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Summary

Episodic memory enables people to remember personally experienced events. While

these events consist of different elements, people are able to form coherent memory

representations. This requires that an event’s constituent elements are bound together

in memory. Despite the importance of these binding processes for episodic memory,

they are still only poorly understood and our abilities to measure them are limited.

In this thesis, comprising three articles, I provide a new approach for measur-

ing binding effects and use this measure to probe properties of binding processes in

episodic memory. In the first article, I introduce the new measurement approach

and evaluate its suitability for measuring binding effects in comparison to previous

approaches. I show that the approach has good measurement properties and is better

suited for measuring binding effects than previous approaches. In the second article,

I examine the structure in which event elements are bound together and whether

animacy influences binding processes. I show that different binding structures are

possible, such as an integrated binding structure, in which event elements are bound

into a unitary representation, and a hierarchical binding structure, in which event

elements are preferentially bound to particular types of elements. These may lie on a

continuum of memory representations with varying degrees of integration. I further

show that the presence of an animate element in an event facilitates binding, enabling

more coherent memory representations with a higher degree of integration. In addi-

tion, awareness regarding commonalities of types of event elements across events may

facilitate binding. In the third article, I examine whether agency influences binding

processes. I show that the presence of an agentic element in an event may facilitate

binding, but evidence was not conclusive and effects may have been concealed due to

low memory performance. Agency may thus underlie the previously found facilitat-

ing effect of animacy on binding, since animate elements may exert their influence by

providing a potential agent in an event.

One aim of my thesis is to provide a new tool for investigating binding processes

in episodic memory. An additional aim is to extend our current understanding of

binding structures that link together the elements of an event, as well as the factors

that moderate binding processes. In doing so, I hope to advance our understanding

of binding processes and enable and inform future exploration, as well as theory de-

velopment and refinement, of this fundamental property underlying episodic memory.
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1 Binding Processes in Episodic Memory

In our everyday life we encounter a multitude of events, such as buying a bread at a

bakery, meeting a friend in the streets, or having a meeting at work. Episodic memory

refers to the capacity of remembering such experiences and has been described as a

form of “mental time travel” that allows individuals to re-experience past events

(Tulving, 1972, 1983, 1993). These past events are comprised of several different

elements. For example, the event of buying bread at a bakery may consist of the

vendor selling the bread (a person), the bought bread (an object), and the bakery

(a location). In addition, there may be further sensory elements such as the smell

of the bread or the noise of an oven. Yet, we do not have isolated representations of

these different event elements, but are instead able to remember the entire event in a

coherent manner. This necessitates that event elements, despite being represented in

different neocortical regions (Alvarez & Squire, 1994; Horner et al., 2015), are bound

together in memory to enable the formation of coherent memory representations. The

ability to form such bindings develops from early childhood to young adulthood (Ngo

et al., 2019; Reese et al., 2011; Schlichting et al., 2017), but decreases in old age

(Naveh-Benjamin, 2000; Ngo & Newcombe, 2021; Old & Naveh-Benjamin, 2008). In

the present thesis, I investigate a number of fundamental properties of this essential

ability underlying episodic memory using statistical modeling.

1.1 Item- vs. Event-Based Representations

Episodic memories may vary in complexity. Some representations may only consist of

a single element with specific features, for example an object with a certain color and

shape such as the bread one bought at a bakery . Such item-based representations are

static (see Hunt & Einstein, 1981). More complex episodic memories may incorporate

several event elements that can potentially interact (e.g., buying bread at a bakery

involves the vendor interacting with the bread). Such event-based representations

are thus potentially dynamic (see also Rubin & Umanath, 2015). Event-based rep-

resentations can be considered to be comprised of item-based representations, with

storage occurring in a hierarchical manner (see Andermane et al., 2021). Event-

and item-based representations may also be distinguished based on the specificity of

the stored information, with item-based representations containing more specific in-

formation than event-based representations (Hunt & Einstein, 1981). Further, unlike

item-based representations, event-based representations incorporate a spatiotemporal
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context (e.g., Andermane et al., 2021) and allow for the construction of scenes (Robin,

2018; Rubin & Umanath, 2015). This does not necessitate that the specific features

of an event’s constituent elements, which are stored as item-based representations,

are exactly remembered (Rubin & Umanath, 2015). The present thesis focuses on

event-based representations.

1.2 Neural Foundations of Binding in Episodic Memory

The conceptual distinction between item-based representations and event-based rep-

resentations, which include spatiotemporal and relational information, is sustained

by various neurocognitive mechanisms and brain regions. Generally, the medial tem-

poral lobe, encompassing the perirhinal, entorhinal, and parahippocampal cortex and

the hippocampus, plays a crucial role in episodic memory (Eichenbaum et al., 2007;

Squire & Zola-Morgan, 1991). Specifically, the formation of event-based represen-

tations is primarily supported by the hippocampus, which is commonly seen as the

structure responsible for the binding of event elements (Backus et al., 2016; N. J.

Cohen & Eichenbaum, 1993; Davachi et al., 2003; Diana et al., 2010; Eichenbaum

et al., 2007) and capable of combining different types of information (object, spatial,

and temporal information; Sugar & Moser, 2019).

The flow of information between neocortical areas to the hippocampus is depicted

in Figure 1. Information from perceptual processing areas in the neocortex is in-

creasingly aggregated via feedforward projections to the hippocampus (Eichenbaum

et al., 2007; Rolls, 2016; van Strien et al., 2009). While the processing and binding

of temporal information (“when” information) may consist of a widespread brain sys-

tem involving activity in the hippocampus, lateral entorhinal cortex (LEC), medial

enthorhinal cortex (MEC), and additional brain regions (see Eichenbaum, 2017), it

has been proposed that there are two pathways for object and spatial information, re-

spectively, which converge in the hippocampus (Eichenbaum et al., 2007; Rolls, 2016;

van Strien et al., 2009). A pathway for object information (“what” pathway) involves

the perirhinal cortex, which projects to the LEC. A pathway for spatial information

(“where” pathway) involves the parahippocampal cortex, which projects to the MEC.

Both the LEC and MEC have reciprocal connections with the hippocampus. The hip-

pocampus itself encompasses different subregions — dentate gyrus, cornu ammonis

(CA), which can be divided into further subregions (CA1-4), and subiculum (Aggle-

ton & Brown, 1999; Saunders & Rosene, 1988). Within the hippocampus, there are

two main pathways, which are strongly involved in binding in episodic memory.
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Figure 1

Feedforward projections from the neocortex to the hippocampus via the perirhinal,
parahippocampal, and entorhinal cortex (solid lines), and backprojections from hip-
pocampal subfields CA1 and subiculum to the neocortex (dashed lines). Blue arrows
make up the trisynapic pathway and green arrows make up the monosynaptic pathway.

Neocortex

Perirhinal
cortex 

Parahippocampal
cortex

Entorhinal
cortex LEC MEC

Hippocampus

Dentate gyrus 

CA3

CA1

Subiculum

what where

Note. what = object information, where = spatial information, LEC = lateral entorhinal cortex,
MEC = medial entorhinal cortex, CA = cornu ammonis.
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The trisynaptic pathway allows binding within events to form new episodic rep-

resentations. It involves projections from the entorhinal cortex to the dentate gyrus,

which is associated with pattern separation, segregating similar memories by reducing

their representational overlap (Bakker et al., 2008; Neunuebel & Knierim, 2014; Rolls,

2016). Dentate gyrus projects to CA3, which is associated with relational binding

(i.e., associating individual elements separated by space or time) and may act as an

autoassociative network, enabling pattern completion — a whole representation being

retrieved by partial activation of the representation through a recall cue (Nakazawa

et al., 2002; Neunuebel & Knierim, 2014; Rolls, 2016). CA3 then projects to CA1,

which is also associated with relational binding and may be particularly important

for binding across temporarily divided encoding episodes (Rolls, 2016; Schlichting

et al., 2014). CA1 projects back to the entorhinal cortex and, in addition, to the

subiculum, which is the major output structure of the hippocampus (O’Mara et al.,

2001; O’Mara, 2005; Rolls, 2016).

The monosyaptic pathway allows learning of regularities and changes across differ-

ent encoding episodes and events (McClelland et al., 1995; Schapiro et al., 2017; van

Strien et al., 2009). It involves direct reciprocal projections between the entorhinal

cortex and CA1. Information is retrieved via backprojections from the hippocampus

(CA1 and subiculum) to the neocortex (Eichenbaum et al., 2007; Rolls, 2016; van

Strien et al., 2009).

In the bakery example, activation regarding the vendor and bread would travel

through the “what” pathway and activation regarding the bakery would travel through

the “where” pathway. The activation regarding the different types of information

would converge in the hippocampus and the different event elements would be bound

into a coherent memory representation via the trisynaptic pathway. The dentate

gyrus would differentiate event elements in this particular event from other similar

events, for example another occasion where one bought a different bread at the same

bakery. CA3 and CA1 would then bind the vendor, the bread, and the bakery to-

gether, potentially including temporal information such as the time of day one went

to the bakery. Then, a coherent memory representation could be retrieved through

backprojections from CA1 and via the subiculum to the neocortex.

While investigating the neural mechanisms underlying binding processes in

episodic memory is important for a deeper understanding of these processes, binding

effects can not only be assessed with neural data, but also with behavioral data.

An advantage of assessing binding effects using behavioral instead of neural data
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is that such studies are much easier to conduct, less resource-intensive, and allow

for larger sample sizes. In addition, some aspects of binding may not be properly

examinable using neural data, but warrant investigation on a more functional

level, which can be achieved by statistical modeling. In the present thesis, I use

a theory-driven combination of behavioral experiments and statistical modeling to

investigate binding processes in episodic memory.

1.3 Stochastic Dependency of the Retrieval of Event Ele-

ments

As a consequence of successful binding, the likelihood of retrieving event elements

(e.g., the bread) is increased if other event elements (e.g., the vendor or the bakery)

are successfully retrieved, leading to a stochastic dependency of the retrieval of event

elements (Arnold et al., 2019; Boywitt & Meiser, 2012a, 2012b; Horner et al., 2015;

Horner & Burgess, 2013, 2014; Meiser & Bröder, 2002; Starns & Hicks, 2005, 2008).

This stochastic dependency can be viewed as a manifestation of binding processes in

episodic memory. Thus, by modeling this dependency, one can draw inferences on

binding processes based on behavioral data.

In this thesis, I subsequently introduce a number of existing, contingency-based,

approaches for modeling the stochastic dependency of the retrieval of event elements

before introducing a newly developed approach (Schreiner & Meiser, 2022; Schreiner,

Meiser, & Bröder, 2022) based on item response theory (IRT, Lord, 1980; Lord &

Novick, 1968) and evaluating the different approaches regarding their suitability for

measuring binding effects in episodic memory. Furthermore, I examine the struc-

ture in which different event elements are bound together, and influences of animacy

and agency on the binding of event elements in episodic memory. In the first ar-

ticle (Schreiner & Meiser, 2022), I evaluate the different modeling approaches and

show that the newly developed IRT-based approach performs best, yielding unbiased

estimates, good maintenance of Type I error rates, and high power for detecting

binding effects. In the second article (Schreiner, Meiser, & Bröder, 2022), I use this

IRT-based approach to investigate the structure in which different event elements are

bound together and to examine influences of animacy on binding processes. There, I

demonstrate that binding structures may vary, with the possibility of both hierarchi-

cal binding structures, in which event elements are preferentially bound to particular

types of event elements, and integrated binding structures, in which event elements
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are bound into a fully integrated representation or engram (cf. Tulving, 1983). I

further demonstrate that the presence of an animate element in an event facilitates

binding. Finally, in the third article (Schreiner, Bröder, & Meiser, 2022), I examine

influences of agency on binding processes, since agency may be a more proximate

explanation for the previously found effects of animacy. There, I provide suggestive

evidence that the presence of an agentic element in an event facilitates binding.
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2 Approaches for Measuring Binding Effects

2.1 Contingency-Based Approaches

One class of approaches for modeling stochastic dependencies of the retrieval of event

elements can be applied to data from which one can create meaningful dependency

pairs, such as cued recognition (or paired associates matching) and cued recall tasks.

Dependency pairs can be, for example, items (i.e., test trials in a memory test) that

share a common cue or target element (see Horner & Burgess, 2013). For example,

when an event consists of three elements — a person, an object, and a location, as

is the case in the bakery example — the cue-target pairs, person–object and person–

location, can be considered a dependency pair, since both items share a common cue

(the person element). For a given dependency pair jj’, one can create a contingency

table X for each person i and event t, that shows whether the targets of the depen-

dency pair were retrieved successfully (denoted by 1) or were not retrieved (denoted

by 0):

X
jj’
it =





j = 1, j’ = 1 j = 1, j’ = 0

j = 0, j’ = 1 j = 0, j’ = 0



 (1)

By summing these contingency tables over events one obtains a contingency table for

each person and dependency pair:

X
jj’
i =





n11 n10

n01 n00



 , (2)

where n11 denotes the frequency of the targets of both items j and j’ being suc-

cessfully retrieved across events, n10 denotes the frequency of the target of item j

being successfully retrieved and that of item j not being retrieved, n10 denotes the

frequency of the target of item j not being retrieved and that of item j’ being suc-

cessfully retrieved, and n00 denotes the frequency of the targets of both items j and

j’ not being retrieved. The subsequently described contingency-based approaches for

modeling stochastic dependencies of the retrieval of event elements are based on the

contingency tables in Equation 2.
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2.1.1 Approach by Horner and Burgess

In the approach by Horner and Burgess (2013), two dependency indices are calculated

from the contingency tables in Equation 2. First, a data-based dependency index

(Ddata
HB, i), that reflects the average proportion of items in an event whose targets were

both successfully retrieved or not retrieved, is calculated by summing the leading

diagonal cells of each contingency table per person and dependency pair and dividing

this sum by the total number of events1 T. Then, the index is obtained by averaging

across the set of dependency pairs J :

Ddata
HB, i =

1

|J |

∑

jj’∈J

n11 + n00

T
(3)

Second, a dependency index from an “independent model” (Dind
HB, i) is calculated by

multiplying the probability of successfully retrieving or not retrieving the items’ tar-

gets as if item responses were independent:

Dind
HB, i =

1

|J |

∑

jj’∈J

(
n11 + n10

T

n11 + n01

T
+ (1 −

n11 + n10

T
)(1 −

n11 + n01

T
)) (4)

The actual dependency measure (DHB, i) is then computed by subtracting the two

indices:

DHB, i = Ddata
HB, i − Dind

HB, i (5)

This is done to avoid scaling with memory performance, since Ddata
HB, i necessarily in-

creases if many or few event elements were successfully retrieved due to strong or poor

overall memory performance. The measure can take values between -1 and 1, where 0

indicates independence, positive values indicate dependency (i.e., the likelihood of re-

trieving an event element is larger if another event element was successfully retrieved),

and negative values indicate negative dependency (i.e., the likelihood of retrieving an

event element is smaller if another event elements was successfully retrieved).

2.1.2 Yule’s Q

Another approach for modeling stochastic dependencies of the retrieval of event el-

ements is Yule’s Q (Yule, 1912; cf. Horner & Burgess, 2014; see also Hayman &

1An event can be broadly described as a set of elements or stimuli that are somehow related (e.g.,
due to spatial or temporal contiguity).
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Tulving, 1989), a standardized odds ratio which is commonly used as a measure of

association in memory research (e.g., Kahana, 2002; Kahana et al., 2005). Yule’s Q

can be calculated from the contingency tables in Equation 2 to receive person- and

dependency-pair-specific indices using the following equation:

Q
jj’
i =

n11n00 − n10n01

n11n00 + n10n01

(6)

By averaging across dependency pairs one can then receive person-specific indices:

Qi =
1

|J |

∑

jj’∈J

Q
jj’
i (7)

The interpretation of this measure is equivalent to the interpretation of the measure

by Horner and Burgess (2013).

2.1.3 Adjusted Yule’s Q

A problem of Yule’s Q is that zero frequencies in the contingency table it is calculated

from (e.g., n10 = 0) cause it to be bound at its extreme values (-1 or 1) or become

undefined. Consider the contingency table in Table 1 from an example by Hintzman

(1980) with two outcomes (Y1 and Y2).

Table 1

Example contingency table with two
outcomes Y1 and Y2 from an example by
Hintzman (1980).

Y2 = 1 Y2 = 0

Y1 = 1 20 0

Y1 = 0 60 20

Calculating Yule’s Q from Equation 6 results in a value of Q = 1 (indicating a

perfect positive association between the two outcomes). One can circumvent this

problem by adding a constant c to each cell of the contingency tables in Equation 2

(cf. Burton et al., 2019; Horner & Burgess, 2014; see also Snodgrass & Corwin, 1988)

to calculate an adjusted Yule’s Q (Qa) using Equations 6 and 7. Adding c = 0.5 to

each cell of the contingency table in the example in Table 1 results in a value of Qa

= 0.87.
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2.1.4 Simpson’s Paradox

A general problem of the contingency-based approaches is that they rely on contin-

gency tables that are aggregated across events. This makes them prone to Simpson’s

paradox (Hintzman, 1972, 1980; Simpson, 1951) — if 2 × 2 contingency tables are

collapsed into a summary one, the relationship of the two outcomes may differ from

the one in the original tables. For instance, consider the example by Hintzman (1980)

depicted in Table 2. Both of the original tables (A and B) yield values of Qa = 0.87

(using c = 0.5), indicating a positive relationship of the two outcomes. However,

there is a third unobserved variable Z that is positively related to the first outcome

and negatively related to the second outcome of the two contingency tables (Hintz-

man, 1980). The first original table corresponds to Z = 1 and second original table

corresponds to Z = 2. Collapsing the two contingency tables (i.e., collapsing over

Z ) results in the summary table (A + B). The summary table yields a value of Qa

= -0.38, indicating a negative relationship of the two outcomes (Y1 and Y2). Thus,

the relationship of the two outcomes is inverted compared to the relationship in the

original tables. Simpson’s paradox can occur due to confounding with person differ-

ences, item differences, or person-item interactions (Hintzman, 1972, 1980; see also

Burton et al., 2017). Since all of the presented contingency-based approaches yield

person-specific dependency estimates, confounding with person differences is not an

issue. However, the approaches may be subject to confounding with item differences

and person-item interactions.

Table 2

Example by Hintzman (1980) for collapsing two contingency tables into a summary
one and associated Qa values.

A

Z = 1 Y2 = 1 Y2 = 0

Y1 = 1 20 0

Y1 = 0 60 20

Qa = 0.87

B

Z = 2 Y2 = 1 Y2 = 0

Y1 = 1 20 60

Y1 = 0 0 20

Qa = 0.87

A + B

Y2 = 1 Y2 = 0

Y1 = 1 40 60

Y1 = 0 60 40

Qa = −0.38

Note. Qa were calculated by adding c = 0.5 to each cell of the contingency tables.
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2.2 An IRT-Based Approach

Schreiner, M. R., & Meiser, T. (2022). Measuring binding effects in event-based

episodic representations. Behavior Research Methods. Advance online publication.

https://doi.org/10.3758/s13428-021-01769-1

2.2.1 Parametric Variant

In the first article (Schreiner & Meiser, 2022; see also the second article, Schreiner,

Meiser, & Bröder, 2022), we introduced a novel approach for measuring binding effects

by modeling the stochastic dependency of the retrieval of event elements that is based

on item response theory (IRT; Lord, 1980; Lord & Novick, 1968). This approach takes

individual item responses rather than aggregated contingency tables as input and is

consequently not prone to confounding due to Simpson’s paradox. Since IRT takes

person and item differences, and person-item interactions into account, confounding

with these covariates is avoided. The approach is based on the three-parameter logistic

IRT model by Birnbaum (1968), because this model allows one to take guessing into

account, which may frequently occur in memory tests (see e.g., Huff et al., 2011).

Thus, one can model the probability of person i to give a correct response u to item

j given a latent trait θ (i.e., memory performance in the current model application),

item difficulties β, item discrimination parameters α, and item guessing parameters

γ:

P(uij = 1) = γj + (1 − γj)
eαj(θi−βj)

1 + eαj(θi−βj)
(8)

For the purpose of measuring binding effects, this model can usually be simplified

in practical applications. In experimental investigations of binding processes, events

are usually randomly generated for each participant. Thus, one may fix the item

discrimination parameters to 1 (cf. the Rasch model; Rasch, 1960). If testing involves

several response alternatives one may a priori fix the guessing parameters to a constant

g, for example equal to the stochastic guessing probability given a fixed number of

response alternatives (e.g., 0.2 for five response alternatives). Such a simplified model

is described by the following equation:

P(uij = 1) = g + (1 − g)
eθi−βj

1 + eθi−βj
(9)

The approach utilizes violations of an assumption inherent in many IRT models that

follow from successful binding of event elements. The assumption of local indepen-
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dence (LI) implies that item responses are independent after partialing out the latent

trait (de Ayala, 2009; Lazarsfeld & Henry, 1968) and that item residual correlations

are thus zero. However, given successful binding, there are additional event-specific

effects that lead to a violation of the LI assumption. This leads to item residual corre-

lations that systematically deviate from zero, such that elements of a common event

are more likely to be retrieved together, or not to be retrieved together, than elements

of different events. In the current approach, item residual correlations are estimated

using the Q3 statistic (Yen, 1984). This statistic can be calculated for each item pair

jj’ (i.e., for each pairwise combination of test trials in a memory test) in four steps:

(1) person and item parameters are estimated from a suitable IRT model, such as the

model in Equation 9, (2) the model-implied probability for giving a correct response

to each item in the item pair is derived from the model parameters, (3) the item

residuals are calculated as the difference between the model-implied probability of a

correct response and the observed response for each person, and (4) Q3 is calculated

as the Pearson correlation of the residuals of both items across persons. Yen (1993)

noted that Q3 is negatively biased given LI and suggested that a bias correction should

be applied by subtracting the expected value of Q3 given LI, which is −1
I−1

, from all

Q3. The approach then contrasts the mean residual correlations between item pairs

kk’ referring to the same event with the mean residual correlations between item pairs

l l’ referring to different events to calculate the dependency measure DQ3
:

DQ3
=

1

K

∑

k>k’

Qkk’
3 −

1

L

∑

l>l’

Qll’
3 , (10)

where K is the number of item pairs belonging to the same event and L is the num-

ber of item pairs belonging to different events. Given binding of event elements and

a resulting stochastic dependency of the retrieval of event elements, within-event

item residual correlations deviate from zero, whereas between-event item residual

correlations are close to zero. Quantifying the dependency measure relative to the

mean between-event item residual correlations allows for corrections of spurious item

residual correlations that may be present in the data or be induced due to model

misspecification, since these would affect both within- and between-event item resid-

ual correlations. The interpretation of the measure is equivalent to the one of the

contingency-based measures, with zero indicating independence, positive values indi-

cating positive dependency, and negative values indicating negative dependency.

Due to the sampling distribution of Q3 being unknown (Chen & Thissen, 1997),
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the sampling distribution of DQ3
is also unknown. In addition, the approach returns

an overall measure of dependency for a given experimental condition or group. Thus,

classical testing approaches (e.g., t-tests) are not applicable. For testing whether

dependency or differences in dependency significantly differ from zero one can in-

stead use a bootstrap approach. We use parametric bootstrapping, thus using the

parameters estimated from the IRT model to generate data under the assumption

that the data-generating model is true. When sampling from a unidimensional IRT

model such as the one in Equation 9, this implies that the LI assumption holds and

there is thus no dependency. By calculating the dependency measure or differences

in dependency measures for each bootstrap sample one can generate distributions of

the respective indices under the null hypothesis, from which p values for the observed

indices can be derived. For testing for differences in dependency, the null hypothesis

is that dependency in the compared conditions or groups is equal, but not necessarily

zero. Thus, for this kind of test, one needs to generate data from a model that allows

for dependencies in item responses. This can be achieved by sampling from a bifactor

IRT model (see Gibbons & Hedeker, 1992; Wainer & Wang, 2000), which extends

the model in Equation 8 by including additional, event-specific, latent traits λ, thus

making the model multidimensional:

P(uij = 1) = γj + (1 − γj)
eαj(θi−βj)−αt(j)λit(j)

1 + eαj(θi−βj)−αt(j)λit(j)
, (11)

where λ is the event-specific latent trait of person i for event t(j) to which item j

belongs. In accordance with the simplifications made to the model in Equation 9,

this model can also be simplified:

P(uij = 1) = g + (1 − g)
eθi−βj−λit(j)

1 + eθi−βj−λit(j)
(12)

All latent traits in this model are mutually independent, and thus there is no condi-

tional dependency in item responses referring to different events. The event-specific

latent traits induce stochastic dependencies of item responses referring to the same

event via their variance, with higher variances indicating higher dependencies (i.e.,

stronger event-specific effects). For informing the parametric bootstrap, one also

needs to fit this model to the empirical data. Since experiments usually include sev-

eral events, the model may quickly become highly dimensional, because an additional

event-specific trait is required for each event. This is especially problematic consider-

ing the relatively small sample sizes typical of experiments compared to, for example,
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large-scale educational assessments. To mitigate this problem, it is advisable to re-

duce the number of parameters to be estimated by setting equality constraints on

event-specific trait variances within experimental conditions or groups, also consider-

ing that events are usually randomly generated for each participant.

2.2.2 Nonparametric Variant

While the previously described IRT-based approach is parametric, Debelak and Koller

(2020) proposed a nonparametric estimation procedure for Q3, with which a nonpara-

metric variant of the dependency measure (Dnp
Q3

) can be calculated. The estimation

procedure builds on the nonparametric testing framework by Ponocny (2001) and on

a property of the Rasch model (Rasch, 1960) that marginal person and item sums are

sufficient statistics for person and item parameters. Thus, the procedure involves the

generation of bootstrap samples of artificial response matrices with the same marginal

sums as the observed response matrix, using a Markov-Chain Monte-Carlo algorithm

by Verhelst (2008). Then, the probability for a person giving a correct response to

an item is calculated by averaging the respective responses in the generated artificial

response matrices (uij) across bootstrap samples. Subsequently, nonparametric Q3

statistics and D
np
Q3

are calculated like their parametric counterparts (see Equation

10). In addition, one can calculate D
np
Q3

for each bootstrap sample to derive p values

for D
np
Q3

and differences in D
np
Q3

.

2.3 Evaluation of Measurement Approaches

Given the availability of several approaches for measuring binding effects in episodic

memory, the question remains which of these approaches are best suited for this task.

While I already discussed some advantages of the IRT-based approach compared to

the contingency-based approaches, such as the susceptibility to Simpson’s paradox

of the latter, in the first article (Schreiner & Meiser, 2022), we further evaluated

the different approaches in terms of three important measurement properties (cf. J.

Cohen, 1988): (1) bias of the estimates yielded by the different approaches, (2) Type

I error rates, and (3) power. This was done for both tests against independence of

individual estimates and tests for differences between experimental conditions. In

addition, we investigated how susceptible the measurement properties of the different

approaches are to variations in overall memory performance of the sample. Ideally,

dependency measures should not be susceptible to memory performance to allow for
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dissociating dependency of the retrieval of event elements due to binding effects from

higher memory performance.

For the evaluation, we conducted a Monte Carlo simulation in which we simulated

an experimental within-subjects design with two experimental conditions, a total of T

= 30 events (15 per condition), and five response options in the memory test (result-

ing in a stochastic guessing probability of g = 0.2). We simulated six test trials per

event, which corresponds to testing each association in an event consisting of three

elements in both directions (e.g., testing vendor–bread, bread–vendor, vendor–bakery,

bakery–vendor, bread–bakery, and bakery–bread). Item responses were drawn from

a bifactor IRT model (Gibbons & Hedeker, 1992; Wainer & Wang, 2000, see Equa-

tion 11), which allowed us to induce dependencies between item responses by adding

event-specific latent traits (λ). We varied the sample size (N = {25, 50, 75, 100}),

the dependency of the retrieval of event elements by varying the variances of the

event-specific latent traits (Dep. = {0, 0.5, 1})2, differences in dependency between

experimental conditions by increasing event-specific trait variances in the second con-

dition relative to the first condition (Dep.diff = {0, 0.5, 1}), and the overall level of

memory performance in the sample by changing the mean of the general latent trait θ

(P = {-2, 0, 2}, resulting in a proportion of 40%-42%, 59%-60%, and 75%-80% correct

responses, respectively). This resulted in 108 simulation conditions, for each of which

we conducted 1,000 replications. For the contingency-based approaches (DHB, Q, and

Qa), we conducted one-sample t-tests against zero for testing against independence

and paired t-tests for testing for differences between conditions. For the IRT-based

approaches we used bootstrapping (parametric for DQ3
, nonparametric for D

np
Q3

) for

determining statistical significance, using 1,000 bootstrap samples, respectively (cf.

Davison & Hinkley, 1997). All tests were one-tailed, since no negative dependencies

can be induced using the bifactor model.

Figure 2 shows average Type I error rates and power of the different measures

across simulation conditions. More detailed results are presented in the first article

(Schreiner & Meiser, 2022). The simulation revealed that Q is negatively biased,

whereas Qa is positively biased. For both measures the bias increases with increasing

memory performance. For Qa this results in severely inflated Type I error rates that

further increase with increasing memory performance. For Q this results in virtually

no sensitivity to dependency when testing against independence (i.e., very low power).

2Note that for event-specific trait variances of zero the bifactor model reduces to a unidimensional
model with the LI assumption (i.e., independence of item responses given the general latent trait).
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Figure 2

Average Type I error rates (A) and power (B) of the different measures across simu-
lation conditions when testing against independence and when testing for differences
between conditions in the simulation study by Schreiner and Meiser (2022).
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However, estimates of dependency differences between conditions are unbiased, but

Qa tends to yield slightly increased Type I error rates when testing for dependency

differences. In terms of power, both Q and Qa are inferior to the other approaches.

DHB, DQ3
, and D

np
Q3

are unbiased and not susceptible to memory performance given

independence of item responses. All three measures show acceptable to good mainte-

nance of the nominal significance level. Given dependency, the measures are affected

by memory performance (DHB less so than the IRT-based approaches), but this kind

of susceptibility is less concerning, since it only occurs if there is a true effect, and thus

only affects power, but not Type I error rates. The IRT-based approaches however

yield higher power for detecting dependency than does DHB and power is affected by

memory performance to a similar degree for all three measures. When considering
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dependency differences and testing for differences between conditions, these results

were largely mirrored. However, D
np
Q3

yields increasing Type I error rates as depen-

dency in the data increases. This is not the case for the other measures. In addition,

given true differences in dependency between conditions, estimates of dependency

differences from all measures shift closer to zero as dependency in the data increases,

resulting in decreasing power with increasing dependency in the data.

As a complement to the simulation study, we reanalyzed an empirical dataset by

James et al. (2020) using the different approaches to compare resulting inferences

drawn from empirical data (using two-tailed testing). In their first experiment (N

= 45), James et al. (2020) presented participants with 30 events, each consisting

of 3 elements (an animal, an object, and a location) that were shown as cartoon

illustrations and additionally named via audio recordings projected through head-

phones. Using a cued recognition test, there were six test trials per event (i.e., each

association was tested in both directions). The experiment encompassed two within-

subjects conditions: In a simultaneous encoding condition, all event elements were

shown simultaneously, during a single learning trial (cf. Horner & Burgess, 2013). In

a separated encoding condition (cf. Horner et al., 2015; Horner & Burgess, 2014),

event elements were shown sequentially pairwise, across three temporarily divided

learning trials (see Figure 3).

Two previous studies found a significant positive dependency of the retrieval of

event elements in both the simultaneous and separated encoding condition that did

not significantly differ between the conditions (Bisby et al., 2018; Horner & Burgess,

2014), suggesting binding effects of similar magnitude in both conditions. However,

James et al. (2020) found a significant dependency only in the simultaneous encoding

condition, but not in the separated encoding condition, with a significant difference

between the conditions, suggesting binding effects were only present in the simulta-

neous encoding condition. All three studies employed the approach by Horner and

Burgess (2013). Using the IRT-based approaches, both the parametric and nonpara-

metric variant yielded a significant dependency in both conditions, but the depen-

dency in the simultaneous encoding condition was significantly larger. These results

are thus more consistent with the results by Bisby et al. (2018) and Horner and

Burgess (2014) than are the results by James et al. (2020). The significant depen-

dency in the separated encoding condition may be explained by the higher power for

detecting dependencies of the IRT-based approaches compared to the approach by

Horner and Burgess (2013). Q and Qa yielded diverging results, with Q yielding no
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Figure 3

Exemplary learning trials of a simultaneous encoding condition (A) and a separated
encoding condition (B) for an event encompassing the elements dog, spoon, and forest.

A

B

Note. Pictures were taken from James et al. (2020), available at https://osf.io/vqzh8/. Learning
trials in a separated encoding condition usually do not directly follow each other but are presented
interleaved with learning trials from other events. This was also the case in James et al. (2020).

significant dependency in the simultaneous encoding condition and a significant neg-

ative dependency in the separated encoding condition, with a significant difference

between the conditions, and Qa yielding a significant dependency in both conditions,

with no significant difference between the conditions. These divergent findings may

be explained by the measures being biased.

In sum, the parametric IRT-based approach (DQ3
) seems best suited for measuring

the stochastic dependency of the retrieval of event elements as an indicator of binding

effects, yielding unbiased estimates of dependency and dependency differences, good

maintenance of Type I error rates, high power, and empirical inferences in accordance

with previous findings. The nonparametric variant (Dnp
Q3

) also generally performs

well, but is prone to increased Type I error rates when testing for differences in

dependency. Q and Qa on the other hand seem unsuited for measuring binding

effects, given their bias and associated problematic Type I error rates and power, and
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the strongly diverging empirical inferences drawn when using these measures. The

approach by Horner and Burgess (2013) (DHB) also seems to yield a suitable measure,

albeit performing worse than DQ3
. However, it may be particularly useful when

person-specific estimates are required, for example when one wants to investigate

the influence of continuous covariates such as age on the binding of event elements.

Person-specific estimates are not yet provided by DQ3
.

Besides the discussed advantages of the IRT-based approach and its insusceptibil-

ity to Simpson’s paradox, the approach provides some additional advantages over the

contingency-based approaches. While the latter are in essence descriptive, the IRT-

based approach utilizes established and plausible modeling of meaningful psycholog-

ical variables (e.g., memory performance as a latent trait and event-specific effects

defined in terms of item residual correlations and as additional latent traits in bifactor

models). Resulting person and item parameters can also be used for additional anal-

yses and goals, for example for investigating participants’ memory performance or

the compilation of study materials if one wants to use the same events across partic-

ipants, to ensure comparable difficulty of different events. The IRT-based approach,

resting on individual item responses, can further be applied to a greater variety of

test formats, such as free recall, in which the lack of cue-target pairs would render

dependency pairs used in the contingency-based approaches arbitrary. Finally, the

IRT-based approach can be extended to polytomous item responses, for example by

using the rating scale (Andrich, 1978) or partial credit model (Masters, 1982) and

then calculating item residual correlations from these models. A potential applica-

tion with polytomous item responses may be the investigation of dependencies in

confidence judgments in memory tasks.
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3 Binding Structures

In Chapter 2, I identified suitable approaches, particularly an approach based on IRT,

for measuring binding effects. In the following chapters, I will use this measure (DQ3
)

to investigate substantive research questions regarding the binding of event elements

in episodic memory. An important question is the structure in which different event

elements are bound together, since this is a fundamental aspect of information storage

and retrieval in episodic memory. There exist different competing accounts of how

bound event elements are structured.

3.1 Integrated Binding Accounts

Integrated binding accounts suggest that event elements are bound into a unitary

representation, which can be accessed in a holistic manner. Tulving (1983) suggested

that information regarding different event elements is stored in event engrams, which

are discrete bound event representations. The hippocampus may act as a conver-

gence zone that binds event elements into discrete engrams that can be retrieved by

partial activation of event elements via pattern completion (Damasio, 1989; Marr,

1971; Moll & Miikkulainen, 1997). Furthermore, the integrative encoding hypothesis

suggests that the hippocampus integrates newly encountered associations into exist-

ing overlapping ones, which ultimately leads to integrated representations containing

all event elements (Shohamy & Wagner, 2008; Zeithamova et al., 2012). As a con-

sequence of integrated binding structures, one can assume that there are no longer

individual associations between individual event elements. Instead, event elements

are fully integrated into a superordinate memory structure that can only be accessed

holistically. Therefore, asymmetries in binding strength are not possible.

3.2 Pairwise and Hierarchical Binding Accounts

Other accounts suggest that event elements may be bound together in a network

of pairwise associations that potentially allows for asymmetries in binding strength.

Relational memory theory suggests that the hippocampus flexibly binds elements

into a network-like structure depending on task demands (N. J. Cohen & Eichen-

baum, 1993; Eichenbaum, 1999; see also Eichenbaum & Cohen, 1988, 2001). With

ensemble encoding, associations may be stored as overlapping neural ensembles, but

these ensembles may remain distinct rather than forming a unitary representation
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(Cai et al., 2016). The theory of event coding (TEC) suggests that feature codes,

being codes of stimuli, are perceptually activated and bound into event files (Hom-

mel, 1998, 2009; see also the recently proposed binding and retrieval in action control

[BRAC] framework; Frings et al., 2020). Event files consist of multiple local inter-

connections of feature codes (Hommel, 1998, 2004) and connections may be sparse,

since not all possible connections are necessarily formed (Moeller et al., 2019). Fea-

ture codes may also contribute to the event file with varying degrees (Hommel et al.,

2001). Thus, binding asymmetries are possible in the TEC. The Span-Cospan model

of episodic memory (Healy & Caudell, 2019) suggests that event elements are bound

into higher-order representations of event segments, which may be bound into further

higher-order representations, up to a representation encompassing the entire event.

However, holistic access to individual event segments is maintained. Representations

and connections can vary in strength, and thus the model also allows for asymmetries

in binding strength. These accounts suggest that event elements may be bound into

a hierarchical binding structure, in which some elements are preferentially bound to

other elements. Such structures may be enabled by systematic variations in binding

strength (including binding strengths of zero, i.e. no direct bindings being formed

between some event elements).

3.3 Testing an Integrated Against a Hierarchical Binding Ac-

count

Schreiner, M. R., Meiser, T., & Bröder, A. (2022). The binding structure of event

elements in episodic memory and the role of animacy. Quarterly Journal of Ex-

perimental Psychology. Advance online publication. https://doi.org/10.1177/

17470218221096148

In the second article (Schreiner, Meiser, & Bröder, 2022), we empirically tested an

integrated against a hierarchical binding structure using an experimental paradigm

suitable to distinguish between these different binding structures in three experiments.

Participants were presented several events consisting of three elements presented as

nouns and were instructed to imagine these elements as part of a scence and inter-

acting in a meaningful manner. In Experiment 1, all events consisted of an animal,

an object, and a location (animacy condition). Experiments 2 and 3 additionally

included a non-animacy condition in which events consisted of two types of objects

(means of transportation and tools) and a location. Animacy condition was a within-
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subjects factor in Experiment 2 and a between-subjects factor in Experiment 3. We

manipulated animacy because we suspected it to facilitate the formation of hierar-

chical binding structures, but the rationale behind different animacy conditions is

primarily discussed in Chapter 4. We employed the separated encoding paradigm

(Horner et al., 2015; Horner & Burgess, 2014), in which event elements are presented

sequentially pairwise. In addition to a closed-loop (CL) condition (coherent encoding

episodes), in which all possible pairwise associations are presented (see Figure 4A,

see also Figure 3B), we additionally included three open-loop (OL) conditions, in

which we excluded one of the possible pairwise associations from presentation, re-

spectively (non-coherent encoding episodes, see Figure 4B-D). In a subsequent test

phase, participants were presented with an event element as a cue and had to select

the associated target element that belonged to the same event as the cue from six

response alternatives.

While we included the closed-loop condition to replicate previous findings show-

ing that event elements can be bound across several temporarily divided encoding

episodes (Bisby et al., 2018; Horner et al., 2015; Horner & Burgess, 2014; Joensen et

al., 2020), integrated and hierarchical binding structures make different predictions

regarding the pattern of stochastic dependencies of the retrieval of event elements

across the different open-loop conditions. Because an integrated binding structure

consists of a unitary event representation that can only be accessed holistically, de-

pendency should not vary across the open-loop conditions, since all associations,

including the one not presented, are fully integrated and should be readily retrieved

with all the other associations (or integration may fail for non-coherent encoding

episodes; cf. Horner et al., 2015; Horner & Burgess, 2014). However, in a hierarchical

binding structure there are systematic variations in binding strength. Thus, associa-

tions between more strongly bound event elements should more strongly contribute to

a stochastic dependency of the retrieval of event elements than associations between

less strongly bound event elements. Excluding associations from presentation that

would more strongly contribute to dependency should therefore diminish dependency

compared to excluding associations that would less strongly contribute to dependency,

and thus dependency should vary across the different open-loop conditions.

The dependency results for the three experiments are shown in Figure 5. While

we replicated a significant positive dependency in two out of the three experiments

(in Experiments 1 and 3), suggesting that event elements can indeed be bound across

several temporarily divided encoding episodes, at least if encoding episodes are coher-
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Figure 4

Learning trials for the closed-loop condition (A) and for different open-loop conditions
(B-D) for an event consisting of an animal, an object, and a location in the separated
encoding paradigm.
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Note. Horizontal lines indicate that the respective learning trial did not occur in the respective con-
dition. Learning trials for an event did not directly follow each other but were presented interleaved
with learning trials from other events.
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Figure 5

Dependency of the retrieval of event elements by animacy and loop condition for
Experiment 1 (A), Experiment 2 (B), and Experiment 3 (C) of Schreiner, Meiser,
and Bröder (2022).
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ent, results regarding the binding structure were mixed. In Experiment 1 there was

a significant positive dependency in the open-loop condition in which the association

object – location was excluded that did not significantly differ from the dependency

in the closed-loop condition and was significantly larger than the dependency in the

other open-loop conditions in which the animal – object or animal – location associ-

ation was excluded. This result pattern suggests that event elements are bound in a

hierarchical manner (cf. Cai et al., 2016; N. J. Cohen & Eichenbaum, 1993; Eichen-

baum, 1999; Healy & Caudell, 2019; Hommel et al., 2001), with event elements being

preferentially bound to the animal element. In the animacy condition of Experiment 3

however, we did not find a significant dependency in any of the open-loop conditions.

This finding is more consistent with an integrated binding structure (Damasio, 1989;

cf. Horner et al., 2015; Horner & Burgess, 2014; Joensen et al., 2020; Marr, 1971;

Moll & Miikkulainen, 1997; Shohamy & Wagner, 2008; Tulving, 1983; Zeithamova et

al., 2012), with integration failing for non-coherent encoding episodes (cf. Horner et

al., 2015; Horner & Burgess, 2014).

Experiment 2 was not particularly informative regarding a distinction between an

integrated and a hierarchical binding structure, since we did not find a significant

dependency in almost all conditions, not even in the closed-loop conditions. This

suggests that in this experiment participants may have formed independent pair-

wise representations of event elements that were not integrated into a superordinate

memory representation. This may have been the case because, in Experiment 2,

events could vary in the composition of their elements, since they consisted of an

animal, an object, and a location in the animacy condition, and two types of objects,

and a location in the non-animacy condition. Since animacy condition was manipu-

lated within-subjects, participants may have been less aware of the underlying event

structure compared to the other experiments, which may have interferred with the

formation of abstract representations of event structures. These may, however, be

beneficial for binding (Morton et al., 2020; see also Kumaran, 2013; Kumaran &

Ludwig, 2013).

Interestingly, we found significant negative dependencies in the open-loop con-

ditions of the non-animacy condition in Experiment 3 (and also in one condition in

Experiment 2). This may suggest that pairs of event elements were encoded as distinct

overlapping events and representations were then driven apart by pattern separation

processes in the hippocampus (see Zotow et al., 2020). An alternative explanation

may be that the selective retrieval of one event element may have inhibited the re-
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trieval of other event elements at the time of testing (cf. Horner & Burgess, 2013)

and negative dependencies may thus be due to retrieval-induced forgetting (Anderson

et al., 1994).

In sum, the results of the three experiments yielded unclear evidence for specific

binding structures. This may suggest that different types of binding structures can

be formed (and may even exist in parallel). For example, it is conceivable that there

may exist a continuum of increasingly integrated memory representations, as depicted

in Figure 6. Weakly integrated representations may be represented by independent

pairwise bindings and may have occurred in Experiment 2. (Initially) overlapping

pairwise representations may be slightly more integrated and may have occurred in

the non-animacy condition of Experiment 3. Further up the continuum may then be

hierarchical binding structures, as suggested by the results of Experiment 1, and ulti-

mately fully integrated binding structures, as suggested by the results in the animacy

condition of Experiment 3. While more integrated representations may intuitively

be beneficial, they may also come with costs and may lead to seemingly paradoxi-

cal effects. For example, while initially overlapping pairwise representations may be

considered higher up the integration continuum than independent pairwise represen-

tations, they may lead to negative dependencies due to pattern separation processes

driving representations apart. This however, is an adaptive property of the hippocam-

pus that reduces interference between similar representations in memory (Guzowski

et al., 2004; Neunuebel & Knierim, 2014; Yassa & Stark, 2011). Also, while inte-

grated representations may require less storage space than hierarchical representa-

tions, because all event elements are bound into a unitary representation, individual

associations are no longer accessible in integrated representations. Thus, if a memory

trace is too weak or fades over time, accessibility to the whole representation may

be lost (see e.g., Joensen et al., 2020), whereas for hierarchical representations some

associations may still be accessible and help in inferring the remaining associations.

The degree of integration a memory representation achieves may be influenced by

several moderators.
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Figure 6

Schematic depiction of representations for an event consisting of three event elements
(A, B, and C) along an integration continuum. From left to right, the depicted rep-
resentations are independent pairwise, (initially) overlapping pairwise, hierarchical,
and integrated representations.

AA

B

A

C

B

C

A

B C

A

B C

A

B C

Degree of integration



29

4 Moderators of Binding Processes

In Chapter 3, I presented and discussed evidence suggesting that the structure in

which event elements are bound together may vary, such that different binding struc-

tures with different degrees of integration are possible. From that the question follows

what causes some events to achieve higher degrees of integration than others. In this

chapter, I will thus investigate moderators of the binding of event elements.

So far, such moderators have only been scarcely investigated. James et al. (2020)

found that, when presenting event elements as words, the addition of spoken words to

the presentation of written words (i.e., multimodal instead of unimodal presentation)

disrupted binding. Also, the use of picture stimuli disrupted binding compared to

written stimuli, suggesting an effect of the modality of the presentation of event

elements. Further, there is some evidence that knowledge or awareness regarding the

structure of an event, such as the number and types of elements making up an event,

facilitates binding (Kumaran, 2013; Kumaran & Ludwig, 2013; Morton et al., 2020).

Our findings in Schreiner, Meiser, and Bröder (2022), in which we found no binding

effects in an experiment in which events could consist of different sets of element

types (varying event composition) compared to experiments in which they always

consisted of the same set of element types (fixed event composition) corroborates

this evidence. Awareness regarding the structure of an event may enable people to

map representations on a latent geometric space, facilitating integration and enabling

vector-based retrieval and inference (Morton et al., 2020).

4.1 Animacy

The presence of an animate element in an event may be another moderator facilitating

the formation of coherent memory representations. Animate entities are living things

that are capable of independent movement and able to change direction without

warning (Bonin et al., 2015). Animacy is an important factor influencing human

cognition (Nairne et al., 2013, 2017) that may be explained by selective pressure

shaping our ancestors’ memory system (Nairne et al., 2007, 2008). In this context,

animacy may be an important survival-related factor. For example, animate entities

may be potential prey, predators, or sexual partners (Bonin et al., 2015; Nairne et al.,

2017). Regarding memory performance, an animacy effect has been commonly found,

such that words with an animate referent are remembered better than words with an

inanimate referent (e.g., Li et al., 2016; Nairne et al., 2013; VanArsdall et al., 2015).
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This effect has been robustly found across a variety of test formats, including free

recall (Bonin et al., 2015; Leding, 2019; Li et al., 2016; Madan, 2021; Nairne et al.,

2013; Popp & Serra, 2016), recognition (Bonin et al., 2014; Leding, 2020; VanArsdall

et al., 2013), and judgments of learning (DeYoung & Serra, 2021; Li et al., 2016). In

cued recall tests, evidence for an animacy effect has been mixed, with some studies

finding an effect (DeYoung & Serra, 2021; Laurino & Kaczer, 2019; VanArsdall et

al., 2015) and some studies even finding an opposite effect (Kazanas et al., 2020;

Popp & Serra, 2016). These inconsistent findings may be explained by variability in

within-pair similarity of the word pairs learned in cued recall tasks (Serra & DeYoung,

2022).

Beyond enhancing memory performance, in the second article (Schreiner, Meiser,

& Bröder, 2022), we found evidence that animacy also facilitates the binding of event

elements in episodic memory. In Experiment 1, in which events consisted of an animal,

an object, and a location, we found a significant positive dependency of the retrieval

of event elements when all possible pairwise associations between event elements were

presented (closed-loop condition) and when an association not involving the animate

element was excluded from presentation (one of the open-loop conditions), whereas

we did not find dependencies when an association involving the animate element was

excluded (see Figure 5A). This suggests a hierarchical binding structure, in which

the inanimate event elements (object and location) are preferentially bound to the

animate element (the animal).

In the subsequent experiments we manipulated animacy by constructing events

that either included an animate element (as was the case in Experiment 1, animacy

condition) or did not include an animate element (non-animacy condition). In the

non-animacy condition, event elements consisted of two types of objects (a means

of transportation and a tool) and a location. While manipulating animacy within-

subjects yielded uninformative results, likely due to resulting varying event composi-

tions and reduced awareness regarding the underlying event structure (cf. Kumaran,

2013; Kumaran & Ludwig, 2013; Morton et al., 2020, see Chapter 3), manipulating

animacy between-subjects yielded strongly diverging result patterns between the an-

imacy and non-animacy condition (see Figure 5C). While the result pattern in the

animacy condition suggests an integrated binding structure (there was a significant

positive dependency in the closed-loop condition, but no significant dependencies in

the open-loop conditions), there were negative dependencies in the open-loop condi-

tions of the non-animacy condition, potentially suggesting that overlapping pairwise
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representations were formed (cf. Zotow et al., 2020) and no signficant dependency in

the closed-loop condition. These results suggest that representations with a higher

degree of integration have been achieved in the animacy compared to the non-animacy

condition.

In sum, the results suggest that the presence of an animate element in an event

enables higher degrees of integration, and thus facilitates the formation of more coher-

ent memory representations. The presence of an animate element may either provide

a critical element in hierarchical binding structures, to which other event elements

are preferentially bound (cf. Experiment 1), or facilitate the full integration of event

elements into an integrated binding structure (cf. Experiment 3). In a supplemental

analysis we found that facilitating effects of animacy only occurred for events for

which an association involving the animate element was presented first. Animate

elements may thus exert their influence by providing a potential agent in an event.

4.2 Agency

Schreiner, M. R., Bröder, A., & Meiser, T. (2022). Agency effects on the binding of

event elements in episodic memory. Manuscript submitted for publication.

The facilitating effects of animacy on the binding of event elements in episodic memory

may be due to animate elements providing a potential agent in an event, and thus

effects may actually be driven by agency. Agency can be defined as “acting or having

the capacity to act autonomously in a given environment” (Suitner & Maass, 2016, p.

248; see also Hitlin & Elder, 2007). While this definition certainly applies to animate

entities, agency may also extend to inanimate entities (Johnson & Barrett, 2003;

Lowder & Gordon, 2015). In that sense, agency can be considered to be a property

of animate entities, but animacy may only be one of several factors contributing

to agency. For example, the active performance of an action may be another factor

contributing to an entity’s perceived agency (e.g., a hunting fox may be ascribed more

agency than a fox laying passively on the ground or a rabbit being hunted). Agency

may thus be a more proximate explanation for the facilitating effects of animacy on

the binding of event elements.

In the third article (Schreiner, Bröder, & Meiser, 2022), we tested whether agency,

beyond animacy, facilitates the binding of event elements in five experiments. Par-

ticipants were presented several events consisting of three event elements. Event

elements were either three types of objects (a means of transportation, a tool, and a
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food item, Experiments 1 and 2) or three types of animals (a mammal, a bird, and

an insect, Experiments 3-5) to avoid confounding with animacy and were presented

as nouns. In Experiments 1-3 we employed the separated encoding paradigm (Horner

et al., 2015; Horner & Burgess, 2014), which we also used in Schreiner, Meiser, and

Bröder (2022), but this time we only included the closed-loop condition, in which

all possible pairwise associations are presented3. In Experiments 4 and 5 we em-

ployed the simultaneous encoding paradigm (Horner & Burgess, 2013), in which all

event elements are presented in a single learning trial. While the separated encod-

ing paradigm provides a stricter test of binding, because event elements need to be

bound across temporarily divided encoding episodes and binding effects are thus less

likely confounded with covariations in perceptual variables, binding effects in the si-

multaneous encoding paradigm tend to be more robust (see James et al., 2020) and

the simultaneous presentation of event elements is closer to how events are naturally

experienced. Thus, in Experiments 1-3 there were two event elements per learning

trial and three learning trials per event, and in Experiments 4 and 5 there were three

event elements per learning trial and only one learning trial per event.

Event elements were presented embedded in sentences and we used a linguistic

agency manipulation. In sentences with interpersonal action verbs (e.g., hit) the agent

tends to be the grammatical subject, whereas the patient of the action tends to be

the grammatical object (Kasof & Lee, 1993). In addition, the grammatical subject is

perceived as more agent-like than the grammatical object (Kako, 2006) and the agent

is given greater causal weight than the patient (Brown & Fish, 1983; Kassin & Lowe,

1979). We thus constructed sentences such that, in the agency condition, one of the

event elements (the agent) served as the grammatical subject in a transitive active

sentence (e.g., The dog grabs the eagle.), whereas the non-agentic element(s) served

as the grammatical object(s). In the non-agency condition, we used passive sentences

(e.g., The dog and the eagle are being grabbed.), in which the grammatical subject is

not an agent (Kako, 2006). Such passive sentences were also used for sentences in

the agency condition that did not include the agent element (this could only occur

in the separated encoding paradigm). In a subsequent test phase, participants were

presented with an event element as a cue and had to select the associated target

element that belonged to the same event as the cue from six response alternatives,

like in Schreiner, Meiser, and Bröder (2022).

3Experiment 2 also encompassed additional open-loop conditions to examine the binding structure
of event elements, but yielded uninformative results concerning this question.
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Figure 7

Dependency of the retrieval of event elements by agency condition for experiments
employing the separated encoding paradigm (A), for experiments employing the si-
multaneous encoding paradigm (B) and for the aggregate analysis of Experiments 4
and 5 including only participants with above-median performance (C) of Schreiner,
Bröder, and Meiser (2022).
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The dependency results for the five experiments are shown in Figure 7. In experi-

ments in which we employed the separated encoding paradigm (Experiments 1-3) we

did not find any significant dependency of the retrieval of event elements in the agency

and non-agency conditions (see Figure 7A), and thus no evidence for binding effects.

This is at odds with results of previous studies, which found that binding effects

also occur for (coherent) temporarily divided encoding episodes (Bisby et al., 2018;

Horner et al., 2015; Horner & Burgess, 2014; Joensen et al., 2020; Schreiner, Meiser,

& Bröder, 2022). The main difference between our experiments in Schreiner, Bröder,

and Meiser (2022) and these previous studies is that we presented event elements

embedded in sentences instead of presenting them as individual words or pictures.

Presenting individual stimuli may allow participants to freely associate them, which

may be further encouraged by the imagery instruction participants typically receive

in these experiments. This may facilitate the binding of event elements compared to

the more prestructured presentation of event elements embedded in sentences, which

may inhibit participants’ ability to freely associate them. Since our linguistic agency

manipulation relied on the presentation of event elements embedded in sentences, it

may not have not worked well in combination with the separated encoding paradigm.

In experiments in which we employed the simultaneous encoding paradigm (Ex-

periments 4 and 5), we found significant positive dependencies of the retrieval of

event elements (see Figure 7B), and thus evidence for binding effects. In Experiment

4 this was only the case in the agency condition. In Experiment 5, which had a larger

sample size and a slightly longer presentation duration, this was the case in both the

agency and non-agency condition. However, while the result pattern pointed in the

expected direction (a higher dependency in the agency than in the non-agency con-

dition), the difference in dependency between the two conditions was non-significant

in both experiments.

It is noteworthy that memory performance in all experiments was quite poor.

In Experiments 4 and 5, the average proportion of correct responses in the agency

condition was 24%-26% and 23% in the non-agency condition. This is much lower

than the memory performance in previous studies. For example, in our experiments

in Schreiner, Meiser, and Bröder (2022) the average proportion of correct responses

ranged from 38%-49% and in the experiments by Horner and Burgess (2013) it ranged

from 57%-71%. As we showed in Schreiner and Meiser (2022), lower levels of memory

performance are associated with lower power for detecting binding effects and dif-

ferences in binding effects between conditions. It may thus have been the case that
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the low memory performance in the experiments prevented the reliable detection of

a difference in dependency between the agency and non-agency condition.

Consequently, we performed a supplemental analysis in which we only included

participants with above-median memory performance in their respective condition in

Experiments 4 and 5 and aggregated the data from the two experiments to account

for the reduced sample size. With this analysis, we found significant positive depen-

dencies in both the agency and non-agency condition and, importantly, the difference

in dependency between the conditions was also significant (see Figure 7C). The de-

pendency was higher in the agency than in the non-agency condition. This finding

corroborates the descriptive result patterns of Experiments 4 and 5 and suggests a

facilitating effect of agency on the binding of event elements that may have been

concealed due to low memory performance in the experiments.

In sum, the results of the experiments hinted at a facilitating effect of agency on

the binding of event elements. While the results from the experiments with sequen-

tial pairwise event presentation were inconclusive, this may have been due to this

presentation format being not particularly well suited for investigating the research

question in combination with the linguistic agency manipulation used. Since event

elements were embedded in sentences, this may have inhibited participants’ ability

to freely associate them. The results from the experiments with simultaneous event

presentation yielded evidence for binding effects, but only descriptive evidence for a

facilitating effect of agency. More concrete evidence only emerged in a supplemen-

tal analysis with aggregated data and only including participants with above-median

memory performance. Thus, while the results are not very clear, they hint at a facil-

itating effect of agency and this effect may have been concealed due to low memory

performance in the experiments. Therefore, agency may indeed be a more proximate

explanation for the facilitating effects of animacy on the binding of event elements in

Schreiner, Meiser, and Bröder (2022) and the presence of an agentic element in an

event may facilitate the formation of more coherent memory representations.
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5 Conclusion

The ability to bind together different elements of an event into a coherent memory

representation is a fundamental property underlying episodic memory. Yet, little is

known about how these binding processes work or how to properly measure them.

In this thesis, I introduced and evaluated a novel approach for measuring binding

processes in episodic memory using behavioral data. I then used this approach to

examine the structure in which different event elements are bound together and mod-

erators of binding processes.

Given that an event’s constituent elements are successfully bound together, there

should be a stochastic dependency of the retrieval of event elements (Arnold et al.,

2019; Boywitt & Meiser, 2012a, 2012b; Horner et al., 2015; Horner & Burgess, 2013,

2014; Meiser & Bröder, 2002; Starns & Hicks, 2005, 2008). By modeling this de-

pendency one can derive measures of binding effects. However, earlier modeling

approaches (see Burton et al., 2019; Horner & Burgess, 2013, 2014; Yule, 1912)

are contingency-based and come with a number of limitations, such as susceptibil-

ity to Simpson’s paradox (Hintzman, 1972, 1980; Simpson, 1951). In the first article

(Schreiner & Meiser, 2022; see also Schreiner, Meiser, & Bröder, 2022), we introduced

a novel approach based on item response theory (Lord, 1980; Lord & Novick, 1968)

that overcomes some limitations of previous approaches. For example, because the

approach takes individual item responses instead of aggregate contingency tables as

input, it is not susceptible to Simpson’s paradox. In an evaluation, the approach

yielded unbiased estimates, good maintenance of Type I error rates and high power

for detecting binding effects, outperforming the contingency-based approaches. While

dependency estimates scaled with memory performance, this only affected power but

not Type I error rates. One drawback of the approach is that, while it takes person

differences into account, it provides an overall measure of dependency, whereas the

contingency-based approaches provide person-specific dependency estimates. In the

subsequent articles we used this IRT-based approach to examine important properties

of binding in episodic memory.

In the second article (Schreiner, Meiser, & Bröder, 2022), we investigated the

structure in which different event elements are bound together. There are competing

accounts of binding structures in the literature. One class of accounts suggests an

integrated binding structure, in which all event elements are bound into one unitary

representation or engram (Damasio, 1989; Marr, 1971; Moll & Miikkulainen, 1997;
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Shohamy & Wagner, 2008; Tulving, 1983; Zeithamova et al., 2012). Another class

of accounts suggest a system of pairwise bindings in which asymmetries in bind-

ing strength are possible, making possible a hierarchical binding structure, in which

event elements are preferentially bound to particular types of elements (Cai et al.,

2016; N. J. Cohen & Eichenbaum, 1993; Eichenbaum, 1999; Healy & Caudell, 2019;

Hommel et al., 2001). We extended the separated encoding paradigm (Horner et al.,

2015; Horner & Burgess, 2014), in which event elements are presented sequentially

pairwise across several temporarily divided encoding episodes (either all possible as-

sociations are shown [coherent encoding episodes] or one association is excluded from

presentation [non-coherent encoding episodes]), with several non-coherent encoding

conditions, in which we consistently excluded one of the possible associations from

presentation. In doing so, we replicated previous findings demonstrating that binding

across temporarily divided encoding episodes is possible (Bisby et al., 2018; Horner

et al., 2015; Horner & Burgess, 2014; Joensen et al., 2020). We further found ev-

idence for different binding structures, including both integrated, hierarchical, and,

potentially, overlapping pairwise representations. This suggests that different binding

structures can be possibly formed and implies the need for an overarching account

bridging the accounts in favor of integrated binding structures and those in favor of

a system of pairwise bindings. For example, memory representations may lie on a

continuum with varying degrees of integration. Different testing demands or con-

texts may elicit different structures, such that how events are represented may not be

fixed, but vary dynamically based on the specific demands or contexts at play. This

would be consistent with relational memory theory (N. J. Cohen & Eichenbaum, 1993;

Eichenbaum, 1999). Thus, several moderators may influence the degree of integration

and therefore the binding structure of a memory representation.

Also in the second article (Schreiner, Meiser, & Bröder, 2022), we investigated the

influence of animacy on the binding of event elements. Animacy has previously only

been investigated in relation to memory performance, but not regarding the coherence

of memory representations. Regarding memory performance, an animacy effect has

been robustly found, such that words describing an animate entity are remembered

better than words describing an inanimate entity (e.g., Li et al., 2016; Nairne et al.,

2013; VanArsdall et al., 2015). Extending these findings, we found evidence that the

presence of an animate element in an event also facilitates binding, leading to more

coherent memory representations than if an event is only comprised of inanimate

elements.
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In the third article (Schreiner, Bröder, & Meiser, 2022), we investigated the in-

fluence of agency on the binding of event elements. While robust effects were not

seen, the pattern of results hinted at a facilitating effect of the presence of an agentic

element in an event on binding. Agency effects may thus underlie the previously

found facilitating effects of animacy. These may have occurred because the presence

of an animate element in an event provides a potential agent. However, animacy may

only be one of several factors contributing to agency (see e.g., Johnson & Barrett,

2003; Lowder & Gordon, 2015). In addition, our results suggest that the opportu-

nity to freely associate event elements may facilitate binding. We only found binding

effects when event elements were presented simultaneously, but not when they were

presented sequentially pairwise, although binding effects have been found under such

circumstances in previous studies (Bisby et al., 2018; Horner et al., 2015; Horner &

Burgess, 2014; Joensen et al., 2020; Schreiner, Meiser, & Bröder, 2022). However,

in Schreiner, Bröder, and Meiser (2022) we presented event elements embedded in

sentences instead of presenting them as individual stimuli. This presentation format

may have made the described scenes more prestructured and inhibited participants

ability to freely associate event elements. This also corroborates evidence suggest-

ing that additional processes may be required when binding event elements across

temporarily divided encoding episodes compared to binding within a single encoding

episode (see James et al., 2020).

Our findings on moderators of binding processes in episodic memory add to a

limited number of previous findings. These suggest that multimodal compared to

unimodal presentation of stimuli disrupts binding and that written stimuli faciliate

binding compared to picture stimuli (James et al., 2020). The latter finding may

also be consistent with our findings suggesting that free association faciliates bind-

ing (Schreiner, Bröder, & Meiser, 2022), since written stimuli may be more freely

associated than picture stimuli. Further, awareness regarding the structure of an

event, such as the number and types of its constituent elements, may facilitate bind-

ing (Kumaran, 2013; Kumaran & Ludwig, 2013; Morton et al., 2020). This is also

corroborated by our findings in Schreiner, Bröder, and Meiser (2022). There, we only

found binding effects with fixed event compositions, in which all events comprised the

same set of element types, but not with varying event compositions, in which events

could comprise different sets of element types. Participants’ awareness regarding the

underlying event structure may have been reduced in the case of varying compared

to fixed event compositions.
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To conclude, the present thesis provides a novel measure for investigating bind-

ing processes in episodic memory and insights into some properties of these binding

processes. I demonstrated that the novel measure is well-suited to probe binding ef-

fects. Moreover, I provided evidence that event elements may be bound into different

types of event structures with different degrees of integration and that the degree of

integration a memory representation achieves may be influenced by moderators such

as animacy or agency. Thereby, I provide researchers with a new tool to investigate

binding processes in episodic memory and extend a relatively limited body of em-

pirical evidence regarding these binding processes. The somewhat nuanced findings

highlight the complexity of the system underlying binding processes in episodic mem-

ory and call for the development and refinement of theories and models to better

understand this fundamental property of our memory system.
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