
Case-based Formalization of Integration 

Knowledge supporting System Integrators to 

enable Automated Component Coupling1 

Fabian Burzaff 

University of Mannheim 

Institute for Enterprise Systems 

Mannheim, Germany 

burzlaff@es.uni-mannheim.de 

Christian Bartelt 

University of Mannheim 

Institute for Enterprise Systems 

Mannheim, Germany 

bartelt@es.uni-mannheim.de

 

 
Abstract — Using languages with formalized semantics for 

automating component integration is a well-established research 

area. As a consequence, independently developed software systems 

can interact without the need for manual integration effort in a 

“plug-and-play” manner. However, such dynamic adaptive system 

architectures are not widely used in industry automation 

scenarios. Practitioners mostly rely on informal, domain-specific 

standards as formal interface specifications tend to become highly 

complex quickly. Nonetheless, this results in high manual 

integration efforts as integration knowledge cannot be reused. 

Thus, interface specifications should be tailored towards its case-

based requirements. Interface specifications should only be 

created evolutionary after specific integration tasks and persisted 

with knowledge management techniques. This makes integration 

knowledge available to be reusable by system integrators and can 

ultimately automate component integration.  

Keywords — Syntax, Semantic, Industry, Interface 

Specification, Interactive Semantic Integration 

I.  INTRODUCTION 

The digitalization of industry (e.g. Industry 4.0/Industrial 

Internet of Things) requires dynamic and adaptive system 

architectures for meeting its vertical and horizontal interaction 

promises. Thus, semantic interface specifications have been 

applied in various contexts for automating service discovery, 

composition and executing [10][17][18]. However, this 

approach requires component suppliers to specify service 

specification for all use cases before automated service 

composition can take place. The strive for completeness often 

results in highly complex specification efforts in order to fully 

exploit automatic component interaction. Hence, practitioners 

rely on informal industry standards [1]. Although component 

suppliers do not need to formally specify every detail of the 

respective service interfaces upfront, this approach often results 

in individual point-to-point connections which must be 

maintained by systems integrators. Worse, integration 

knowledge is not persisted and consequently cannot be reused 
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in an automated manner. Thus, a new approach is suggested that 

positioned itself between pure practical standardization 

initiatives and complete formal specifications for using 

interface specification languages:  

1. A knowledge base should be extended step-by-step with 

formal semantic integration knowledge resulting from one 

specific manual integration task 

2. The combination of several distinct formalized manual 

integration tasks serves as a basis for knowledge reuse 

automating future component integration 

3. The completeness criteria for interface specifications is 

relaxed to moderate specification complexity 

 

Integrating different systems may become a dominant task in 

the application area of Industrial Internet/Industry 4.0. 

Especially in the domain automation of production process, 

various physical machines equipped with software interfaces 

(e.g. Cyber-Physical Systems [2]) must be connected in a 

syntactically and semantically correct way. Especially, the 

semantics of services and information are expected to play a 

key role in future industry architecture [4]. This is commonly 

evaluated in research addressing system interoperability issues 

[3]. For example, system integrators ensure syntactic 

interoperability by choosing a suitable standard for connecting 

distinct systems (e.g. OPC UA [5]) whereas semantic 

interoperability is ensured by specifying interface 

characteristics as unambiguously as possible.  

In contrast, formal languages for capturing semantics are often 

based on ontologies (e.g. vocabulary) or logic-based languages 

(e.g. description logics) [8][9]. Although formal service 

descriptions may allow for automated inference mechanism 

(e.g. using a reasoner), all “relevant” information must be 

provided upfront in a complete manner [10].  

As a consequence, practitioners often rely on several, informal 

standards and techniques that integrate them [6][7]. However, 

using standards often result in concrete interface 

implementation (e.g. REST) that do not have an unambiguous 



meaning. Hence, an integrator is needed to test interoperability 

and implement adapters between system interfaces if necessary. 

Thus, dynamic adaptive systems preventing any integration 

effort at all must be well specified which may hinder its 

application in broad industry context. In addition, informal 

integration knowledge cannot be reused. 

 
Ensuring service interoperability should ultimately shift from 

engineering language- and context-specific adapters towards 

reusing integration knowledge and thus maintaining 

knowledge-base.  

The rest of this paper is structured as follows: Part Ⅱ introduces 

a semi-formal specification based on general languages 

characteristics. Part Ⅲ presents conceptual architectural 

principles based on interactive semantic interface integration 

techniques and Part Ⅳ summarizes this position paper. 

II. RESEARCH CHALLENGE 

Various researchers from different communities have classified 

integration tasks based on information, processes and functions 

[3][11][12].  

Syntactic and semantic information integration is already a 

mature research topic and has been examined in database 

integration scenarios or by ontology matching techniques for 

knowledge-based integration [13]. Furthermore, services can be 

semantically integrated by using formal service specification 

languages or by using informal standards [8][5]. Nevertheless, 

dynamic adaptive systems purely defined by formal service 

specifications are not common in practice. In order to analyze 

the reasons for this circumstance more deeply, a clear 

separation between syntax and semantics of interfaces has to be 

made.  

D. Harel and B. Rumpe [14] define syntax and semantics (i.e. 

the meaning of the syntax) of one language as follows: 

 

• Syntax: Syntax is defined as the basic language 

expressions constrained by a grammar which are allowed 

to be use in a language in a particular way 

• Semantic Domain: Syntactic expressions must correspond 

to one element in one semantic domain (i.e. universe of 

discourse) to reveal its meaning 

• Semantic Mapping: A function maps every syntactic 

language expression to its semantic domain element 

 

In addition, Karsai et al. [15] further state that syntax itself can 

be defined in various concrete syntax elements all referring to 

only one abstract, syntactic element (e.g. a graphical and a 

textual expression for the abstract, syntactic element “class”). 

Consequently, the semantic mapping takes place between the 

abstract syntax and the semantic domain.  For the rest of the 

paper, definitions (Ⅰ) - (Ⅷ) will be used. 

 

 

 

 

 

 

 

 

 

 

 
 

As an illustration, the semantic domain Dom could be “setting 

oven temperature to 150 ℃” where the syntactic expression of 

one interface “setTemperatureTo150” is assigned it´s meaning 

by the semantic mapping function 𝑠𝑒𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  to the semantic domain.  

Following this classification, four interesting cases can be 

identified when a requestor should invoke a service on a 

provider. These are described as follows:  

 

1. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ) =  syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)  ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ)} =  sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)} 

2. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ) =  syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)  ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ)} ≠ sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)} 

3.  syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ) ≠ syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)  ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ)} =  sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)} 

4. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ) ≠ syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)  ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifREQ)} ≠ sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ifPROV)}  

 
As an example, let´s assume that a Manufacturing Execution 

System (MES) in the role of a requestor requires an interface 

𝑖𝑓𝑅𝑒𝑞  setTemperatureTo150 on a heating oven. Furthermore, an 

oven provides an interface 𝑖𝑓𝑃𝑟𝑜𝑣  setTemperatureTo150. This 

situation is depicted in Figure A. 

 

 
(Figure A: Example Interface Integration) 

 

Case 1 and 2 are typically present if both interfaces are specified 

according to a prior agreed standard and language. The function 

𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗  ⃗(𝑖𝑓𝑅𝑒𝑞)  and 𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗  ⃗(𝑖𝑓𝑃𝑟𝑜𝑣)  would result in identical 

syntactical elements in 𝑆𝑌𝑁 . As both interfaces are 

syntactically identical, it must be ensured that this syntactic 

element is mapped to the same semantic domain element 

(Ⅰ) SYN, DOM, IF  

(Ⅱ) LANG = p(SYN)  × p(DOM)  ×  SEM where p(X) indicates a power set of X 

(Ⅲ) SEM = {sem⃗⃗⃗⃗⃗⃗ ⃗⃗ : SYN → DOM}   

(Ⅳ) L = (Syn, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ) where Syn ⊆ SYN, Dom ⊆ DOM and  sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ⊆ SEM 

(Ⅴ) Lang⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∶  IF → LANG 

(Ⅵ) syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∶ IF → SYN ∶  ∀ if ∈ IF: syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(if) ∈ Syn ⇔ lang⃗⃗⃗⃗⃗⃗ ⃗⃗ (if) = (Syn, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ )

(Ⅶ) semantics⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∶ IF → SEM  

         ∀ if ∈ IF, sem ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ SEM: semantics⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (if) = sem ⋀ lang⃗⃗⃗⃗⃗⃗ ⃗⃗  (if) = (Syn, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ) 

(Ⅷ) semif⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = semantics ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (if) (i.e. returns a functions that maps syntactic interface elements to their semantic element) 

 



in 𝐷𝑂𝑀 . Thus, Case 1 can be interpreted as using the same 

language in the same way for both interfaces. Please note that 

Case 1 only holds for both specific interface syntax, but may 

not hold for all possible language expression. Case 2 describes 

the circumstance where a single, identical syntactic element is 

mapped to different semantic domain elements. This 

ambiguous semantic mapping is created when prior defined 

guidelines are interpreted differently by interface designers. 

Both cases are representative for interfaces based on prior 

defined formal or informal standards.  

Henßen and Schleipen introduced a tool called AutomationML 

that is used during the design phase of software systems to 

syntactically and semantically describe various engineering 

concerns (e.g. physics and motion of an object) [6]. 

Furthermore, a companion standard ensuring interoperability 

with the widely used OPC UA Framework [6] as a vendor 

independent industry interface specification is provided.  

However, the formal semantic mapping is not explicitly defined 

for both, OPC UA and AutomationML [5][6] that would 

unambiguously map syntactic elements to their semantic 

domain element. Thus, testing of sematic domain 

interoperability must be done to uncover interfaces representing 

Case 2. 

At best, no integration effort (i.e. only testing effort) at all is 

necessary as every possible user model is created with the same 

syntactic and semantic domain element in mind. This is realized 

as a Top-down strategy (see Figure B) by creating detailed 

interface specifications and their syntactic mapping (e.g. by 

using a companion standard between AutomationML and OPC 

UA [6]). 

Case 3 and 4 describe situations where system interfaces are 

developed independently without prior defining common 

standards. Consequently, interfaces may differ in their syntactic 

expression. For instance, assume that Oven 1 provides the 

interface activateHeating() as 𝑖𝑓𝑃𝑅𝑂𝑉 . Thus, the function 

𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗  ⃗(𝑖𝑓𝑃𝑟𝑜𝑣) would return another element from SYN compared 

to 𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗  ⃗(𝑖𝑓𝑅𝑒𝑞). Nevertheless, both syntactic elements may still 

be mapped to the same semantic domain element (i.e. “setting 

oven temperature to 150 ℃”) if activateHeating() is setting the 

temperature to exactly 150 ℃. This is described in Case 3. 

However, this is a special case where the system integrator 

explicitly knows about this circumstance before the concrete 

integration case. Case 4 describes the probable situation as the 

semantic function 𝑠𝑒𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗  of a language cannot be explicitly 

evaluated or the system integrator simply does not know how 

to couple both interfaces. Thus, the integrator must find new 

relations between both components to be able to couple both 

interfaces. This “search” for new relations can by described as 

follows: 

 
(Ⅸ) REL = LANG × LANG × p(SYN) × {: SYN → SYN} 
         ∀ r ∈ REL, ∀ l1, l2 ∈ LANG: r ∈ Kbl1,l2 ⟷ 

         r = (l1, l2, s,  t⃗ )  where  t⃗  is a transformation 

         r ∈ Kbl1,l2: r = (l1, l2, s, t ) ∧ l1 = (Syn1, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 1) ∧ 

         l2 = (Syn2, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 2) ⇒ {S ⊆ Syn1 ∪ Syn2 ∧ 

         ∀ s ∈ S: sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 1(s) = sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 2(t (s))} 
 

This means, that this formalized search results in a relation that 

maps a syntactic element to another syntactic element both 

being mapped to the same semantic domain element.  

Suppose the integration knowledge from Case 3 is not present. 

After several testing steps, this new relation can be formalized 

and inserted in a knowledge base Kb.  In the future another 

system integrator not knowing about this connection can reuse 

it and the interfaces can be coupled. 

Case 3 and 4 typically require system integrators to code 

individual adapters including integration knowledge. The 

required knowledge is often not reusable in an automated 

manner (Bottom-up strategy in Figure B). Parts of these 

mappings (i.e. relations between syntactic and semantic domain 

elements) can then be summarized as standards that may deal 

with similar problems as the Top-Down strategy.  

 
(Figure B: Integration strategies) 

 

Despite the circumstance that system designers can choose 

from a variety of suitable standards [1], they are often subject 

to interpretation issues and are only implemented for a specific 

use case. This circumstance is enforced if informal standards 

(e.g. documentation in natural language) or no standards at all 

are used. Furthermore, interfaces are often described in 

different languages. 

To overcome vendor-specific interface interoperability 

problems, semantic service-oriented architecture can be used. 

Based on semantic interface specification languages, they offer 

mechanisms for searching, composing and executing services 

as an architecture principle [17][18]. Therefore, vendor-specific 

interfaces are equipped with formal descriptions in a suitable 

language (i.e. Input and Output parameters or Pre- and 

Postconditions). However, such approaches still require 

integrators to specify interfaces that are not suitable for reusing 

integration knowledge. 

Thus, a mixed strategy approach is proposed that formalizes 

integration knowledge evolutionary (see Figure B). Each step is 

one specific integration task that is being formalized in a 

knowledge-base to facilitate knowledge reusability. Complete, 

formal described interfaces sare not necessary from the 

beginning on but can be eventually achieved over time. The 

next chapter will introduce initial architectural principles 

towards realizing the proposed strategy. 



III. KNOWLEDGE-BASED ARCHITECTURE PRINCIPLES 

Typically, a system integrator would connect distinct interfaces 

by writing suitable adapters (e.g. assume Case 3 applied to the 

situation depicted in Figure A). In order to make specific 

integration knowledge reusable, architecture principles are 

needed that incorporates interactive mechanisms to modify a 

knowledge-base as a supporting tool for system integrators. 

Furthermore, a possible engineering process is outlined (see 

Figure C): 

 

 
Figure C: Architecture Principles 

 

In the component design phase at time 𝑡 = 0 , component 

provider as well as requester define their service interface. This 

can be done either based on prior defined standards (i.e. Top-

Down strategy) or by vendor-specific implementation (i.e. 

Bottom-Up strategy). Assume at time 𝑡 = 1, an integration task 

is necessary. Instead of writing individual adapter to connect 

component A and B, the system integrator adds syntactic 

mappings or relations between semantic domain elements 

including their language to a knowledge-base. This knowledge-

base is then used to create an adapter and a connection can be 

established.  

For example, the integrator would insert the new relation 

containing the syntactic mapping between 𝑖𝑓𝑅𝑒𝑞  

setTemperaturTo150() and 𝑖𝑓𝑃𝑟𝑜𝑣  activateHeating(). Thus, an 

adapter is constructed that actually transforms both syntactic 

interface expression in a correct way and enables Component A 

and Component B to communicate semantically without 

changing their initial interfaces. 

Over time, various other components are also integrated (i.e. 

indicated by the other frames in Figure C) and new relations are 

added depending on the specific integration task. At time 𝑡 =
𝑛, only few new relations are required which could ultimately 

result in fully automated component coupling. 

The novelty of this approach is the evolutionary process of 

formalizing integration knowledge without requiring complete 

interface specification and how they should be integrated 

upfront. In addition, once an integration task has taken place the 

integration knowledge can be reused. 

IV. CONCLUSION & FUTURE WORK 

Both, the usage of complete interface specifications and 

context-specific interfaces expose weaknesses depending on 

their usage strategy. Strictly separating between syntax and 

semantics of an interface, interactive semantic interface 

integration mechanisms have been introduced that offer 

reusability of integration knowledge relying only on relevant 

interfaces.  

In the future, a concrete example for working with a 

knowledge-base is implemented and evaluate which meta-

constructs a suitable language for describing integration 

knowledge must offer. Furthermore, more complex functions 

including several parameters should be included in our formal 

definition and a prototype for evaluation should be created. 
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