Data and Web Science Seminar

Graph Mining and Learning from Graphs

Kiril Gashteovski, Prof. Dr. Rainer Gemulla

Why are graphs important?

- Graph data is everywhere
 - **Technology:** power grids, telephone networks, ...

Why are graphs important?

- Graph data is everywhere
 - Knowledge and information: citation networks, the Web, ...

Why are graphs important?

- Graph data is everywhere
 - Biology and chemistry: protein-protein interactions, gene-regulation networks, chemical compounds, ...

Goals

Discuss recent techniques in graph mining and learning from graphs

Models, training/inference, applications, pros/cons

You will

- explore and read scientific literature
- **summarize** your own topic in a concise report
- **present** your own topic in two presentations
- **discuss** other topics
- review your peers' output

Grading

- Report (50 %)
- 3-minutes flash presentation (10%)
- 15-minutes final presentation + 5 minutes discussion (30%)
- Peer review for slides and reports (10 %)

Note!

- Do not plagiarize
- Plagiarize ⇒ lose 50 % immediately

Guidelines: Report

- Assigned papers are a starting point
 - also relevant: background material, prior work & subsequent work
 - a good starting point are papers that are cited by or cite the article (e.g., try Google scholar)
- Report should
 - Summarize the paper as well as relevant context (see above)
 - Discuss strength and weaknesses of the proposed methods
- 8-10 pages
- Use your own words
- Prefer **understandability** over technical details
- **Cite** related work properly

Guidelines: Presentation

- Flash presentation
 - $-\sim 3$ minutes
 - think: elevator pitch
 - "what" and "why": attract your audience and convey excitement
 - don't be technical

Guidelines: Presentation

- Flash presentation
 - $-\sim 3$ minutes
 - think: elevator pitch
 - "what" and "why": attract your audience and convey excitement
 - don't be technical
- Final presentation
 - ~ 15 minutes
 - "what", "why" and "how"
 - add key technical points + your own thoughts
 - ~ 5 minutes moderated discussion:
 - audience: ask questions, comments, ideas
 - presenter: address questions and comments

Guidelines: Peer review

- Give feedback for other's report and slides using template
 - well-structured?
 - easy to understand?
 - strong points?
 - weak points?
 - ...
- Be honest, be constructive
- Saying everything is great is not a useful peer review (and neither is saying everything is bad)

Tips

- Start early
- Review your knowledge in optimization, linear algebra, and/or statistics
- Google Scholar and bibtex are your friends
- Various online tutorials exist for this topic
- "Giving Conference Talks" by Prof.Dr. Rainer Gemulla
- "Writing for Computer Science" by Justin Zobel