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Detecting orientation on Web data
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Amazon reviews
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Discussions on social media (Twitter)
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Outline

1. Introduction to Sentiment Analysis / Opinion Mining

2. Constructing Sentiment Lexicons
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Sentiment Analysis and Opinion Mining

 Opinionated text is unavoidable on the web:
 Social media posts, product/service reviews

I bought an iPhone a few days ago. It was such a nice phone. The touch screen was 

really cool. The voice quality was clear too. However, my mother was mad with me as I 

did not tell her before I bought it. She also thought the phone was too expensive, and 

wanted me to return it to the shop. 

 Detection of stances and opinions towards people, 

companies, and products/services has a tremendous 

business value
 Improving products and services, targeted advertising, revealing 

trends in election campaigns, ...



Universität Mannheim – Ponzetto: Web Usage Mining – FSS2025 (Version: 18.3.2025) – Slide 7

Sentiment Analysis and Opinion Mining

 Sentiment analysis or opinion mining is the computational 

study of people’s opinions, appraisals, attitudes, and 

emotions towards

 Entities, individuals, issues, events, topics, and their attributes 

(aspects)

 Technically, it is very challenging, but practically very useful

 A general sentiment analysis framework aims to answer

1. Who is the opinion holder?

2. Towards whom or what is opinion/sentiment expressed?

3. What is the polarity and intensity of the opinion?

4. Is an opinion associated with a time-span?
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Sentiment Analysis and Opinion Mining

I bought an iPhone a few days ago. It was such a nice phone. The touch 

screen was really cool. The voice quality was clear too. However, my mother

was mad with me as I did not tell her before I bought it. She also thought the 

phone was too expensive, and wanted me to return it to the shop. 

Opinion holder Opinion clue Target

I nice phone

(I) really cool touch screen

(I) clear voice quality

mother mad me

She too expensive phone
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Sentiment Analysis and Opinion Mining

Formally, an opinion is a quintuple 

(ei, aij, ooijkl, hk, tl)

 ei – the name of the entity which is the target of the expressed 

sentiment (e.g., iPhone)

 aij – is the aspect of the entity ei towards which an opinion is directed 

(e.g., screen) 

 hk – is the person expressing the opinion (i.e., the person expressing 

the opinion, for instance I or my girlfried) 

 tl – is the is the time when the opinion towards aij is expressed by hk

(or the time period during this opinion holds)

 ooijkl – is the orientation (possibly with intensity) of the opinion (e.g., 

negative)

 Most opinion mining studies opinions from a large number of 

opinion holders (⇒ need for opinion summarization)
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Sentiment Lexicons

 Sentiment clues (opinion words, sentiment-bearing words) –

words and phrases used to express some desired or 

undesired state

 Positive clues: good, amazing, beautiful

 Negative clues: bad, awful, terrible, poor

 Sentiment clues are often domain-dependent

 Quiet speaker phone vs. quiet car engine

 Separate sentiment lexicons need to be constructed for different 

domains

- General lexicons contain words for which the sentiment does not vary 

across domains

 Q: How would you automatically construct a sentiment 

lexicon?
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Automated acquisition of sentiment lexicons

 Automated acquisition of sentiment lexicon is most often 

semi-supervised (or weakly supervised)

1. Start from a small seed lexicon of sentiment words

2. Iteratively augment the lexicon based on links between words 

already in the lexicon and words in the large general lexicon or large 

corpus 

3. Stop when there are no more reliable candidate words to be added 

to the lexicon

 Approaches for constructing sentiment lexicons are either

1. Dictionary-based or

2. Corpus-based

 Often there is a final step of manual cleansing of 

automatically derived sentiment lexicons



Universität Mannheim – Ponzetto: Web Usage Mining – FSS2025 (Version: 18.3.2025) – Slide 13

Dictionary-Based Sentiment Lexicon Acquisition

 Bootstrapping using a small seed sentiment lexicon

 E.g., 10 positive and 10 negative sentiment words

 Idea: exploit semantic links between words in the general 

lexicon

 E.g., synonymy and antonymy links in WordNet

 The procedure is typically iterative

 Additional information can be used to make better lists

 WordNet glosses

 Machine learning (classification based on concept definitions)

 Q: What is the shortcoming of dictionary-based approaches?
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WordNet
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WordNet

Source: Navigli (2009)
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WordNet
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SentiWordNet

 SentiWordNet is a general sentiment lexicon derived from 

WordNet 

 Esuli and Sebastiani (2006); Bacianella et al., (2010)

 It contains automated annotations of all WordNet synsets

with sentiment scores:

 Positivity score: Pos(s)

 Negativity score: Neg(s)

 Objectivity score: Obj(s)

 For each synset s:

Pos(s) + Neg(s) + Obj(s) = 1

◼ [estimable(J,3)] “may be computed or estimated” 

Pos  0   Neg 0   Obj 1 

◼ [estimable(J,1)] “deserving of respect or high regard” 

Pos .75  Neg 0   Obj .25 
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SentiWordNet

First step: Semi-supervised learning

1. Small positive and negative seed sets (7 synsets each)

2. Seed set expansion via WordNet relations: also-see, direct antonymy

3. Expanded seed sets used as training data for a ternary classifier 

(Pos, Neg, Obj)

- Synset glosses used as bag-of-words features for a classifier

- Classification performed for all WordNet synsets

Second step: The random walk

1. Construct a WordNet graph based on definiens-definiendum relation

2. Run a label propagation algorithm on the induced WordNet graph

- Two runs: one for positive Pos(s) and another for negative Neg(s) labels

3. Normalize Pos(s) and Neg(s) over all synsets

4. Compute the objective scores, Obj(s) = 1 – Pos(s) – Neg(s)
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Corpus-Based Sentiment Lexicon Acquisition

 Methodologically, corpus-based induction of sentiment 

lexicons resembles to the dictionary-based:
1. Semi-supervised learning from small initial seed sets

2. Graph-based propagation of positive and negative sentiment

Difference:
 Graph for label propagation is computed from word co-occurrences

in a large corpus

 The resulting lexicon specific to the domain of the corpus

Some (simple) approaches: 
 Sentiment consistency, conjunction of adjectives 

(Hatzivassiloglou & McKeown, 1997)

 Pointwise mutual information (PMI) of candidate words with seed set 

words (Turney & Littman, 2002)

 PMI-induced graph with PageRank label propagation and supervised 

learning (Glavaš and Šnajder, 2012)
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Adjectives conjoined by “and” have same polarity

◼ Fair and legitimate, corrupt and brutal

◼ *fair and brutal, *corrupt and legitimate

Adjectives conjoined by “but” do not

◼ fair but brutal

Step 1: Label seed set of 1336 adjectives (all >20 in 21-

million-word WSJ corpus)

◼ 657 positive: adequate central clever famous intelligent 

remarkable reputed sensitive slender thriving…

◼ 679 negative: contagious drunken ignorant lanky listless 

primitive strident troublesome unresolved unsuspecting…

Hatzivassiloglou & McKeown (1997)
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Hatzivassiloglou & McKeown (1997)

 Step 2: Expand seed set to conjoined adjectives

◼ Look in the corpus (or now, on the Web) for conjunctions of 

adjectives

nice, helpful

nice, classy
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Hatzivassiloglou & McKeown (1997)

 Step 3: Supervised classifier assigns “polarity similarity” to 

word pair

 Step 4: Clustering for partitioning the graph into two

classy

nice

helpful

fair

brutal

irrational
corrupt

+ -
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Turney (2002)

1. Extract a phrasal lexicon from reviews

2. Learn polarity of each phrase

3. Rate a review by the average polarity of its phrases
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Turney (2002)

 Extract two-word phrases with adjectives

 Positive phrases co-occur more with “excellent”

 Negative phrases co-occur more with “poor”

 But how to measure co-occurrence?

First Word Second Word

JJ NN or NNS

RB, RBR, RBS JJ

JJ JJ

NN or NNS JJ

RB, RBR, or RBS VB, VBD, VBN, VBG
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Turney (2002)

PMI between two words:

◼ How much more do two words co-occur than if they were 

independent?

Counts collected using a search engine:

◼ P(word1,word2) estimated by  hits(word1 NEAR word2)/N

◼ P(word) estimated by hits(word)/N

PMI(word1,word2 ) = log2

P(word1,word2)
P(word1)P(word2)

PMI(word1,word2 ) = log2

1

N
hits(word1 NEAR word2)

1

N
hits(word1) 1

N
hits(word2)
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Does phrase appear more with “poor” or “excellent”?

Polarity(phrase) = PMI(phrase,"excellent")-PMI(phrase,"poor")

= log2

hits(phrase NEAR "excellent")hits("poor")

hits(phrase NEAR "poor")hits("excellent")

æ

è
ç

ö

ø
÷

= log2

hits(phrase NEAR "excellent")

hits(phrase)hits("excellent")

hits(phrase)hits("poor")

hits(phrase NEAR "poor")

= log2

1

N
hits(phrase NEAR "excellent")

1

N
hits(phrase) 1

N
hits("excellent")

- log2

1

N
hits(phrase NEAR "poor")

1

N
hits(phrase) 1

N
hits("poor")
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Phrases from a thumbs-up review

Phrase POS tags Polarity

online service JJ NN 2.8

online experience JJ NN 2.3

direct deposit JJ NN 1.3

local branch JJ NN 0.42

…

low fees JJ NNS 0.33

true service JJ NN -0.73

other bank JJ NN -0.85

inconveniently located JJ NN -1.5

Average 0.32
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Phrases from a thumbs-down review

Phrase POS tags Polarity

direct deposits JJ NNS 5.8

online web JJ NN 1.9

very handy RB JJ 1.4

…

virtual monopoly JJ NN -2.0

lesser evil RBR JJ -2.3

other problems JJ NNS -2.8

low funds JJ NNS -6.8

unethical practices JJ NNS -8.5

Average -1.2
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Sentiment classification

 The goal is to classify an opinionated portion of text (e.g., 

product review) as expressing (dominantly) positive or 

negative sentiment

 Typically, we classify a document, but paragraphs and sentences 

have been addressed as well

 Assumption: entire text portion addresses a single entity

 Holds for product reviews but not for social media posts

 Capturing the overall sentiment expressed toward the entity

 Sentiment toward specific aspects of the entity ignored

 Methodological approaches:

1. Supervised learning (i.e., supervised text classification; dominantly)

2. Unsupervised learning
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Supervised sentiment classification

 Typically formulated as a ternary (Positive, Negative, Neutral) 

text classification task

 Training and testing data – typically product reviews

 Labels often readily available via user ratings (e.g., 1 to 5 stars)

 Classification: 

 Feature-design algorithms

The usual suspects: logistic regression, SVM, …

Features

- Bag of words, POS tags, opinion clues and phrases (from dictionary) 

- Negations (change opinion orientation) and syntactic dependencies 

 Semantic representation-based algorithms

- CNNs, RNNs, Autoencoders, Recursive NN (for sentiment classification)

- Raw text input (word or character embeddings), no need for manually 

designed features
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Intro to logistic regression

 Let us focus on the binary case (positive vs. negative)

 Goal: we would like to build a model that computes the probability of an 

input to belong a certain (here, binary {0,1}) class as a linear combination 

of the input features and their weights

 For each feature xi, weight wi tells us the importance of xi

 Note: there is also a term w0 (also called the bias b).

 Just like we do for linear regression, we sum up all the weighted features 

and the bias

 If this sum is high, we say 𝑦 = 1, if low, then 𝑦 = 0
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Logistic regression as a probabilistic classifier

 What we are after is a classifier that gives us the probability

of the positive and negative classes given the observed 

instance, i.e., 𝑃(𝑦 = 1|𝑥,𝒘) and 𝑃(𝑦 = 0|𝑥,𝒘)

 But the linear combination of features and coefficients isn't a 

probability, it's just a number!

 Since weights are real-valued, the output might even be 

negative; z ranges from −∞ to ∞. 

 Solution: use a function of z that goes from 0 to 1
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The standard logistic function (a.k.a. sigmoid)

 The logistic regression model uses a function, called the 

logistic function, to model 𝑃 𝑦 = 1
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The standard logistic function (a.k.a. sigmoid)
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The two phases of logistic regression 

 Training: we learn weights 𝒘 using stochastic gradient 

descent and cross-entropy loss. 

 Test: Given a test example x we compute 𝑝(𝑦|𝑥) using 

learned weights 𝒘, and return whichever label (y = 1 or y = 0) 

has higher probability.
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Computing probabilities / doing classification
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Using the output of the sigmoid as a classifier

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment” , the features represent counts

of words in a document, and P(y = 1|x) is the probability that the document has

positive sentiment, while and P(y = 0|x) is the probability that the document has

negativesentiment.

Logistic regression solves this task by learning, from a training set, a vector of

weightsand abiasterm. Each weight wi isareal number, and isassociated with one

of the input features xi . Theweight wi represents how important that input feature is

to the classification decision, and can be positive (meaning the feature is associated

with the class) or negative (meaning the feature is not associated with the class).

Thus we might expect in asentiment task the word awesome to haveahigh positive

weight, and abysmal to have a very negative weight. The bias term, also called thebias term

intercept, is another real number that’sadded to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in

training— theclassifier firstmultiplies each xi by itsweight wi , sumsup theweighted

features, and adds the bias term b. The resulting single number z expresses the

weighted sum of the evidence for the class.

z =

 
nX

i= 1

wixi

!

+ b (5.2)

In therest of thebookwe’ ll represent such sumsusing thedot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a·b is the sum of

the products of the corresponding elements of each vector. Thus the following is an

equivalent formation to Eq. 5.2:

z = w·x+ b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie

between 0 and 1. In fact, since weights are real-valued, the output might even be

negative; z ranges from − • to • .

Figure 5.1 Thesigmoid function y= 1
1+ e− z takesareal valueand mapsit to therange[0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash

outlier values toward 0 or 1.

To create a probability, we’ ll pass z through the sigmoid function, s (z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-

tion, and gives logistic regression itsname. Thesigmoid hasthe following equation,logistic
function

shown graphically in Fig. 5.1:

y = s (z) =
1

1+ e− z
(5.4)

wx + b

P(y=1)

if w∙x+b > 0

if w∙x+b ≤ 0
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Feature design

 The key question is how to come up with good (useful) 

features 

 Two approaches: 

 Use your intuition (insight, linguistic/domain expertise), and design a 

small set of good features that you think should work 

 Throw in everything you can (the “kitchen sink” approach), and them 

maybe prune later 

 You will often want to see which features work and which 

don’t: 

 Ablation study – turn off some features, retrain the model and see how 

the performance changes 

 Feature selection – use a method to select the best features. This can 

also improve the performance (especially in a “kitchen sink” approach)

 One of the great advantages of deep learning for NLP is the 

absence of feature engineering
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Example: sentiment classification with logistic regression

 Suppose we are doing binary sentiment classification on 

movie review text, and we would like to know whether to 

assign the sentiment class 1=positive or 0=negative to the 

following review:

It's hokey. There are virtually no surprises, and the writing is second-

rate. So why was it so enjoyable? For one thing, the cast is 

great. Another nice touch is the music. I was overcome with the urge 

to get off the couch and start dancing. It sucked me in, and it'll do the 

same to you.
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Example: sentiment classification with logistic regression
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Classifying sentiment for our review as input

42

Suppose w =

b = 0.1
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Classifying sentiment for our review as input

 We classify the review as positive
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Text Classification in logistic regression: summary

 Given:

◼ a set of classes:  (+ sentiment,- sentiment)

◼ a vector x of features [x1, x2, …, xn]. Examples:

• x1= count( "awesome")

• x2 = log(number of words in review)

◼ A vector w of weights  [w1, w2, …, wn]

- wi for each feature fi

 Compute the probability of the positive class as:
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Multinomial Logistic Regression

 Often, we have more than two classes (e.g., positive, 

negative and neutral)

 That is, we need to generalize our binary model to predict 

more than 2 classes: we call this multinomial logistic 

regression

 Idea: compute the probability distribution over k classes 

from the linear combination of (class-specific) weights and 

input features

 For this, we need first to define a generalization of the 

sigmoid for multiple classes, where the output (i.e., the total 

probability mass) over all classes must sum up to 1: i.e., 
σ𝑖 𝑝 𝑦𝑖 = 1



Universität Mannheim – Ponzetto: Web Usage Mining – FSS2025 (Version: 18.3.2025) – Slide 46

The softmax function

 Input: A vector z = [z1, z2, ..., zk] of k arbitrary values 

 Output: a probability distribution

◼ each value in the range [0,1]

◼ all the values summing to 1
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Softmax in multinomial logistic regression

 We compute the probability of a class c given observation x

as:

 Input is still the dot product between weight vector w and 

input vector x (and a bias term)

 But now we have separate weight vectors 𝑤𝑐 and bias terms 

𝑏𝑐 for each of the k classes

 (For learning weights 𝒘 we can still use stochastic gradient 

descent and cross-entropy loss)
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Features in binary versus multinomial logistic regression

 Binary: positive weight → y=1  neg weight → y=0

 Multinominal: separate weights for each class:

48

w5 = 3.0
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Unsupervised Sentiment Classification

 If user ratings are not available, we need manual labelling for 

supervised machine learning methods

 Tedious, expensive, time-consuming

 A typical unsupervised approach to sentiment classification:

1. Extract candidate phrases (e.g., matching predefined POS patterns)

2. For reach word/phrase, compute some association score (e.g., 

pointwise mutual information) with sentiment lexicon entries, on a 

large corpus

- Association scores (e.g., PMI) with positive seed words

- Association scores (e.g., PMI) with negative seed words

3. The sentiment orientation of each phrase is computed as:

4. The sentiment of the document is determined by summing or 

averaging the sentiment orientations of phrases it contains
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Unsupervised Sentiment Classification

3. The sentiment orientation of each phrase is computed as:

4. The sentiment of the document is determined by summing or 

averaging the sentiment orientations of phrases it contains

 Example: 

 pos = { good, beautiful } and neg = { bad, ugly }

 PMI scores:

 SO of ``new sneakers’’?

Student ID:

Part A Web Content Mining (10 Points)

Sentiment Analysis

(a) You aregiven asentiment lexicon with the following two seed sets (of positiveand negativewords, respect-

edly): p = { good, beautiful} and n = { bad, ugly} . Using the below matrix of PMI (Pointwise Mutual

Information) scores, compute the sentiment orientation (SO) of the text “ new sneakers” . (2 Points)

good beautiful bad ugly

new 0.4 0.7 -0.1 0.2

sneakers 0.2 0.2 0.4 0.3

Thesentiment orientation of a term is given as:

SO(w) =
1

|p|

X

wp 2 p

PMI (w, wp) −
1

|n|

X

wn 2 n

PMI (w, wn ).

NOTE: you can useany of the two methods mentioned in theslides to compute thesentiment of adocument

(here, the short text “new sneakers”) from the sentiment orientations of the single phrases/terms it contains.

(b) What are the main dimensions along which WordNet synsets (and the word senses that belong to them) are

annotated? Describe and explain each of the four dimensions (1 sentence max per dimension): (2 Points)

a)

b)

c)

d)

Named Entity Recognition

TheStrict (akaExact) CoNLL-2003 evaluation is amethod for comparing system-predicted Named Entities (NE)

with gold-annotated NEs. The f1-score in a CoNLL-2003 strict evaluation can be computed in terms of true

2
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Unsupervised Sentiment Classification

 Example: 
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2
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edly): p = { good, beautiful} and n = { bad, ugly} . Using the below matrix of PMI (Pointwise Mutual

Information) scores, compute the sentiment orientation (SO) of the text “ new sneakers” . (2 Points)

good beautiful bad ugly

new 0.4 0.7 -0.1 0.2

sneakers 0.2 0.2 0.4 0.3

Thesentiment orientation of a term is given as:

SO(w) =
1

|p|

X

wp 2 p

PMI (w, wp) −
1

|n|

X

wn 2 n

PMI (w, wn ).

NOTE: you can useany of the two methods mentioned in theslides to compute thesentiment of adocument

(here, the short text “new sneakers”) from thesentiment orientations of the single phrases/terms it contains.

Solution:

SO(new) = 0.4+ 0.7
2

− − 0.1+ 0.2
2

= 0.55− 0.05 = 0.5

SO(sneakers) = 0.2+ 0.2
2

− 0.4+ 0.3
2

= 0.2− 0.35 = − 0.15

SO(new sneakers) = 0.5− 0.15 = 0.35

ALTERNATIVE (avg instead of sum): SO(new sneakers) = 0.5− 0.15
2

= 0.175

(b) What are the main dimensions along which WordNet synsets (and the word senses that belong to them) are

annotated? Describe and explain each of the four dimensions (1 sentence max per dimension): (2 Points)

a)

2
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Outline

1. Introduction to Sentiment Analysis / Opinion Mining

2. Constructing Sentiment Lexicons

3. Sentiment Classification

4. Sarcasm Detection

5. Hate Speech Detection
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Sarcasm detection

 Non-transparent expressions of sentiment cause most errors 

in sentiment analysis and opinion mining

 Irony and sarcasm being most salient 

 Sarcasm is a sharp, bitter, or cutting expression or remark; a 

bitter gibe or taunt 

 Sarcasm is notoriously difficult to detect in text, even for 

humans!
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Sarcasm detection

 The variation by which sarcasm is expressed is basically 

unlimited 

 Computational approaches focus merely on specific types of 

sarcasm 

 Sarcasm as contrast of negative situations and positive sentiment 

(Riloff et al., 2013)

 Sarcasm as contrast – examples

 Oh how I love being ignored. 

 Thoroughly enjoyed shoveling the driveway today! 

 Absolutely adore it when my bus is late. 

 I’m so pleased mom woke me up with vacuuming this morning.
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Detecting Sarcasm as Contrast

 Detecting sarcasm in tweets as contrast between negative 

situation and positive sentiment

 Boostrapping rule-based algorithm that automatically learns 

positive sentiment phrases and negative situation phrases: 

1. Start with (1) single positive sentiment word (love) and (2) a set of 

tweets with hashtag #sarcasm or #sarcastic

2. Negative situation candidates – n-grams (1-3) that directly follow 

positive sentiment phrases and fulfill pre-defined POS patterns

3. Positive sentiment candidates – n-grams (1-3) near the negative 

situation phrases that satisfy POS patterns

4. Candidates are scored based on ratio of frequencies in sarcastic 

(with hashtags) vs. non-sarcastic tweets
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Detecting Sarcasm as Contrast

 Some extracted positive sentiment phrases: 

 missed, loves, enjoy, can’t wait, excited, wanted, can’t wait, 

appreciate, loving, really like, looooove, just keeps, loveee, ...

 Some extracted negative situation phrases:

 being ignored, being sick, waking up early, cleaning, crying, sitting at 

home, being told, not sleeping, not talking, doing homework, being 

ditched, falling, walking home, getting yelled at, taking care, ...

 Detection performance: 51% F1-score

 On a very constrained sarcasm detection task

 Just proves the difficulty of sarcasm detection
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Outline

1. Introduction to Sentiment Analysis / Opinion Mining

2. Constructing Sentiment Lexicons

3. Sentiment Classification

4. Aspect-Oriented Sentiment Analysis

5. Sarcasm Detection

6. Hate Speech Detection
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Hate Speech

 Hate speech (HS) is commonly defined as any 

communication that 

 disparages a person or a group

 on the basis of some characteristic such as race, color, ethnicity, 

gender, sexual orientation, nationality, religion, or other.

 Expressions that:

(i) incite discrimination or violence due to racial hatred, xenophobia, 

sexual orientation and other types of intolerance;

(ii) foster hostility through prejudice and intolerance.

J. T. Nockleby (2000). Hate speech. Encyclopedia of the American 

Constitution (2nd ed., edited by Leonard W. Levy, Kenneth L. Karst 
et al., New York: Macmillan), pp. 1277–1279
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Hate Speech and social media

https://www.nytimes.com/2018/11/06/technology/myanmar-facebook.html

https://www.nytimes.com/2018/11/06/technology/myanmar-facebook.html
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Hate Speech: definitions

P. Fortuna, S. Nunes (2018). A survey on automatic detection of hate speech in text. ACM Computing 

Surveys (CSUR) 51.4
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Hate Speech: more definitions!

F. Poletto, V. Basile, M. Sanguinetti, C. Bosco, V. Patti. Resources and benchmark corpora for hate speech 

detection: a systematic review. Language Resources and Evaluation, 2020
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Example tweets

Endang Wahyu Pamungkas, Valerio Basile, 

and Viviana Patti. 2020. Do You Really 
Want to Hurt Me? Predicting Abusive 
Swearing in Social Media. In Proceedings of 

the 12th Language Resources and 
Evaluation Conference, pages 6237–6246, 

Marseille, France. European Language 
Resources Association.

https://aclanthology.org/2020.lrec-1.765
https://aclanthology.org/2020.lrec-1.765
https://aclanthology.org/2020.lrec-1.765
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Hate Speech, offensive language, etc.

 One of the major issues consists in the intrinsic complexity in defining 
HS and in a widespread vagueness in the use of related terms (such as 
abusive, toxic, dangerous, offensive or aggressive language), that 
often overlap and are prone to strongly subjective interpretations
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Lexicons for hate speech / offensive language

 Just like there exists sentiment lexicons we have lexicons 

for hurtful language

 HurtLex (Bassignana et al., 2018)

 Multilingual lexicon of “words to hurt”

 53 languages

 17 categories + stereotype
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HurtLex (Bassignana et al., 2018)
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Hate Speech Detection

 Typically addressed as a 

text classification task

 Binary or multi-label

 Supervised

P. Fortuna, S. Nunes (2018). A survey on automatic detection of hate speech 

in text. ACM Computing Surveys (CSUR) 51.4
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Specific approaches for HS detection

P. Fortuna, S. Nunes (2018). A survey on automatic detection of hate speech 

in text. ACM Computing Surveys (CSUR) 51.4
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Applications: online monitoring of HS

A. T. E. Capozzi et al. (2019). Computational linguistics against hate: hate speech detection and visualization on 

social media in the “Contro L’Odio” project. In Proc. CLiC-it 2019, ceur-ws.org, vol. 2481
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Summary

Web Content Mining

 Sentiment analysis

 Sarcasm detection

 Hate Speech and Offensive Languaeg
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