourself, we will assign you to a team in the kickoff session

- Process:
 1. Find 5 fellow students you want to do the project with
 2. Send Keti and Alex a mail with your preferred team or with a request that you are looking for a team till Thursday the 21st of March 2024.

- People who do not have a team
 - will be assigned to existing teams or grouped into new teams by Friday the 22nd of March 2024
Step 2: Project Outlines

- Write 3 pages (sharp!) project outline
 - include a project name and your team number on the first page
 - using [Springer Computer Science Proceedings layout or Word](#)

- Send the project outline until **12.04.2024, 23:59** via mail to Keti and Alex

- The project outline needs to answer the following questions:
 1. **What is the problem you are solving?**
 2. **What data will you use?**
 - Where will you get it?
 - How will you gather it?
 3. **How will you solve the problem?**
 - What preprocessing steps will be required?
 - Which algorithms you plan to use? Be as specific as you can!
 4. **How will you evaluate, measure success?**
Step 3: Feedback and Coaching Sessions

- After submitting your outline, we will give you feedback (if required) on Thursday, 18.04.2023.
- Later, Keti and Alex will give you tips and answer questions concerning your projects during the coaching sessions.
- Coaching sessions are optional: please send Keti and Alex an email if you want to attend until Monday night including your questions.
- They will afterwards inform you about your slot via email.
- You are required to attend at least one coaching session.
Step 4: Project Reports

- Max. 12 pages (sharp!): title, toc or list of references do not count.
- Every additional page (including appendices) and every day of late submission downgrades your mark by 0.3
- Due Friday, 17.05.2023, 23:59. Send by mail to Chris, Simone, Keti and Alex.

Outline for project summaries:

1. Introduction: problem/task formulation, research questions and objective
2. Methodology: describe the methods that you used and why you choose them
3. Experimental setting: structure and statistics of the data set, evaluation measures
4. Evaluation and discussion of the results: How do your results compare to existing solution?
5. Conclusions (what can we learn from your work?) and future direction (what would you do differently, or additionally, why?)

Requirements

- You must use the Springer Computer Science Proceedings layout template.
- Please cite sources properly. Preferred citation style [Author, year].
- Also submit your code and links to the dataset. Alternatively, you can submit a link to a GitHub archive
Step 5: Project Presentations

- Present your project in front of your fellow students

- Covers the contents of your report, this time in a “presentation” format

- Format
 - 10 minutes presentation: each team member presents for 2-4 minutes
 - 5 minutes Question/Answer slot – everybody can (should) ask questions

- Submit your slides via mail to Keti and Alex

- All students / project members must attend all sessions and presentations
Where to find datasets for Web Usage Mining?

- **MovieLens**
 - 1M Dataset: 6,000 users, 3,900 movies, 1 million ratings
 - 10M Dataset: 71,000 users, 10,600 movies, 10 million ratings

- **Netflix Challenge**
 - 100M Dataset: 500,000 users, 18,000 movies, 100M ratings

- **Amazon Product Reviews**
 - 230M product reviews including star ratings
 - https://nijianmo.github.io/amazon/

- **Microsoft MIND**
 - 160k English news articles and
 - 15 million impression logs by 1 million users
 - https://msnews.github.io/

- **Papers with Code**
 - collects benchmark datasets

- **Web 2.0 Platforms offer plenty of rating and usage data**
 - e.g. LastFM, Wikipedia…
Benchmark Results: Recommender Systems

https://paperswithcode.com/task/recommendation-systems
Where to find datasets for Web Structure Mining?

- **Stanford Large Network Dataset Collection**
 - Social networks: Facebook, Google+
 - Citation networks: Arxiv, US Patents
 - Product co-purchasing network: Amazon

- **Scientific Network Data Repository**
 - Networks from 30+ categories ranging from biology to social networking
 - https://networkrepository.com/

- **Web Data Commons and Common Crawl Hyperlink Networks**
 - Different aggregation levels
 - http://webdatacommons.org/hyperlinkgraph/
 - https://commoncrawl.org/connect/blog/

- **The Koblenz Network Collection**
 - Hundreds of networks about various topics
 - http://konect.cc/
Project Ideas for Machine Learning with Graphs

- see term projects of Stanford CS224W students

https://medium.com/stanford-cs224w
Where to find datasets for Web Content Mining?

- **SemEval datasets**
 - Multiple datasets on text understanding task like sentiment analysis (e.g., from Twitter)
 - http://alt.qcri.org/semeval{2014-2021}/

- **Amazon Review Data**
 - Amazon product metadata and reviews

- **Web Data Commons**
 - Product/hotel/restaurant reviews as part of Microdata dataset
 - http://www.webdatacommons.org/structureddata/

- **Academictorrents.com**
 - Various large data sets
 - e.g. Enron Email Bag of Words, Arizona State University Twitter Data Set

- **Kaggle**
 - Tons of datasets on a variety of topics
 - https://www.kaggle.com/datasets

- **Crawl your own data**
Benchmark Results: Sentiment Analysis

- Papers with code
 - https://paperswithcode.com/task/sentiment-analysis

- Huggingface Datasets Hub - Task Sentiment Analysis
 - https://huggingface.co/datasets?task_ids=sentiment-classification&sort=downloads
Where to Find Information about Additional Methods?

Check out the solutions to your task that other people have tried.

- by investigating the state-of-the-art for your task on Papers with Code
- by looking through the discussion groups and code of related Kaggle competitions
- search for survey papers about your task on Google Scholar: “task name + survey”. Select recent and frequently cited ones.
Get Additional Advice from a Stanford Professor

- How to evaluate your model?
 - https://www.youtube.com/watch?v=TxTbIROT9lY

- How to structure your project report?
 - https://www.youtube.com/watch?v=DZNwO-p5PGY

- How to present the results of your project?
 - https://www.youtube.com/watch?v=GGx7kJcahzY
Questions?
4. Team Formation and Next Steps

1. Anybody without a team?

2. People with teams:
 - Meet in your team now!
 - Agree on use case
 - Decide on or collect data
 - Write project outline