
Knowledge-driven Architecture Composition
Case-based Formalization of Integration Knowledge to Enable 
Automated Component Coupling

Fabian Burzlaff and Christian Bartelt – University of Mannheim (Germany)



1. Component Composition is a mature reserach area

2

C1 ?

ifProv: setTemperature(temp: Integer) ifReq: setTemp(temp: Integer)

C2

Preventing Mismatch

Using a specialized

Architecture Framework

e.g. AutoSar

Detecting Mismatch

Using Interface 

Description Languages

e.g. WSDL

Repairing Mismatch

Using Integration 

mechanisms

e.g. individual Adapters

If components should be composed in an automated way, semantics
must be formally described completely for each possible use case



1. Component Composition is a mature reserach area

3

C1 ?

ifProv: setTemperature(temp: Integer) ifReq: setTemp(temp: Integer)

C2

Repairing Architecture Mismatch: 

ifProv in Celcius

ifReq in Kelvin

→ Adapter implemented by Integrator



2. Using formal semantic interface specifications for automated
component composition

4

Domain Standard

Automated Component

Composition

Long standardization

process

+

-

1. Standardization board must agree on content

2. Component providers use this standard correctly

3. System operator can produce in a highly flexible 
way (Industrial IoT)



2. Using formal semantic interface specifications for automated
component composition

5

1. Standardization board must agree on content

2. Component providers use this standard correctly

3. System operator can produce in a highly flexible 
way (Industrial IoT)

Domain Standard

1. Component provider writes formal interface spec.

2. Integrator performs adaptations

3. System operator must re-adapt systems when
changing production

No Domain Standard

Automated Component

Composition

Long standardization

process

+

-

Fast Interface 

Specification

No automated

Component Composition

+

-



2. Using formal semantic interface specifications for automated
component composition

6

1. Standardization board must agree on content

2. Component providers use this standard correctly

3. System operator can produce in a highly flexible 
way (Industrial IoT)

Domain Standard

1. Component provider writes formal interface spec.

2. Integrator performs adaptations

3. System operator must re-adapt systems when
changing production

No Domain Standard

Automated Component

Composition

Long standardization

process

+

-

Fast Interface 

Specification

No automated

Component Composition

+

-

!
AS A CONSEQUENCE: Practicioners rely on informal semantic standardization

and implement point-to-point connectors in the short-run (Hypothesis)



2. Currently, there is a dilemma between integration effort
and automation based on formal specifications

7

Flexibility in Industrial IoT production scenarios

Huge effort to create

complete semantic

specification

Implementing a lot of

point-to-point 

connectors



2. Currently, there is a dilemma between integration effort
and automation based on formal specifications

8

Flexibility in Industrial IoT production scenarios

Huge effort to create

complete semantic

specification

Implementing a lot of

point-to-point 

connectors



How can we automate component integration tasks with only

moderate formal semantic specification effort?



3. Case-based Formaliztion of Integration Knowledge

10

E

v

o

l

u

t

i

o

n



3. An ilustrative example for formalizing integration
knowledge

11

C1

ifProv: setTemperature(temp: Integer) ifReq: setTemp(temp: Integer)

C2

ifProv: 

setTemperature

ifReq: setTemp

ifProv: temp: Celcius ifReq: temp:Fahrenheit

<<transitiv>>

<<(temp-32)*5/9>>

<<temp*9/5+32>>

ifProv: temp: Fahrenheit ifReq: temp: Kelvin
<<(temp+459.67)*5/9>>

<<temp*9/5-459.67>>

ifProv: temp: Celcius ifReq: temp: Kelvin
<<Reasoning: temp+273>>

F

A

C

T

S



3. In-a-Nutshell: Knowledge-driven architecture composition

12

Aim

▪ Reduce Integration effort by case-based formalization of Integration

knowledge

▪ Novelity: Focus on Integrator instead of standardization process

between component provider and requestor

Method

▪ Reuseability of Component Composition Specification

▪ Using a declarative languages that allows for integration knowledge

management

▪ Need-based semantic composition specification done by integrator

▪ Incomplete specification

▪ Formal knowledge is only added if relevant for an integration case

Result ▪ Dependable Automated Component Coupling based on formalized

integration knowledge



4. Limitations of our approach

• Practicability of Specification

• Engineering of relations is limited by usability factors

• Dependability

• Availability of integration knowledge for specific devices influences 

dependability of knowledge-base

• Not all integration cases are covered

• Expressiveness of declarative language must cover „enough“ integration 

cases

• Suitable communication protocols are provided and there is no conflict in 

interaction patterns (e.g. OPC UA)



5. Open Questions

• Are there any similar approaches?

• Are there „Knowledge-driven Architecture“ communities? 

• Which declarative language are suitable component composition languages?

• What characteristics must a suitable declarative language provide?

• Reasoning capabilities (Open World/Closed World Assumption)

• Expressiveness 

• How can the semantic of syntactic identical interfaces be assured?



Thanks for listening!

15


