
Case-based Formalization of Integration

Knowledge supporting System Integrators to

enable Automated Component Coupling1

Fabian Burzaff

University of Mannheim

Institute for Enterprise Systems

Mannheim, Germany

burzlaff@es.uni-mannheim.de

Christian Bartelt

University of Mannheim

Institute for Enterprise Systems

Mannheim, Germany

bartelt@es.uni-mannheim.de

Abstract — Using languages with formalized semantics for

automating component integration is a well-established research

area. As a consequence, independently developed software systems

can interact without the need for manual integration effort in a

“plug-and-play” manner. However, such dynamic adaptive system

architectures are not widely used in industry automation

scenarios. Practitioners mostly rely on informal, domain-specific

standards as formal interface specifications tend to become highly

complex quickly. Nonetheless, this results in high manual

integration efforts as integration knowledge cannot be reused.

Thus, interface specifications should be tailored towards its case-

based requirements. Interface specifications should only be

created evolutionary after specific integration tasks and persisted

with knowledge management techniques. This makes integration

knowledge available to be reusable by system integrators and can

ultimately automate component integration.

Keywords — Syntax, Semantic, Industry, Interface

Specification, Interactive Semantic Integration

I. INTRODUCTION

The digitalization of industry (e.g. Industry 4.0/Industrial

Internet of Things) requires dynamic and adaptive system

architectures for meeting its vertical and horizontal interaction

promises. Thus, semantic interface specifications have been

applied in various contexts for automating service discovery,

composition and executing [10][17][18]. However, this

approach requires component suppliers to specify service

specification for all use cases before automated service

composition can take place. The strive for completeness often

results in highly complex specification efforts in order to fully

exploit automatic component interaction. Hence, practitioners

rely on informal industry standards [1]. Although component

suppliers do not need to formally specify every detail of the

respective service interfaces upfront, this approach often results

in individual point-to-point connections which must be

maintained by systems integrators. Worse, integration

knowledge is not persisted and consequently cannot be reused

1 F. Burzlaff and C. Bartelt, "Knowledge-Driven Architecture Composition: Case-Based Formalization of Integration Knowledge

to Enable Automated Component Coupling," 2017 IEEE International Conference on Software Architecture Workshops

(ICSAW), 2017, pp. 108-111, doi: 10.1109/ICSAW.2017.54.

in an automated manner. Thus, a new approach is suggested that

positioned itself between pure practical standardization

initiatives and complete formal specifications for using

interface specification languages:

1. A knowledge base should be extended step-by-step with

formal semantic integration knowledge resulting from one

specific manual integration task

2. The combination of several distinct formalized manual

integration tasks serves as a basis for knowledge reuse

automating future component integration

3. The completeness criteria for interface specifications is

relaxed to moderate specification complexity

Integrating different systems may become a dominant task in

the application area of Industrial Internet/Industry 4.0.

Especially in the domain automation of production process,

various physical machines equipped with software interfaces

(e.g. Cyber-Physical Systems [2]) must be connected in a

syntactically and semantically correct way. Especially, the

semantics of services and information are expected to play a

key role in future industry architecture [4]. This is commonly

evaluated in research addressing system interoperability issues

[3]. For example, system integrators ensure syntactic

interoperability by choosing a suitable standard for connecting

distinct systems (e.g. OPC UA [5]) whereas semantic

interoperability is ensured by specifying interface

characteristics as unambiguously as possible.

In contrast, formal languages for capturing semantics are often

based on ontologies (e.g. vocabulary) or logic-based languages

(e.g. description logics) [8][9]. Although formal service

descriptions may allow for automated inference mechanism

(e.g. using a reasoner), all “relevant” information must be

provided upfront in a complete manner [10].

As a consequence, practitioners often rely on several, informal

standards and techniques that integrate them [6][7]. However,

using standards often result in concrete interface

implementation (e.g. REST) that do not have an unambiguous

meaning. Hence, an integrator is needed to test interoperability

and implement adapters between system interfaces if necessary.

Thus, dynamic adaptive systems preventing any integration

effort at all must be well specified which may hinder its

application in broad industry context. In addition, informal

integration knowledge cannot be reused.

Ensuring service interoperability should ultimately shift from

engineering language- and context-specific adapters towards

reusing integration knowledge and thus maintaining

knowledge-base.

The rest of this paper is structured as follows: Part Ⅱ introduces

a semi-formal specification based on general languages

characteristics. Part Ⅲ presents conceptual architectural

principles based on interactive semantic interface integration

techniques and Part Ⅳ summarizes this position paper.

II. RESEARCH CHALLENGE

Various researchers from different communities have classified

integration tasks based on information, processes and functions

[3][11][12].

Syntactic and semantic information integration is already a

mature research topic and has been examined in database

integration scenarios or by ontology matching techniques for

knowledge-based integration [13]. Furthermore, services can be

semantically integrated by using formal service specification

languages or by using informal standards [8][5]. Nevertheless,

dynamic adaptive systems purely defined by formal service

specifications are not common in practice. In order to analyze

the reasons for this circumstance more deeply, a clear

separation between syntax and semantics of interfaces has to be

made.

D. Harel and B. Rumpe [14] define syntax and semantics (i.e.

the meaning of the syntax) of one language as follows:

• Syntax: Syntax is defined as the basic language

expressions constrained by a grammar which are allowed

to be use in a language in a particular way

• Semantic Domain: Syntactic expressions must correspond

to one element in one semantic domain (i.e. universe of

discourse) to reveal its meaning

• Semantic Mapping: A function maps every syntactic

language expression to its semantic domain element

In addition, Karsai et al. [15] further state that syntax itself can

be defined in various concrete syntax elements all referring to

only one abstract, syntactic element (e.g. a graphical and a

textual expression for the abstract, syntactic element “class”).

Consequently, the semantic mapping takes place between the

abstract syntax and the semantic domain. For the rest of the

paper, definitions (Ⅰ) - (Ⅷ) will be used.

As an illustration, the semantic domain Dom could be “setting

oven temperature to 150 ℃” where the syntactic expression of

one interface “setTemperatureTo150” is assigned it´s meaning

by the semantic mapping function 𝑠𝑒𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ to the semantic domain.

Following this classification, four interesting cases can be

identified when a requestor should invoke a service on a

provider. These are described as follows:

1. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ) = syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV) ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ)} = sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV)}

2. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ) = syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV) ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ)} ≠ sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV)}

3. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ) ≠ syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV) ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ)} = sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV)}

4. syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ) ≠ syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV) ∧

 sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifREQ
{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifREQ)} ≠ sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ifPROV

{syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ifPROV)}

As an example, let´s assume that a Manufacturing Execution

System (MES) in the role of a requestor requires an interface

𝑖𝑓𝑅𝑒𝑞 setTemperatureTo150 on a heating oven. Furthermore, an

oven provides an interface 𝑖𝑓𝑃𝑟𝑜𝑣 setTemperatureTo150. This

situation is depicted in Figure A.

(Figure A: Example Interface Integration)

Case 1 and 2 are typically present if both interfaces are specified

according to a prior agreed standard and language. The function

𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗ ⃗(𝑖𝑓𝑅𝑒𝑞) and 𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗ ⃗(𝑖𝑓𝑃𝑟𝑜𝑣) would result in identical

syntactical elements in 𝑆𝑌𝑁 . As both interfaces are

syntactically identical, it must be ensured that this syntactic

element is mapped to the same semantic domain element

(Ⅰ) SYN, DOM, IF

(Ⅱ) LANG = p(SYN) × p(DOM) × SEM where p(X) indicates a power set of X

(Ⅲ) SEM = {sem⃗⃗⃗⃗⃗⃗ ⃗⃗ : SYN → DOM}

(Ⅳ) L = (Syn, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗) where Syn ⊆ SYN, Dom ⊆ DOM and sem⃗⃗⃗⃗⃗⃗ ⃗⃗ ⊆ SEM

(Ⅴ) Lang⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∶ IF → LANG

(Ⅵ) syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∶ IF → SYN ∶ ∀ if ∈ IF: syntax⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(if) ∈ Syn ⇔ lang⃗⃗⃗⃗⃗⃗ ⃗⃗ (if) = (Syn, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗)

(Ⅶ) semantics⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∶ IF → SEM

 ∀ if ∈ IF, sem ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∈ SEM: semantics⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (if) = sem ⋀ lang⃗⃗⃗⃗⃗⃗ ⃗⃗ (if) = (Syn, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗)

(Ⅷ) semif⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = semantics ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (if) (i.e. returns a functions that maps syntactic interface elements to their semantic element)

in 𝐷𝑂𝑀 . Thus, Case 1 can be interpreted as using the same

language in the same way for both interfaces. Please note that

Case 1 only holds for both specific interface syntax, but may

not hold for all possible language expression. Case 2 describes

the circumstance where a single, identical syntactic element is

mapped to different semantic domain elements. This

ambiguous semantic mapping is created when prior defined

guidelines are interpreted differently by interface designers.

Both cases are representative for interfaces based on prior

defined formal or informal standards.

Henßen and Schleipen introduced a tool called AutomationML

that is used during the design phase of software systems to

syntactically and semantically describe various engineering

concerns (e.g. physics and motion of an object) [6].

Furthermore, a companion standard ensuring interoperability

with the widely used OPC UA Framework [6] as a vendor

independent industry interface specification is provided.

However, the formal semantic mapping is not explicitly defined

for both, OPC UA and AutomationML [5][6] that would

unambiguously map syntactic elements to their semantic

domain element. Thus, testing of sematic domain

interoperability must be done to uncover interfaces representing

Case 2.

At best, no integration effort (i.e. only testing effort) at all is

necessary as every possible user model is created with the same

syntactic and semantic domain element in mind. This is realized

as a Top-down strategy (see Figure B) by creating detailed

interface specifications and their syntactic mapping (e.g. by

using a companion standard between AutomationML and OPC

UA [6]).

Case 3 and 4 describe situations where system interfaces are

developed independently without prior defining common

standards. Consequently, interfaces may differ in their syntactic

expression. For instance, assume that Oven 1 provides the

interface activateHeating() as 𝑖𝑓𝑃𝑅𝑂𝑉 . Thus, the function

𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗ ⃗(𝑖𝑓𝑃𝑟𝑜𝑣) would return another element from SYN compared

to 𝑠𝑦𝑛⃗⃗⃗⃗⃗⃗ ⃗(𝑖𝑓𝑅𝑒𝑞). Nevertheless, both syntactic elements may still

be mapped to the same semantic domain element (i.e. “setting

oven temperature to 150 ℃”) if activateHeating() is setting the

temperature to exactly 150 ℃. This is described in Case 3.

However, this is a special case where the system integrator

explicitly knows about this circumstance before the concrete

integration case. Case 4 describes the probable situation as the

semantic function 𝑠𝑒𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ of a language cannot be explicitly

evaluated or the system integrator simply does not know how

to couple both interfaces. Thus, the integrator must find new

relations between both components to be able to couple both

interfaces. This “search” for new relations can by described as

follows:

(Ⅸ) REL = LANG × LANG × p(SYN) × {: SYN → SYN}
 ∀ r ∈ REL, ∀ l1, l2 ∈ LANG: r ∈ Kbl1,l2 ⟷

 r = (l1, l2, s, t⃗) where t⃗ is a transformation

 r ∈ Kbl1,l2: r = (l1, l2, s, t) ∧ l1 = (Syn1, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 1) ∧

 l2 = (Syn2, Dom, sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 2) ⇒ {S ⊆ Syn1 ∪ Syn2 ∧

 ∀ s ∈ S: sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 1(s) = sem⃗⃗⃗⃗⃗⃗ ⃗⃗ 2(t (s))}

This means, that this formalized search results in a relation that

maps a syntactic element to another syntactic element both

being mapped to the same semantic domain element.

Suppose the integration knowledge from Case 3 is not present.

After several testing steps, this new relation can be formalized

and inserted in a knowledge base Kb. In the future another

system integrator not knowing about this connection can reuse

it and the interfaces can be coupled.

Case 3 and 4 typically require system integrators to code

individual adapters including integration knowledge. The

required knowledge is often not reusable in an automated

manner (Bottom-up strategy in Figure B). Parts of these

mappings (i.e. relations between syntactic and semantic domain

elements) can then be summarized as standards that may deal

with similar problems as the Top-Down strategy.

(Figure B: Integration strategies)

Despite the circumstance that system designers can choose

from a variety of suitable standards [1], they are often subject

to interpretation issues and are only implemented for a specific

use case. This circumstance is enforced if informal standards

(e.g. documentation in natural language) or no standards at all

are used. Furthermore, interfaces are often described in

different languages.

To overcome vendor-specific interface interoperability

problems, semantic service-oriented architecture can be used.

Based on semantic interface specification languages, they offer

mechanisms for searching, composing and executing services

as an architecture principle [17][18]. Therefore, vendor-specific

interfaces are equipped with formal descriptions in a suitable

language (i.e. Input and Output parameters or Pre- and

Postconditions). However, such approaches still require

integrators to specify interfaces that are not suitable for reusing

integration knowledge.

Thus, a mixed strategy approach is proposed that formalizes

integration knowledge evolutionary (see Figure B). Each step is

one specific integration task that is being formalized in a

knowledge-base to facilitate knowledge reusability. Complete,

formal described interfaces sare not necessary from the

beginning on but can be eventually achieved over time. The

next chapter will introduce initial architectural principles

towards realizing the proposed strategy.

III. KNOWLEDGE-BASED ARCHITECTURE PRINCIPLES

Typically, a system integrator would connect distinct interfaces

by writing suitable adapters (e.g. assume Case 3 applied to the

situation depicted in Figure A). In order to make specific

integration knowledge reusable, architecture principles are

needed that incorporates interactive mechanisms to modify a

knowledge-base as a supporting tool for system integrators.

Furthermore, a possible engineering process is outlined (see

Figure C):

Figure C: Architecture Principles

In the component design phase at time 𝑡 = 0 , component

provider as well as requester define their service interface. This

can be done either based on prior defined standards (i.e. Top-

Down strategy) or by vendor-specific implementation (i.e.

Bottom-Up strategy). Assume at time 𝑡 = 1, an integration task

is necessary. Instead of writing individual adapter to connect

component A and B, the system integrator adds syntactic

mappings or relations between semantic domain elements

including their language to a knowledge-base. This knowledge-

base is then used to create an adapter and a connection can be

established.

For example, the integrator would insert the new relation

containing the syntactic mapping between 𝑖𝑓𝑅𝑒𝑞

setTemperaturTo150() and 𝑖𝑓𝑃𝑟𝑜𝑣 activateHeating(). Thus, an

adapter is constructed that actually transforms both syntactic

interface expression in a correct way and enables Component A

and Component B to communicate semantically without

changing their initial interfaces.

Over time, various other components are also integrated (i.e.

indicated by the other frames in Figure C) and new relations are

added depending on the specific integration task. At time 𝑡 =
𝑛, only few new relations are required which could ultimately

result in fully automated component coupling.

The novelty of this approach is the evolutionary process of

formalizing integration knowledge without requiring complete

interface specification and how they should be integrated

upfront. In addition, once an integration task has taken place the

integration knowledge can be reused.

IV. CONCLUSION & FUTURE WORK

Both, the usage of complete interface specifications and

context-specific interfaces expose weaknesses depending on

their usage strategy. Strictly separating between syntax and

semantics of an interface, interactive semantic interface

integration mechanisms have been introduced that offer

reusability of integration knowledge relying only on relevant

interfaces.

In the future, a concrete example for working with a

knowledge-base is implemented and evaluate which meta-

constructs a suitable language for describing integration

knowledge must offer. Furthermore, more complex functions

including several parameters should be included in our formal

definition and a prototype for evaluation should be created.

REFERENCES

[1] Meddeb, Aref. "Internet of things standards: who stands out from the
crowd?." IEEE Communications Magazine 54, no. 7 (2016): 40-47.

[2] Lee, Edward A. "CPS foundations." In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pp. 737-742. IEEE, 2010.

[3] Sheth, Amit P. "Changing focus on interoperability in information systems:
from system, syntax, structure to semantics." In Interoperating geographic
information systems, pp. 5-29. Springer US, 1999.

[4] Thoma, Matthias, Torsten Braun, Carsten Magerkurth, and Alexandru-
Florian Antonescu. "Managing things and services with semantics: A survey."
In Network Operations and Management Symposium (NOMS), 2014 IEEE, pp.
1-5. IEEE, 2014.

[5] Schleipen, Miriam, Syed-Shiraz Gilani, Tino Bischoff, and Julius
Pfrommer. "OPC UA & Industrie 4.0-Enabling Technology with High
Diversity and Variability." Procedia CIRP 57 (2016): 315-320.

[6] Henssen, Robert, and Miriam Schleipen. "Interoperability between OPC UA
and AutomationML." Procedia CIRP 25 (2014): 297-304.

[7] Grangel-González, Irlán, Diego Collarana, Lavdim Halilaj, Steffen
Lohmann, Christoph Lange, María-Esther Vidal, and Sören Auer. "Alligator: A
Deductive Approach for the Integration of Industry 4.0 Standards." In
Knowledge Engineering and Knowledge Management: 20th International
Conference, EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings
20, pp. 272-287. Springer International Publishing, 2016.

[8] Uschold, Michael, and Michael Gruninger. "Ontologies and semantics for
seamless connectivity." ACM SIGMod Record 33, no. 4 (2004): 58-64.

[9] Grangel-González, Irlán, Lavdim Halilaj, Gökhan Coskun, Sören Auer,
Diego Collarana, and Michael Hoffmeister. "Towards a semantic administrative
shell for industry 4.0 components." In Semantic Computing (ICSC), 2016 IEEE
Tenth International Conference on, pp. 230-237. IEEE, 2016.

[10] Grimm, Stephan, Boris Motik, and Chris Preist. "Matching semantic
service descriptions with local closed-world reasoning." In European Semantic
Web Conference, pp. 575-589. Springer Berlin Heidelberg, 2006.

[11] Rowley, Jennifer. "The wisdom hierarchy: representations of the DIKW
hierarchy." Journal of information science 33, no. 2 (2007): 163-180.

[12] Weyrich, Michael, and Christof Ebert. "Reference architectures for the
internet of things." IEEE Software 33, no. 1 (2016): 112-116.

[13] Wache, Holger, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt,
Gerhard Schuster, Holger Neumann, and Sebastian Hübner. "Ontology-based
integration of information-a survey of existing approaches." In IJCAI-01
workshop: ontologies and information sharing, vol. 2001, pp. 108-117. 2001.

[14] Harel, David, and Bernhard Rumpe. "Meaningful modeling: what's the
semantics of" semantics"?." Computer 37, no. 10 (2004): 64-72.

[15] Karsai, Gabor, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. "Model-
integrated development of embedded software." Proceedings of the IEEE 91,
no. 1 (2003): 145-164.

 [17] Vitvar, Tomas, Adrian Mocan, Mick Kerrigan, Michal Zaremba, Maciej
Zaremba, Matthew Moran, Emilia Cimpian, Thomas Haselwanter, and Dieter
Fensel. "Semantically-enabled service oriented architecture: concepts,

technology and application." Service Oriented Computing and Applications 1,
no. 2 (2007): 129-154.

[18] Haller, Armin, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph
Bussler. "Wsmx-a semantic service-oriented architecture." In Web Services,
2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on, pp.
321-328. IEEE, 2005.

