
Knowledge-Driven Architecture Composition:
Assisting the System Integrator to Reuse

Integration Knowledge ?

Fabian Burzlaff[0000−0003−0632−5933](�) and Christian
Bartelt[0000−0003−0426−6714]

Institute for Enterprise Systems (InES), University of Mannheim, 68131 Mannheim,
Germany

burzlaff@es.uni-mannheim.de

bartelt@es.uni-mannheim.de

Abstract. Semantic interoperability for web services is still a problem.
Although decentralized solutions such as describing the integration con-
text with a formal mapping language or using a web service descrip-
tion language exist, practitioners rely on implementing software adapters
manually. For IoT and Web of Things systems, current scientific solu-
tions fall short as changing them, once defined, requires strenuous effort.
However, devices and thus, their interfaces change often in this class of
system. This paper tackles the barrier of high formalization effort for
mappings between required and provided interfaces. Therefore, we apply
and evaluate a novel integration method for web service choreography.
Our empirical experiment shows that this method lowers the integration
time and number of errors by assisting the system integrator to reuse
integration knowledge from previous integration cases.

Keywords: Knowledge-Driven Architecture Composition · Web Service
Integration · Reuse.

1 Introduction

In the universe of IoT, there will not exist one distinct standard for each use-
case [1]. The agreement process and keeping standards up-to-date is not feasible
for dynamically changing IoT systems. Hence, system integrators are currently
forced to implement software adapters. What’s bad about this is not the manual
implementation effort but the circumstance that the same integration knowledge
is repeatedly implemented in these software adapters.
Bottom-up approaches that do not rely on a predefined standard try to auto-
mate service integration by describing each integration context based on service

? This work has been developed in the project BIoTope (Research Grant Number
01lS18079C) and is funded by the German Ministry of Education and Research
(BMBF).
The final authenticated publication is available online at https://doi.org/10.

1007/978-3-030-74296-6_23

2 Burzlaff et al.

descriptions and interface mappings. These integration contexts are defined with
a closed-wold assumption in mind and relate to the concept of service choreogra-
phy. However, if an unforeseen integration case comes up, no automated service
integration occurs as the composition model is assumed to be complete. In dy-
namically changing IoT environments, this results in a high formalization effort
that does not yield the desired benefits as structural and behavioral interface
mappings are assumed to be stable once they are defined. High formalization
effort such as adapting interface service descriptions, adjusting the underlying
ontology or resolving reasoning errors rather increases than decreases integration
effort over time. Furthermore, formalizing possible integration contexts ahead to
put them into inventory increases the specification effort even more as they may
not be used [2].
Within this gap, a novel integration method called knowledge-driven architec-
ture composition (KDAC) has been suggested [3]. This method does not aim
at a stable composition model of the desired domain. In contrast to existing
bottom-up solution proposals, it refrains from formalizing integration contexts
in a big-bang manner at system design time. Instead, the approach explicitly
allows for interface mappings that are formalized incrementally and are thus in-
complete. Interface mappings are only written in a machine-understandable way
if a concrete integration case is present.
In this paper, we evaluate this so far conceptual method for web service compo-
sition. Therefore, we design an empirical experiment and build up the necessary
tooling infrastructure. The method and tooling may assist the system integrator
in reusing existing integration knowledge and lowering the required implemen-
tation effort. However, it is unclear if formalizing integration knowledge and
implementing a software adapter in the beginning results in lower integration
effort due to integration knowledge reuse over time.

2 Background for Applied Approach

The goal of KDAC is to assist the system integrator in generating software
adapters automatically. The leverage of the method is to make integration knowl-
edge reusable and reason about interface mappings [3]. Therefore, interface map-
pings must be stored in a machine-understandable way and made publicly avail-
able. These mappings must respect the semantic interoperability of services (e.g.,
REST). Semantic interoperability ensures that data exchanges between a pro-
vided and a required service make sense – that the requester and provider have a
common understanding of the meaning of services and data [7]. Semantic inter-
operability in distributed systems is mainly achieved by establishing semantic
correspondences (i.e., mappings) between vocabularies of different sources [1,
14].
From an engineering perspective, software adaptability (e.g., service choreogra-
phy) can be achieved by engineering principles (i.e., explicitly planned compo-
nent configurations), emergent properties (i.e., implicitly derived from cooper-
ation patterns of the participants), or evolutionary mechanisms (i.e., replacing

Knowledge-Driven Architecture Composition 3

components) [15]. KDAC tackles engineering principles, emergent properties and
evolutionary mechanisms in the following way:
Engineering: At the core, KDAC is a software engineering method that tries
to minimize the mapping formalization effort by relying on concrete integra-
tion cases instead of using predefined composition models (e.g., as known from
component-based software engineering). We can integrate KDAC into current
software engineering methods such as agile development or other incremental de-
velopment modes. In addition to implementing an imperative software adapter,
mappings are only formalized if a concrete integration case occurs (i.e., bottom-
up). These mappings are stored incrementally using a declarative language. A
declarative language allows for applying reasoning principles. In contrast to top-
down methods (e.g., integration based on standards) and other knowledge-based
bottom-up methods (e.g., describing an integration context using ontologies),
KDAC explicitly allows for incomplete integration knowledge at all times.

IFPROVIDER IFREQUIREDIntegration Case

t=0

t=1

t=n

Component
Design

Integration
System 1

Integration
System n

ifProv

A

ifProv

A*

ifProv

B

ifReq

KB

KB

B

ifReq

B

ifReq

A

place

time

Fig. 1: Knowledge-Driven Architecture Composition [adapted from [3]]

Evolution: In the beginning, the human-in-the-loop principle applies as the
underlying knowledge base is empty (see KB in Fig. 1). Over time, integration
knowledge is added to the knowledge base when new devices are integrated (see
dots and lines at t=1 in Fig. 1). Hence, in the beginning, more formalization

4 Burzlaff et al.

effort takes place. The declarative formalization allows for knowledge reuse from
previous integration cases independent of the service model and service descrip-
tion syntax. Finally, the formalization effort is reduced by reusing mappings and
reasoning principles (see dots and lines at t=n in Fig. 1).
Emergent: Although integration knowledge is incomplete, automated integra-
tion is possible over time so that the system integrator fades out of the loop.
Instead of integrating each device with one central domain model in a star-like
manner (i.e., the domain model acts similar to a ’translator-in-the-middle’), we
can build up complex mapping chains. This structure allows for applying two
reasoning principles which are transitive relationships and inverse mappings.
Moreover, we can integrate unforeseen component replacements without human
anticipation.
In contrast, detecting semantic interoperability for ad-hoc integration cases using
a software adapter pattern is always a manual task.

t=2
t=1

<<Interface>>
SamsungTV

+ volume: Integer
+ sourceName: String
+ brightness: Integer
+ artMode: String
...

+ status
(volume, sourceName,
brightness, ...)
:volume, sourceName,
brightness, ...

<<Interface>>
LGTV

+ volume: Integer
+ input: String
+ brightness: Integer
+ power_saving: String
...

+ status
(volume, input, brightness, ...)
:volume, input, brightness, ...

<<Interface>>
PhillipsTV

+ volume: Integer
+ source: String
+ screen_brightness: Integer
+ power_saving: boolean
...

+ status
(volume, source,
screen_brightness, ...)
:volume, source,

screen_brightness, ...

set 0 if false

multiply by 10

divide by 10

set false if 0

Fig. 2: Reasoning Example

2.1 Integration Knowledge Reuse Example

Assume for component A the interface of a Samsung TV and for component B
the interface of an LG TV (see Fig. 2). At t=1, the method ”status” and its input
and output parameters are mapped. A formalized mapping function can include
an attribute replacement (i.e., black lines with no text) or an operation (i.e.,
black lines with text). As we can retrieve no mappings from the knowledge base
for the Samsung and LG interface, all mappings have to be created manually
by the system integrator. At t=n, these mapping functions can be reused for
the same integration case or for the inverse integration case (i.e., LG TV is
substituted by the Samsung TV). Furthermore, we can also reuse formalized
mappings for extensions of already seen interfaces (i.e., indicated by component
A* in Fig. 1).
For a transitive mapping chain, assume another integration from LG TV to
a Philips TV at t=2 (see Fig. 2). Now, we can deduce the integration case

Knowledge-Driven Architecture Composition 5

from Samsung TV to Philips TV. Furthermore, the inverse integration case from
Philips to Samsung may also be covered if there exists an inverse function for
each formalized mapping function within the chain Philips TV ↔ LG TV ↔
Samsung TV. Hence, as soon as the system integrator selects the required and
provided interfaces based on the available components, a software adapter can
be (partially) generated.
However, integration knowledge is always incomplete, as not all methods offered
by all available devices and their possible combinations are formalized or can be
derived.

3 Evaluation Design and Results

In this experiment, we illustrate and test the end-to-end application of the pro-
posed method for web services. The participants have to work in two environ-
ments. This also allows for editing mappings within the mapping and coding
environment. The central evaluation goal is to compare implementing software
adapters, generating software adapters without reasoning principles, and gen-
erating software adapters with reasoning principles. Thereby we allow reusing
mapping functions between attributes and methods (see Fig. 2). As an effort
indicator, we measure the integration time and the number of mapping errors
and discuss problems during software adapter implementation.

3.1 Evaluation Setup

Challenge: It is unclear how KDAC can assist the system integrator during soft-
ware adapter (SA) implementation. Especially, the additional time to formalize
mappings should result in a working software adapter.
Experiment Design: We empirically compare the software adapter implementa-
tion method against KDAC applying a within-subject design [12, 17]. SA repre-
sents implementing a software adapter. KDAC is split up in generating software
adapter without any mappings stored in the knowledge base (variant 1 – no
reasoning) and with mappings stored in the knowledge (variant 2 – reasoning).
Hence, we can compare the mapping time and errors made by the system in-
tegrator and, if any, made by the reasoning algorithms. Thereby we focus on
creating correct mappings according to their semantic interoperability.
Therefore, three to five integration cases have been assigned to four students
each week (i.e., 16th October 2020 until 16th December 2020).
Participants: The students study Informatics at the Bachelor (two students) or
the Master (two students) level. All students did not have working experience
in implementing software adapters in the given programming language.
Experiment Scope: As we are interested in the method’s performance and not in
the underlying technology, we chose a technology stack that can be utilized by
both methods (i.e., SA and KDAC). Regarding the underyling KDCA method,
we focus on empty knowledge-bases and high formalization effort in the be-
ginning (i.e., t=0 and t=1 within Fig. 1). We do not evaluate how reasoning

6 Burzlaff et al.

principles and the underlying method perform on a large knowledge base (i.e.,
t=0 in Fig. 1).
Success Indicator: An integration task is finished if the request to a required
service is successfully transformed to the request of a provided service instance
and vice versa for the respective response. There is a test criterion for each in-
tegration task that tells the students whether their mapping is correct or not.
In essence, the test criterion contains all attributes as defined for the required
operation and the values as produced by the provided operations. This test cri-
terion is checked every time the student runs the software adapter. If the test
fails, a snapshot of the software adapter is stored. This allows for a qualitative
evaluation of the code.
Metrics: The quantitative implementation effort is measured in integration time
and component interaction correctness. Integration time is measured from start-
ing the integration task until the students finished the mapping in the KDAC
tool in minutes. Component interaction correctness is measured by the number
of retries needed when the test criterion is not met.
Hypothesis: The independent variable is the engineering method. The dependent
variables are integration time and component interaction correctness. We sus-
pect that the component interaction correctness and integration time is highest
using the KDAC method (see Fig. 1).
Technology Stack: We rely on the HTTP/JSON component model using POST
and GET service calls. For specifying mapping functions in a declarative way,
we use JSONata [9], and for implementing the software adapter, we use the Vi-
sual Studio Code Web IDE. For implementing the software adapter, we choose
NodeJS. A project setup script is provided so that the participants can resolve
all necessary dependencies by issuing one command line statement within the
Web IDE.
All HTTP/JSON endpoints have been designed based on publicly available
endpoints from the OpenAPI repositories (e.g., https://rapidapi.com/) or
Smart Home Adapter repositories (e.g., https://www.openhab.org/addons/).
Here, OpenAPI refers to a syntactical description of service instances (i.e., de-
vice abstraction) that does not support any relationship to a machine-readable
or machine-understandable domain standard (e.g., URL links to an ontology).
Then, service instances from the OpenAPI specifications have been mocked.

3.2 Evaluation Execution Process

The leitmotif for the students is that a client requests a required server interface
(e.g. POST Samsung), but only a semantically identical provided interface in-
stance (e.g. POST LG) is available. This means that the needed software adapter
translates one interface to precisely one other interface. Thus, all request param-
eters from the provided interface must be present in the required request, and
all required response parameters must be present in the response message of the
provided interface.
A student took the role of a System Integrator. Six measurement runs using three

Knowledge-Driven Architecture Composition 7

different use cases were executed autonomously by the students. The integration
contexts are illumination, music, and television (see running example).

8 Burzlaff et al.

1

2

3

Fig. 3: Evaluation Steps

Knowledge-Driven Architecture Composition 9

The use case can be summarized as ”As a mobile application user, I want to
control all available devices in my current room by only using one application”.
When selecting the OpenAPI descriptions, it was made sure by the experiment
conductors that each integration context fulfilled the technical one-to-one inter-
face mapping constraint. Furthermore, at least three similar interfaces had to
be integrated so that the transitive mapping chain could be computed (e.g., a
music player from Bose, Sony, and Sonos).
Software Adapter: When a mapping source and mapping target are selected,
then no mappings can be shown at any time. Hence, the students could only
continue to generate the software adapter and start implementing.
KDAC: In both variants, a mapping can be tested before generating the soft-
ware adapter within the KDAC tool (i.e., perform a request to a provided service
instance). This can be done as soon as all request attributes from the provided
interface and all response attributes from the required interface are mapped.
A search over all stored mappings is performed when a mapping source and
mapping target are selected. All computed mapping functions for the source
(i.e., required) and target (i.e., provided) interfaces are automatically inserted
and visualized in the KDAC tool. They can be edited at any time during the
evaluation process. All attributes from the selected provided and the required
interfaces can be used within one mapping function.

The students performed the following steps (see Fig. 3): First, they selected a
task from the task overview. Second, the type of tasks determines how mappings
are populated. If the tool is only used to generate the software adapter project,
no mappings are populated, and students can only generate the project. If the
tool is used to create mappings between operations, the students can inspect
and specify mappings. This view also symbolizes the first variant of the KDAC
method. If there are already mappings within the knowledge base, then the rea-
soning principles are applied and populated within the mapping view. Inferred
mappings are annotated with a green or merlot color (see 1 in Fig. 3) and man-
ually inserted mappings are annotated with a blue color (see 2 in Fig. 3). In the
first KDAC variant, only manual mappings are available. In the second KDAC
variant, manual and inferred mappings are available. Only when all calls succeed
mappings are stored within the knowledge base, and the students may proceed
to login into the Web IDE. This mandatory reliability feature ensures semantic
interoperability.
Last, the students must resolve all dependencies in the underlying Node.js en-
vironment by executing an install script and provide their username and pass-
word for authentication towards the knowledge base. If the tool is only used to
generate the adapter skeleton, then the method that should contain the actual
transformations had to be implemented. Suppose the tool was used to formalize
mappings or mappings have been computed based on the reasoning principles.
In that case, these mappings are inserted into the software adapter code that
had to be implemented (see 3 in Fig. 3).
Finally, the students can check anytime by executing a test script if their oper-
ationalized mappings are correct according to the test criterion (see 3 Fig. 3).

10 Burzlaff et al.

If this is the case, then a corresponding message is printed on the terminal, and
the students end the task by switching back to the KDAC tool and click the
finish task button (see 2 in Fig. 3).

Software Adapter Mapper

KDAC Framework

retrieve source & target interface

retrieve source & target
interface

Interface Database

compute
mapping suggestions

Transformation
preprocessor

save mapping

Mapping View invokes

Interface View
use chainTransformation

KB

builds (partial) adapter Adaptor Generator

perform requests

executes adaptor code

Mapping Test & Validator
API Endpoint Instance

API Endpoint Instance

Visual Studio Code Web IDE
(Docker)

refines adaptor

invokes validator

System Integrator

invokes

creates mappings

Fig. 4: High-Level System Architecture for Evaluation Setup

3.3 Implementation

The overall KDAC framework is built up of three parts responsible for generating
interface mappings. In addition, a generic Mapping Test & Validator for testing
the created mappings was implemented (see Fig. 4). Depending on the task
type, a preprocessor might be applied. Their duty is to populate the Mapping
View with automatically created suggestions of mapping functions. In the case
of the first variant of the KDAC method (i.e., no reasoning), the web-tool only
provides a graphical user interface for specifying mappings with JSNOata. The
web-tool is used to generate the software adapter project skeleton so that both
approaches are as similar as possible. Hence, the first and second variant only
differentiate in whether existing mappings are evaluated or not. In the case of
the second variant of the KDAC method, the Transformation preprocessor is
invoked. It first tries to find a transitive mapping chain between the selected
source and target interface using a breadth-first search on the Transformation
KB. Once such a chain is identified, the preprocessor recursively applies the
mappings stored in JSONata to each other, producing a final mapping from the

Knowledge-Driven Architecture Composition 11

source to the target interface (i.e., POST Samsung → POST LG). This is done
for both, request and response data.

3.4 Results

We captured 108 one-to-one interface integration tasks to validate our hypoth-
esis. There are 9 integration tasks for the Software Adapter Implementation
method, 9 for the first KDAC variant and 9 for the second KDAC variant. Each
integration task has been repeated 4 times during the evaluation period. It was
made sure that one student did not work on a similar or identical integration
task during a period of three weeks.

17,2

9,3

12,4

20,1

12,3
9,4

5,8
7,7

14,0

5,5
8,0

4,9 5,9 4,7 5,5
3,3 2,7 1,7 1,3 1,1 1,4 1,2 1,1

3,0
1,0 0,8 0,8

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

Ti
m

e
in

 m
in

u
te

s

Task Duration Average and Standard Deviation

Fig. 5: Average and Standard Deviation for all integration tasks

Fig. 5 outlines the duration average for all integration tasks. An integration
task involved ten to 16 attributes that had to be mapped. The integration time
is measured in minutes, and the description of each task involves the integration
task type. Here, ”MANUAL” corresponds to only using the tool (see Fig. 3) as
a software adapter generation environment where all mapping logic has to be
implemented in the generated adapter project. ”SUPPORTED” relates to the
first variant of the KDAC method, where mappings between interfaces are de-
fined using JSONata. Last, ”SUPPORTED-reasoning” is the second variant of
the KDAC method with reasoning and integration knowledge reuse. The devices
from Sony, Bose, and Sonos are speakers, Yeelight, Lifx, and Philips are lamps,
and Epson, LG, and Samsung are TVs.
Overall, the average time needed for constructing a working software adapter is
the highest for implementing software adapters and the lowest when mappings

12 Burzlaff et al.

can be reused. Furthermore, the manual task’s standard deviation is higher com-
pared to the second variant of the KDAC method. This is mainly because of the
presence or absence of errors during code writing. The number of attributes does
not seem to directly affect the average integration time as the highest value of
20.1 minutes had 13 attributes to be mapped. The first integration task with 16
attributes scored an average duration of 14 minutes.

11,9

5,0

1,2

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

Manual Supported Supported-reasoning

Ti
m

e
in

 m
in

u
te

s

Average Duration per Integration Task Type

(a) Average Integration Duration per
Method

10,2

12,5 12,9

3,9

6,5

4,5

1,5 1,0 1,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

Lamps Speakers TVs

Ti
m

e
in

 m
in

u
te

s

Average Duration per Use Case

Manual Supported Supported-reasoning

(b) Average Integration Duration per Use
Case

Fig. 6: Metric Integration time

16

7

0
0

2

4

6

8

10

12

14

16

18

Manual Supported Supported-reasoning

A
m

o
u

n
t

o
f

Er
ro

rs

Retries per Integration Task Type

(a) Average Retries per Task Type

3
2

0

11

4

0

2
1

0
0

2

4

6

8

10

12

Manual Supported Supported-reasoning

A
m

o
u

n
t

o
f

Er
ro

rs

Retries per Use Case

Lamps Speakers TVs

(b) Average Retries per Use Case

Fig. 7: Metric Errors

Fig. 6a illustrates the average integration time per engineering method and
Fig. 6b the average integration time per use case. On average, the participants
need 11.9 minutes to implement a software adapter, 5.0 minutes to create map-
pings in the tool and then generate a software adapter, and 1.2 minutes when
mappings could be reused. For all integration tasks type, the same number of
attributes had to be mapped (i.e., 117 attributes in total). For the three use
cases, this equality does not apply. However, this does not necessarily result in
higher average integration times. Concerning the traditional software adapter
implementation method, the use case with lamps (90 attributes in total) lasted

Knowledge-Driven Architecture Composition 13

10.2 minutes, speakers (117 attributes in total) lasted 12.5 minutes, and TVs
(141 attributes in total) lasted 12.9 minutes. The average integration times are
highest for the manual integration task types and lowest for the second variant
of the KDAC method.
Fig. 7a and Fig. 7b illustrate the amount of retries from the viewpoints of in-
tegration task types and use cases. Naturally, the sum of retries per use case
equals the number of retries per integration task type. It can be stated the er-
rors made is highest for the manual software adapter implementation method
and lowest for the second variant of the KDAC method. This circumstance is
straight forward as the number of errors possibly made by the students’ increases
if no automation is involved (e.g., as for manually coding a software adapter).
Hence, we list the most common errors for each method based on a manual in-
spection of code snapshots. For the manual method, the most common errors
are: 1) Missing or wrong attributes in the result 2) result object is undefined
3) result object is empty 4) attribute hierarchy was ignored 5) attribute values
not correctly assigned 6) wrong encapsulation of result data 7) import of the
provided interface failed. For the first variant of the KDAC method, the most
common error was a wrongly mapped attribute. No errors have been made for
the second variant of the KDAC method.
Error resolving strategies for all methods include the usage of logging function-
ality offered by the IDE. Regarding the manual method, this allowed for iden-
tifying attributes with different semantics as the retrieved values from the pro-
vided interfaces did not match the specified test criterion. Regarding the KDAC
method’s first variant, errors made in mapping from within the tool resulted in
wrong JSONata transformations. These errors have been mainly resolved by ad-
justing the inserted JSONata mapping strings directly in the software adapter.
However, this case can be traced back to a non-use of the Mapping Test & Val-
idator (see Fig. 4) as no incorrect mappings should be stored in the knowledge
base.
We suspected that the component interaction correctness and integration time
is highest using the KDAC method. Based on the data collected, we can sum-
marize that the second variant of the KDAC method has the highest component
interaction correctness (i.e., no errors made), and the integration time is low-
est using the second variant of the KDAC method as well. However, the first
variant of the KDAC method involved some errors. Nevertheless, a low number
of the student population and the applicability of reasoning principles allow for
improvement.

3.5 Threats to Validity

Apparently, implementing interface mappings in a textual programming lan-
guage and implementing interface mappings in a graphical web-tool poses a
different challenge for novices. Therefore, we ensured that the students working
on software adapter implementation tasks also could rely on the NodeJS project
skeleton generation service. Furthermore, we measure the results for using the
graphical tool without reuse and reasoning functionality (i.e., KDAC variant 1).

14 Burzlaff et al.

Consequently, we can identify the time saved by switching from the textual to
the graphical syntax for mapping creation. Although we can see that the second
variant of KDAC is the fastest, we can only approximate the point where using
KDAC in addition to implementing the software adapter pays off. This is mainly
due to the challenge of collecting realistic engineering data over time.
Overall, the presented evaluation design favors internal over external validity.
Hence, we eliminated the confounding factors for the independent variable en-
gineering method as much as possible. Tasks are randomly assigned to the stu-
dents, but it is made sure that no student works on the same integration task
in subsequent measurement runs.
Nevertheless, we can only discuss generalized statements based on this exper-
iment within the following frame: There may be a selection bias as only four
students were serving as study population members. The representativeness of
use cases is ensured by using OpenAPI specifications from external product ven-
dors. However, it is made sure during OpenAPI interface description selection
that mappings could be chained early in the experiment. This may not hold in
practice. Furthermore, it may not always be the case that there is a one-to-one
mapping between a set of interfaces. However, the tool also supports one-to-
many mappings. Nevertheless, manual mappings are inevitable if there are mul-
tiple paths from a source to a target interface within the knowledge base.
The evaluation focuses on the engineering method. Hence, different technologies
might have produced other results. We assume that more complex interface de-
scriptions (e.g. using stateful services) would slow our approach down.
Last, there exists a learning curve by the students for all use cases. The first in-
tegration contexts worked on (i.e., lamps) have a higher standard variation than
the later use case (i.e., TVs). This learning curve applied to all students and all
task types as they had no prior experience in implementing software adapters
or using the KDAC. Here, no experience can be measured more precisely than
some experience.

4 Related Work

There are four different research streams that deal with semantic service inter-
operability for various system classes (e.g., web services, interactive systems, or
embedded systems) based on interface mappings [4]. These are symbolic artificial
intelligence [11], component-based software development [5], software architec-
ture [2, 16], and web services [6, 8] .
For web service composition approaches with an explicit semantic layer, the fol-
lowing approaches are related to KDAC. Bennaceur et al. [2] present a fully
automatable approach that achieves interoperability through semantics-based
technologies. Their approach uses a domain-specific ontology, already annotated
services based in SAWSDL, and model-checking techniques to generate correct-
by-construction mediators automatically. They target the run time phase and
minimize additional specification effort by using reasoning principles.
Khodadadi et al. [10] suggest a framework for service definition and discovery.

Knowledge-Driven Architecture Composition 15

This framework relies on ontologies paired with JSON-LD and is a prime exam-
ple for bottom-up service integration as services are annotated incrementally.
Kovatsch et al. [13] introduce a practical approach to semantics for the IoT
regarding physical states and device mashups. Their approach calculates an exe-
cution plan based on RESTdesc service descriptions to facilitate service compo-
sition. They note that calculating an execution plan took longer than expected
and is a potential obstacle to applying their approach out-of-the-box.
Like KDAC, all approaches describe the integration context, such as in our ex-
ample (see section 2.1) in a decentralized manner. Hence, no global standard
is used by any of the approaches. However, Kovatsch et al. [13] and Bennaceur
et al. [2] assume that their decentralized integration context is complete (i.e.,
contains also all needed interface mappings for future cases). If a change oc-
curs, updating these mappings requires substantial effort. Here, KDAC allows
for incomplete mappings that can be easily edited. Khodadadi et al. [10] also
support incompleteness by incrementally annotating data JSON data. However,
they provide no leverage to support mapping creation as they only focus on cre-
ating interface descriptions. This means that only identical integration contexts
can be solved. Here, KDAC offers reasoning principles to integrate also unseen
integration cases.

5 Conclusion

Semantic interoperability for web services is still a problem for IoT and Web
of Things systems. In this paper, we lower the formalization effort for web ser-
vices and their integration context by applying and evaluating an integration
method that makes use-case specific integration knowledge reusable. Therefore,
we performed an empirical experiment that compares manual software adapter
implementation with the knowledge-driven integration method. Our results sug-
gest that, over time, reusing incrementally formalized integration knowledge is
indeed faster than implementing software adapters manually without any inte-
gration knowledge reuse. In the future, we plan to extend the mapping language
used to cover other domains that do not only rely on the HATEOAS principle
for web services (e.g., cyber-physical systems).

References

1. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of
things: early progress and back to the future. International Journal on Semantic
Web and Information Systems (IJSWIS) 8(1), 1–21 (2012)

2. Bennaceur, A., Issarny, V.: Automated Synthesis of Mediators to Support Compo-
nent Interoperability. IEEE Transactions on Software Engineering 41(3), 221–240
(Mar 2015). https://doi.org/10.1109/TSE.2014.2364844

3. Burzlaff, F., Bartelt, C.: Knowledge-driven architecture composition: Case-based
formalization of integration knowledge to enable automated component coupling.
In: 2017 IEEE International Conference on Software Architecture Workshops (IC-
SAW). pp. 108–111. IEEE (2017)

16 Burzlaff et al.

4. Burzlaff, F., Wilken, N., Bartelt, C., Stuckenschmidt, H.: Semantic Interoperability
Methods for Smart Service Systems: A Survey. IEEE Transactions on Engineering
Management pp. 1–15 (2019). https://doi.org/10.1109/TEM.2019.2922103

5. Chang, H., Mariani, L., Pezze, M.: In-field healing of integration problems with
COTS components. In: 2009 IEEE 31st International Conference on Software En-
gineering. pp. 166–176. IEEE (2009)

6. Garriga, M., Mateos, C., Flores, A., Cechich, A., Zunino, A.: RESTful service
composition at a glance: A survey. Journal of Network and Computer Applications
60, 32–53 (2016), publisher: Elsevier

7. Heiler, S.: Semantic interoperability. ACM Computing Surveys (CSUR) 27(2),
271–273 (1995)

8. Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., Skarmeta, A.F.:
Semantic web of things: an analysis of the application semantics for the iot moving
towards the iot convergence. International Journal of Web and Grid Services 10(2-
3), 244–272 (2014)

9. JSONata: Json query and transformation language, https://jsonata.

org/[retrieved:2020.10.29]

10. Khodadadi, F., Sinnott, R.O.: A semantic-aware framework for service definition
and discovery in the internet of things using coap. Procedia computer science 113,
146–153 (2017)

11. Klusch, M., Kapahnke, P., Zinnikus, I.: SAWSDL-MX2: A Machine-Learning
Approach for Integrating Semantic Web Service Matchmaking Variants. In:
2009 IEEE International Conference on Web Services. pp. 335–342 (Jul 2009).
https://doi.org/10.1109/ICWS.2009.76

12. Ko, A.J., Latoza, T.D., Burnett, M.M.: A practical guide to controlled experi-
ments of software engineering tools with human participants. Empirical Software
Engineering 20(1), 110–141 (2015)

13. Kovatsch, M., Hassan, Y.N., Mayer, S.: Practical semantics for the internet of
things: Physical states, device mashups, and open questions. In: 2015 5th Interna-
tional Conference on the Internet of Things (IOT). pp. 54–61. IEEE (2015)

14. Noy, N.F., Doan, A., Halevy, A.Y.: Semantic integration. AI magazine 26(1), 7–7
(2005)

15. Rausch, A., Bartelt, C., Herold, S., Klus, H., Niebuhr, D.: From Software Systems
to Complex Software Ecosystems: Model- and Constraint-Based Engineering of
Ecosystems. In: Münch, J., Schmid, K. (eds.) Perspectives on the Future of Soft-
ware Engineering: Essays in Honor of Dieter Rombach, pp. 61–80. Springer, Berlin,
Heidelberg (2013)

16. Spalazzese, R., Inverardi, P.: Mediating Connector Patterns for Components Inter-
operability. In: Babar, M.A., Gorton, I. (eds.) Software Architecture. pp. 335–343.
Lecture Notes in Computer Science, Springer Berlin Heidelberg (2010)

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

