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Abstract

The multidimensional forced-choice (MFC) format has been proposed as an alternative

to rating scales. In the MFC format, respondents indicate their relative preference for

items measuring different attributes within blocks. Test construction for the MFC format

is complex because how the items are combined affects the properties of the test. The aim

of this thesis was to investigate and further develop IRT methods for the MFC format

that can help to improve MFC test construction, focusing on the Thurstonian IRT model

and a ranking instruction.

In the first manuscript (Frick et al., 2021), we conducted an extensive simulation study

on the normativity of Thurstonian IRT trait estimates. We investigated realistic test de-

signs, removed a potential confounding with item parameter bias and compared recovery

to that from classical test theory scoring and from rating scale and true-false formats.

We found that with all positively keyed items, trait estimates showed ipsative properties.

However, with mixed item keys, they were insensitive to otherwise suboptimal test designs.

In an empirical study, we found that construct validity in the MFC format with three-item

blocks was lower and criterion validity equal to the true-false format.

In the second manuscript (Frick, 2021b), I developed the Faking Mixture model, a

model for faking in the MFC format that allows to estimate the fakability of individual

MFC blocks. A simulation study showed good parameter recovery. An empirical validation

showed that the model can capture expected differences in item desirability, but also

that matched blocks were not fully fake-proof. Therefore, it is worth to apply the Faking

Mixture model in order to reduce fakability by removing or modifying blocks during test

construction.

In the third manuscript (Frick, 2021a), I proposed methods to estimate and summarize

Fisher information for Thurstonian IRT models on the block level. Three simulation studies

showed that the methods can accurately recover true information and are useful for test

construction. It was examined how the proposed information summaries can be combined

with algorithms for automated test assembly. Thus, block information can be used to

assemble MFC tests that maximize reliability and have an ideal test design.

In summary, this thesis provided both new methods and guidelines for MFC test con-

struction. Modeling the block level did and will help to adequately capture the relative

response process and item interactions and it can provide avenues for further psychometric

developments.
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Articles

This cumulative thesis is based on the following three manuscripts:

Manuscript I

Frick, S., Brown, A. & Wetzel, E. (2021). Investigating the normativity of trait estimates

from multidimensional forced-choice data. Multivariate Behavioral Research. Ad-

vance online publication. https://doi.org/10.1080/00273171.2021.1938960

Manuscript II

Frick, S. (2021). Modeling faking in the multidimensional forced-choice format

– The Faking Mixture model. Psychometrika. Advance online publication.

https://doi.org/10.1007/s11336-021-09818-6

Manuscript III

Frick, S. (2021). Block information in the Thurstonian item response model. Manuscript

submitted for publication to Psychometrika.

This research deals with investigating and further developing item response theory meth-

ods for multidimensional forced-choice (MFC) tests. In the following, I will first give a short

overview of the MFC format and its advantages in comparison to rating scales, of challenges

in MFC test construction and of item response theory models for MFC tests, especially of

the Thurstonian item response model. Then, I will summarize the three manuscripts. In

the end, I will discuss implications and future research directions for MFC test construction

and psychometric modeling. The full manuscripts are appended to this synopsis.
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1 Introduction

Tests are frequently used to assess personality and draw inferences about respondents’

trait levels. For example, employers use personality tests to assess whether applicants

possess the characteristics needed for the job. Psychotherapists routinely use personality

tests as part of the initial assessment. Since important life outcomes may depend on the

results of personality tests, test scores should measure the intended construct precisely and

free of irrelevant influences. In other terms, test scores should be reliable and valid. Most

personality tests use a rating scale format (e.g., strongly disagree, disagree . . . ). However,

rating scales often suffer from systematic influences on the response beyond the construct

intended to measure, termed response biases (Paulhus, 1991). For example, respondents

might show preferences for certain categories, called response styles (Henninger & Meiser,

2020; Wetzel, Böhnke, et al., 2016). Or, in a so-called high-stakes situation (e.g., when

applying for a job), respondents might distort their responses in order to leave a certain

impression, a response behavior called faking (MacCann et al., 2011). Response biases

can diminish reliability and validity. For example, response styles can change correlations

between scale scores (Moors, 2012). Faking can result in mean increases of trait scores of

.1 to .6 SD when using rating scales (Birkeland et al., 2006; Viswesvaran & Ones, 1999).

To prevent response biases emerging from the use of rating scales, the multidimensional

forced-choice (MFC) format has been proposed as an alternative.

1.1 Multidimensional Forced-Choice versus Rating Scales

In the MFC format, several items measuring different attributes are combined into blocks

and respondents indicate their relative preference for the items. In such, the MFC format

is both an item and a response format. I refer to it as a response format in the following.

Typical response instructions include ranking all items (for an example, see Figure 1) or

selecting the items that describe oneself most and/or least. This research focuses on MFC

blocks with a ranking instruction, because this response instruction (potentially) provides

the largest amount of information and therewith the highest reliability (Brown & Maydeu-

Olivares, 2011). Additionally, the number of items per block can vary, with two to four

items being the most common.

Research interest in the MFC format has increased in recent years as evidenced by the

growing number of articles published on this topic (Figure 2). Further, the MFC format
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Figure 1: Example of a multidimensional forced-choice block from the Big Five Triplets
(Wetzel & Frick, 2020).

has become popular in assessment which is reflected in several tests that use this format.

For example, it is used to assess work-related personality in TAPAS (Drasgow et al., 2012),

OPQ (Brown & Bartram, 2009–2011), and the personality test by TalentQ (Holdsworth,

2006).

The MFC format allows to prevent, or at least reduce, some of the response biases that

occur with rating scales (Brown & Maydeu-Olivares, 2018a). From a theoretical perspec-

tive, uniform response biases, such as halo effects or acquiescence, are avoided, because the

relative preferences remain the same if the preferences for all items increase to the same

extent (Brown et al., 2017). This has been confirmed empirically: Halo effects (Brown et

al., 2017) were reduced with an MFC as compared to a rating scale format. Furthermore,

biases that arise from the use of rating scales, such as response styles, cannot occur (Brown

& Maydeu-Olivares, 2018a).

The MFC format can prevent faking when the items within blocks are matched for

their (social) desirability, as was first proposed by Edwards (1953). This is based on the

assumption that respondents who want to fake would first try to rank the items according

to how desirable they are. If this is not possible, because all items are equally desirable, they

give an honest response instead (Berkshire, 1958; Gordon, 1951). Figure 3 shows examples

of blocks with all socially desirable and all socially undesirable items. Empirically, faking

was reduced with an MFC format, resulting in mean increases of only .06 SD on trait

scores in a meta-analysis (Cao & Drasgow, 2019).
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Figure 2: Number of new articles published in journals listed in the Web of Science Core
Collection including the keywords "multidimensional" and "forced-choice" in any entry.

To address the issue of validity more directly, it is important to compare how well MFC

and rating scale formats perform at predicting external constructs and criteria. Overall,

similar (Lee et al., 2018; Wetzel & Frick, 2020; Zhang et al., 2019) or higher (Bartram,

2007; Salgado & Táuriz, 2014; Watrin et al., 2019) construct and criterion validities were

observed with an MFC as compared to a rating scale format. Differences in validities

probably depend on how the MFC responses were scored and on the type of criteria

investigated (Wetzel et al., 2020). Moreover, the assessed constructs might slightly differ

between the response formats: When the same items were presented in an MFC versus

a rating scale format, correlations between traits slightly changed (Guenole et al., 2018;

Wetzel & Frick, 2020). This could be explained by item interactions that occur in the MFC

format: Item properties can change when items are presented together in blocks (Lin &

Brown, 2017).

1.2 Challenges in the Construction of Multidimensional

Forced-Choice Tests

Constructing MFC tests is a more complex endeavor than constructing rating scale tests,

because the items must be combined into blocks. To give an example, it is usually preferable

to have the same number of items per trait so that reliability is comparable. In a test

measuring five traits with block size three, there are
(

5

3

)

= 10 possible combinations of

traits. If we increase the number of traits to 15, this yields
(

15

3

)

= 455 combinations. How
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Figure 3: Examples of socially undesirable (left) and socially desirable (right) multidi-
mensional forced-choice blocks from the Big Five Triplets (Wetzel & Frick, 2020).

the items are combined affects the properties of the test, both in terms of measurement

and response behaviors. In the following, I outline three important aspects of MFC test

construction that motivated the present research.

Normativity

When trait scores can be compared between different persons they are called norma-

tive. The opposite of normative is ipsative. Ipsative scores arise when the sum of scores

across different traits (or attributes) is constant across persons (Clemans, 1966). It follows

mathematically from this property that correlations with and between ipsative scores and

correlation-based analyses, such as factor analysis, are distorted (Clemans, 1966; Hicks,

1970). MFC tests scored with classical test theory (CTT) yield fully ipsative scores when

all items within blocks are ranked (ranking instruction) and all items are keyed in the

same direction. To illustrate, for blocks of size B = 3, respondents assign ranks 1 to 3 to

the items, which sum to 6. Across K blocks and all traits, this results in a total sum score

of K × 6 for each respondent. MFC tests scored with CTT yield partially ipsative scores

when items are keyed in different directions or when the instruction is to select only some

items. With partially ipsative scores, there is some variance in the total score. However,

they are said to retain characteristics of ipsative scores (Hicks, 1970).

Item response theory (IRT) models, however, allow deriving normative scores from MFC

data (Brown, 2016; Brown & Maydeu-Olivares, 2011, 2013; McCloy et al., 2005). In IRT,

normative scores can be derived when the scale origin for the latent traits is identified.
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For this to be the case, the test design must meet certain conditions, which depend on the

item type (Brown, 2016). There are two common item types in personality psychology: For

dominance items, the preference for an item increases monotonically with increasing trait

levels. This idea is expressed, for example, in a linear factor model. For ideal-point (or

unfolding) items, the preference for an item is highest at one point of the trait continuum

(the item location) and decreases with increasing distance from it. To identify the scale

origin for MFC tests with dominance items, the matrix of factor loadings for pairwise

comparisons must be full-rank. With ideal-point items, the general conditions have not

been examined so far. In the special case of equal weights for all items (i.e., all items

correlate with the trait to the same extent), the item locations must differ between blocks.

The results of simulation studies complement these theoretical conditions: With domi-

nance items, trait scores showed ipsative properties and trait recovery was decreased when

all items were keyed in the same direction, that is, when all factor loadings were positive

(Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019; Schulte et al., 2020). The same was

found for ideal-point items with equal locations (Hontangas et al., 2015; Hontangas et al.,

2016). Hence, MFC tests should be scored and constructed in such a way that normative

trait scores can be derived.

Item Matching and Fakability

If the test should reduce faking, the items within blocks must be matched for desirability.

When matching items, several issues should be considered: First, an estimate of item

desirability is needed. Some researches use item intercepts or differences in item intercepts

between honest responding and faking instructions for this (e.g., Lee et al., 2018; Ng et al.,

2020). Others use ratings of item desirability (e.g., Heggestad et al., 2006; Jackson et al.,

2000). Second, to combine items of equal desirability requires defining which differences

in item desirability estimates are considered negligible. If the differences are too large,

the blocks might still be fakable. A recent study showed that agreement on which rank

order was desirable was higher with larger differences in item desirability (Hughes et al.,

2021). Third, item desirability might differ between assessment contexts. For example,

desirability ratings for agreeableness items differed between the scenarios of applying for

a job as a manager versus as a nurse (Pauls & Crost, 2005). Fourth, item interactions

can occur in the form of item desirability changing in the context of item blocks because

the relative response format might trigger more fine-grained distinctions of desirability

(Feldman & Corah, 1960; Hofstee, 1970).

Reliability

A further issue to consider when constructing MFC tests is reliability. With the same

number of items, MFC tests are theoretically less reliable than rating scale tests. This
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can be illustrated by recoding rankings into binary outcomes of pairwise comparisons

(Table 1). As can be seen from Table 1, a block of size B = 3 is approximately equally

informative as the same three items presented in a dichotomous true-false format. More

generally, a block of size B yields B(B−1)/2 pairwise comparisons. In comparison, rating

scales with C categories yield C − 1 pieces of information per item. Moreover, binary

outcomes of pairwise comparisons involving the same item, e.g., between items 1 and 2

and between items 1 and 3, are locally dependent given the latent traits. Thus, for block

sizes B > 2, information is slightly lower than it would be expected if the binary outcomes

were independent (Brown & Maydeu-Olivares, 2011, 2018b; Yousfi, 2018). Hence, achieving

sufficient levels of reliability is an important issue in MFC test construction.

Table 1: Example of recoding rankings into binary outcomes

Item Content Ranking Comparison Outcome

i1 I am emotionally stable. 1 i1 > i2 1
i2 I like to explore new things 3 i1 > i3 1
i3 I am always prepared. 2 i2 > i3 0

Note. This is a sample block from the Big Five Triplets (Wetzel & Frick, 2020).

Beyond the specific aspects described, the preceding overview reveals some overarching

issues that research on the MFC format should address: First, it is important to inves-

tigate which (item) properties actually matter for the resulting trait scores. Second, in

order to account for potential item interactions, the block level should be modeled. And

third, methods for the construction of MFC tests should be developed that allow all rel-

evant aspects to be considered simultaneously. The three manuscripts in this thesis each

incorporate one or more of these issues.

1.3 Item Response Models for Multidimensional

Forced-Choice Tests

Following Brown (2016), IRT models for MFC tests can be classified according to three

axes: (a) whether block sizes B > 2 can be modeled, (b) whether the model assumes a

dominance or an ideal-point relationship between item and trait and (c) whether the deci-

sion model for choice behavior is based on the ideas of Thurstone (Thurstone, 1927, 1931)

or Bradley and Terry (Bradley, 1953; Bradley & Terry, 1952). Thurstonian models imply

a probit link function whereas Bradley-Terry models imply a logit link function. As to my

knowledge, two additional models have been proposed since the work by Brown (2016): The

multi-unidimensional pairwise preference two-parameter logistic model (MUPP-2PL, Mo-

rillo et al., 2016), which can be classified as a Bradley-Terry model for dominance items

and block size B = 2 and the generalized graded unfolding model for ranks (GGUM-
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RANK, Lee et al., 2019), which can be classified as a Bradley-Terry model for ideal-point

items and any block size, with a ranking instruction.

The present research employs the Thurstonian IRT model (Brown & Maydeu-Olivares,

2011), which is a Thurstonian model for dominance items and any block size, for two

reasons: First, the Thurstonian IRT model is the most broadly applicable in terms of

response formats and ranking instructions. Second, it is a model for dominance items

which are currently most common in personality psychology (Brown & Maydeu-Olivares,

2010). Moreover, research interest in this model is currently high: Half of the 28 articles

about this model were published in the past two years (2019 and 2020), as evidenced

by a search for articles including the keywords "Thurstonian item response theory" or

"Thurstonian IRT" in any entry published in journals listed in the Web of Science Core

Collection after the introduction of the Thurstonian IRT model in 2011.

Thurstonian Item Response Model

In the Thurstonian IRT model, there is a latent value underlying each item response called

utility. The utility t of item i for person j is a linear function of a latent trait ηj , weighted

with an item loadings λi and having an intercept µi and an error term εij :

tij = µi + λiηj + εij (1)

The latent traits are assumed to follow a multivariate normal distribution: H ∼

N(MH,ΣH). The errors follow independent normal distributions: εi ∼ N(0, ψi). Accord-

ing to Thurstone’s Law of Comparative Judgment (Thurstone, 1927, 1931), respondents

rank the items within each block according to the magnitude of their utilities.

The Thurstonian IRT response probabilities are usually expressed for binary outcomes

of pairwise comparisons (Table 1) instead of rank orders, which enabled model estimation

in the first place (Maydeu-Olivares, 1999; Maydeu-Olivares & Brown, 2010). The response

probability for outcome l comparing items i andm that measure traits c and d, respectively,

can be expressed as:

P (ylj = 1|ηcj , ηdj) = Φ





−γl + λiηcj − λmηdj
√

ψ2

i + ψ2
m



 (2)

where Φ(x) denotes the cumulative standard normal distribution function evaluated at x.

Typically, instead of separate intercepts µi and µm for the items, a threshold −γl for the

outcome is estimated (i.e., the restriction γl = µi − µm is not imposed).

Since binary outcomes of pairwise comparisons involving the same item are locally de-

pendent given the latent traits, the same applies to the response probabilities in Equation

2. Consequently, if these response probabilities are multiplied, the likelihood of the response
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pattern is overestimated for block size B > 2. Therefore, instead of using a likelihood-based

approach, the item parameters and trait correlations are usually estimated using limited

information methods and a two-step procedure. First, the tetrachoric correlations and

thresholds for the binary outcomes are estimated. Second, the results from the first step are

used as input to limited information methods such as unweighted or diagonally weighted

least squares, accounting for error covariances of the outcomes. For a tutorial on how to

estimate Thurstonian IRT models in Mplus (Muthén & Muthén, 1998–2017) using this

procedure, see Brown and Maydeu-Olivares (2012). Trait scores are then estimated given

the previously obtained item parameters and trait correlations in a maximum-likelihood

approach, such as maximum a posteriori (MAP) or weighted likelihood estimation (WLE).

Thus, for trait estimation, the local dependencies for block size B > 2 are neglected. This

yields unbiased point estimates but underestimated standard errors and overestimated

reliability (Brown & Maydeu-Olivares, 2011; Yousfi, 2018), although the extent of the

reliability overestimation was deemed negligible (Brown & Maydeu-Olivares, 2011).

Alternatively, following Yousfi (2018), the response probability for the full rank order

can be expressed by first sorting vectors of utilities tk and of error variances ψ2

k within

each block k in descending order, according to the selected rank order r. For example,

if the rank order 3-1-2 was selected by person j, we would sort the vector of utilities

as tjk =
(

t3j t1j t2j

)′
. For estimation, differences between consecutive utilities are

calculated. In the example, the area where t3j > t1j > t2j is equivalent to the area where

t3j − t1j > 0 ∩ t1j − t2j > 0. The differences between consecutive utilities are calculated

with a comparison matrix A. For example, if block size B = 3:

AB=3 =

(

1 −1 0

0 1 −1

)

(3)

Then, the probability to select rank order r is the area under the multivariate normal

density where each difference between two consecutive utilities Atjk is positive:

P (Xjk = r) =

∫ ∞

0

∫ ∞

0

· · ·

∫ ∞

0

N
(

Atjk(r),Aψ
2

k(r)
)

dAtjk(r) (4)

The multiple integral in Equation 4 can be numerically approximated with methods de-

veloped by Genz (2004) and Genz and Bretz (2002). For equivalent variants of expressing

the response probability, see Maydeu-Olivares (1999). To compute Equation 4 from esti-

mated item parameters, the item intercepts have to be estimated or the restriction on the

thresholds for the binary outcomes must be imposed.

To illustrate the effect of neglecting local dependencies, I conducted a small simulation

on standard error accuracy for block size B = 4, because the effect of local dependen-

cies increases with block size. Traits and their observed standard errors were estimated
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based on the formulation neglecting local dependencies (Equation 2) and the true response

probability (Equation 4). The test design was identical to the condition with block size

B = 4, five traits and 1/2 mixed keyed comparisons in Frick et al. (2021). Besides that,

the simulation design was identical to simulation study 1 on standard error accuracy in

Frick (2021a) for the condition with high loadings and the short test. Figure 4 shows that

when neglecting local dependencies, standard errors were underestimated both for the

maximum likelihood (ML) and the MAP estimator. The bias was smaller for extreme trait

levels and it showed high variance for the ML estimator in these areas. This might have

occurred because the estimation procedure and the box constraints were not optimized for

the formulation neglecting local dependencies.

In comparison to the scale of the latent traits (SD = 1) and the range of true SE s

(Figure 5), the bias of observed SE s was small but not negligible. As expected, the bias of

the point estimates of the latent traits was comparable between the true likelihood and the

one neglecting local dependencies (Figure 5). When neglecting local dependencies, it was

slightly higher for the MAP estimator, because the likelihood is given too much weight in

relation to the prior (Yousfi, 2020).
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Figure 4: Bias of observed standard errors in the simulation on local dependencies. Shaded
areas show ±1SD around the mean (line). MB = Mean Bias, RMSE = Root Mean Square
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Figure 5: Trait recovery and empirical SE s in the simulation on local dependencies.
Shaded areas show ±1SD around the mean (line). SE = empirical Standard Error, MB
= Mean Bias, RMSE = Root Mean Square Error, true = true likelihood, dependent =
likelihood neglecting local depencencies, ML = Maximum Likelihood, MAP = Maximum
a Posteriori.

1.4 Overview of Manuscripts

The present research addresses challenges in MFC test construction by investigating and

developing IRT methods for this response format, focusing on the issues of normativity,

fakability, and information. Although I used the Thurstonian IRT model throughout the

three manuscripts, some findings transfer to and some methods could be applied to other

IRT models for MFC tests as well. In this synopsis, I highlight where this is the case.

Since the theoretically derived conditions for normativity differ from the results of sim-

ulation studies, in the first manuscript (Frick et al., 2021), we conducted an extensive

simulation study on this issue. We investigated the interplay of various test design fac-

tors with normativity, eliminated bias in item parameters as a potential confound, and

compared Thurstonian IRT trait recovery to that from CTT scoring and from rating scale

and true-false formats. The empirical counterpart of normativity/ipsativity is the relative

response process. Therefore, the simulation study was complemented with an empirical

study investigating the effect of a relative versus an absolute response process on validity

while controlling for reliability.

In light of item interactions within blocks and the variety of methods to assess item

desirability and to match items, in the second manuscript (Frick, 2021b), I developed a

mixture IRT model that allows to assess fakability on the block level—the Faking Mixture

model. As a post-hoc method, this model accounts for item interactions and is a useful

complement to a priori methods of matching. The model results can be used to remove
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or modify blocks so that the fakability of the whole test is reduced. Moreover, to my

knowledge, this is the first IRT model for the MFC format that can capture response

processes in addition to those triggered by the content trait.

Given that reliability with an MFC format is usually lower than with conventional

rating scales, it is essential to construct MFC test in a way that maximizes reliabil-

ity/information. So far, information in Thurstonian IRT models was calculated for binary

outcomes which comes with empirical, practical and statistical disadvantages. Therefore, in

the third manuscript (Frick, 2021a), I proposed methods to estimate and summarize Fisher

information on the block level (block information) and investigated their performance in

three simulation studies. Moreover, I combined algorithms for automated block selection

with information summaries from the optimal design literature. These algorithms allow to

automatically assemble MFC tests with maximum reliability while considering restrictions

on test design such as item keying or trait balancing.
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2 Investigating the Normativity of Trait

Estimates from Multidimensional

Forced-Choice Data

Frick, S., Brown, A. & Wetzel, E. (2021). Investigating the normativity of trait estimates

from multidimensional forced-choice data. Multivariate Behavioral Research. Ad-

vance online publication. https://doi.org/10.1080/00273171.2021.1938960

2.1 Simulation Study

Motivation

The first aim of the simulation study was to examine Thurstonian IRT trait recovery under

realistic conditions. An ideal MFC test would have the same number of items per trait.

Item keys would be structured such that at least half of the pairwise comparisons across

the test would be between items keyed in different directions. Previous simulation studies

examined these ideal designs and, in addition, all positively keyed items (Brown & Maydeu-

Olivares, 2011; Bürkner et al., 2019; Schulte et al., 2020). However, ideal test designs might

not be representative of existing tests. For example, the Big Five Triplets (Wetzel & Frick,

2020) are an MFC test with 20 blocks and block size B = 3 measuring the Big Five traits.

All blocks are matched for desirability. However, item matching resulted in unbalanced

numbers of items per trait: There are 16 neuroticism, 13 extraversion, ten openness, seven

agreeableness, and 14 conscientiousness items. All blocks except one contain at least one

negatively keyed item. However, when neuroticism is defined in the opposite direction,

as emotional stability, the item keys obviously change. Then, there are only four blocks

containing a negatively keyed item. From previous simulation studies, it is unclear to what

extent deviations from ideal test designs affect trait recovery.

The second aim of the simulation study was to investigate Thurstonian IRT trait recov-

ery with unbiased item parameters. Previous studies reported convergence issues when all

items in the test were positively keyed (Brown et al., 2017; Bürkner et al., 2019; Guenole

et al., 2018). Although it is possible that the matrix of factor loadings for pairwise compar-

isons is of full rank with all positively keyed items, empirical underidentification might still
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occur. Empirical underidentification can lead to bias in item parameters which propagates

to the trait scores. Therefore, we examined trait recovery with item parameters fixed to

their true values.

The third aim of the simulation study was to compare Thurstonian IRT trait recovery

to that from (partially) ipsative CTT scoring, from rating scales and from true-false data.

Previous comparisons between those scoring methods and response formats used empirical

data (Brown & Maydeu-Olivares, 2013) or did not include single-stimulus formats (e.g.,

rating scale or true-false formats; Hontangas et al., 2015; Hontangas et al., 2016). We kept

the amount of information across MFC block sizes approximately equal to the true-false

version. To accomplish this, the number of pairwise comparisons over the test was kept

equal for different block sizes, while in turn the number of items varied. In this way, we

could investigate the effect of local dependencies because any reliability differences between

block sizes would be attributable to local dependencies.

Methods

In the simulation study, the following factors were varied and completely crossed: Number

of traits, trait correlations, item keying, number of items per trait, and block size. MAP

estimates for the latent traits were obtained based on the true item parameters and with

the true trait correlations as prior covariances. Trait recovery was evaluated for single

traits and for sums and differences of two traits each. Further, bias in mean correlations

was calculated. The bias in mean correlations can be regarded as an indicator to ipsativity

(Hicks, 1970).

Results

Figure 6 shows the correlation between true and estimated traits, averaged across traits,

block sizes and numbers of items per trait. Regarding test design, positively keyed items

were found to be detrimental to trait recovery, as, for example, evidenced by lower corre-

lations between true and estimated traits in Figure 6. With positively keyed items, trait

recovery was lower for five as compared to 15 traits and for positive as compared to mixed

positive and negative trait correlations or uncorrelated traits (Figure 6). The other factors

of test design, namely, unequal numbers of items per trait, varying levels of item keying

and block size, had negligible effects on trait recovery. The mean trait correlation was

negatively biased, indicating ipsativity (Clemans, 1966; Hicks, 1970) due to the condition

with all positively keyed items. Similarly, the recovery of sums of traits (i.e., absolute trait

levels) was affected by item keying, but not that of differences of traits (i.e., relative trait

levels). Thus, the lower recovery with all positively keyed items could be attributed to

ipsativity. Reliability was comparable to the true-false format, but lower than that of rat-

ing scales (Figure 6), as to be expected by the amount of information. With CTT scoring
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of MFC responses, recovery was markedly worse and ipsativity was present in all condi-

tions besides the one with uncorrelated traits and half of pairwise comparisons between

differently keyed items, which was ideal for CTT scoring.
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Figure 6: Mean correlation between true and estimated traits (i.e., r(η, η̂)) by condition.
The results were averaged across traits, across block sizes two to four and across equal
and unequal numbers of items per trait. MFC = multidimensional forced-choice format;
IRT = item response theory scoring, CTT = classical test theory scoring, mixed = mixed
positive and negative trait correlations, positive = all positive trait correlations, 5 = 5
traits, 15 = 15 traits.

2.2 Empirical Study

Motivation

The empirical study compared construct and criterion validity between the MFC format

with block size three and the true-false format. The true-false format was chosen as a

comparison because the amount of information is comparable to an MFC format with

block size three (see also Table 1). Moreover, the true-false format is free from response

styles arising from the use of rating scales such as midpoint and extreme responding.

Assuming that a relative response process leads to higher differentiation between behaviors

(Kahnemann, 2011), we expected validities to be higher in the relative (MFC) than in the

absolute (true-false) response format.
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Methods

N = 999 respondents filled out both an MFC and a true-false version of the Big Five

Triplets (Wetzel & Frick, 2020), with an interval of two weeks in between and in coun-

terbalanced order. Further, they answered questions on criterion variables focusing on the

areas of employment (e.g., ability to supervise people at work; yes/no), social (e.g., hav-

ing Facebook; yes/no), health (e.g., exercising regularly (at least once a week); yes/no)

and relationships (e.g., being married; yes/no). Further, the constructs quality of life,

satisfaction with life and depression/mental health were assessed with the World Health

Organization Quality of Life BREF (WHOQOL group, 1996, WHOQOL-BREF, ), the

Satisfaction with Life Scale (SWLS; Diener et al., 1985) and the Center for Epidemiologic

Studies-Depression Scale short form (SWLS; Cole et al., 2004), respectively. Based on

meta-analyses and studies with large samples, we formulated and preregistered which Big

Five traits and constructs/criteria were expected to correlate and only tested for differ-

ences in these correlations between MFC and true-false. Each construct (modeled with a

graded response model; Samejima, 1969) and each criterion was regressed on the Big Five

latent traits, separately for the MFC (modeled with the Thurstonian IRT model) and the

true-false version (modeled with the two-parameter normal ogive model).

Results and Discussion

Figure 7 shows correlations with the constructs and with exemplary criteria. For all con-

structs, the differences in correlations between MFC and true-false were small to medium

and in favor of true-false. For the criteria, all differences in correlations were negligible,

besides one statistically insignificant difference in favor of MFC. Thus, our expectation of

higher differentiation in the MFC format leading to higher validity was not confirmed. Pos-

sible explanations for this include: Method biases common to absolute response formats,

such as acquiescence, might have increased the correlations between the Big Five traits

assessed with the true-false format and constructs assessed with rating scales. Moreover,

it is unclear which criteria actually value differentiation, because previous research was

done with absolute response formats that allow to compensate for low levels on one trait

with high levels on another trait. Last, the MFC format might not always trigger deeper

retrieval. For example, in a recent think-aloud study, sometimes the response process could

be sufficiently described by absolute evaluations of the items (Sass et al., 2020).
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3 Modeling Faking in the Multidimensional

Forced-Choice Format - The Faking

Mixture Model

Frick, S. (2021). Modeling faking in the multidimensional forced-choice format

– The Faking Mixture model. Psychometrika. Advance online publication.

https://doi.org/10.1007/s11336-021-09818-6

3.1 Motivation

In this manuscript, I introduced the Faking Mixture model, an IRT model for faking in

MFC tests. Previous modeling approaches are limited in their usefulness for the MFC

format or they cannot be applied to it. First, previous modeling approaches for faking in

MFC tests focus on changes in trait scores, on the test level (e.g., Pavlov et al., 2019;

Wetzel et al., 2021). The Faking Mixture model is the first one that allows to estimate

the fakability of individual MFC blocks. Hence, its results can inform modifications of

the test, such as removing items or blocks, with the aim of reducing fakability. Second,

to apply the IRT models currently available for faking or socially desirable responding in

rating scales (Böckenholt, 2014; Leng et al., 2019), it is necessary to know a priori which

response options are desirable. In the MFC format, response options are rank orders.

However, responses to MFC blocks are needed in order to know which rank orders are

more desirable, because the relative response process might change evaluations of item

desirability (Feldman & Corah, 1960; Hofstee, 1970). By modeling responses on the block

level, the Faking Mixture model can capture such item interactions. Moreover, the Faking

Mixture model reflects assumptions and empirical findings about the process of faking,

some of which are specific to the MFC format. This will be outlined in the following part.

3.2 Model Properties

Respondents do not necessarily fake all items (MacCann et al., 2011). But when they fake

they might not even consider their content traits (Robie et al., 2007). This is captured

in the Faking Mixture model by conceptualizing responses in a high-stakes situation as a
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mixture of responses based on the content trait and faked responses (Figure 8).

Block

faking

honest

1-3-2

1-2-3 

2-3-1

2-1-3

3-2-1
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1 − 𝜙(𝜃𝑗 + 𝛼𝑘)
exp(𝛽𝑘𝑟)σ𝑢=1𝑅 exp(𝛽𝑘𝑟)
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1-3-2

1-2-3 

2-3-1

2-1-3

3-2-1

3-1-2

Figure 8: The Faking Mixture model depicted as a multinomial processing tree model.

For each person j and each block k, there is a probability to fake on this block P (Fjk = 1)

or to respond based on the content traits P (Fjk = 0). In both cases, faking (Fjk = 1) or

responding based on the content traits (Fjk = 0), there is a probability for each rank order

r to be selected. Thus, the probability of observing rank order r for person j on block k

is the sum of these two response probabilities:

P (Xjk = r) = P (Fjk = 1)P (Xk = r|Fjk = 1) + P (Fjk = 0)P (Xjk = r|Fjk = 0) (5)

Not all respondents fake when they are in a high-stakes situation (MacCann et al.,

2011). But a respondent highly motivated to fake might even do so on closely-matched

blocks. To capture this in the Faking Mixture model, a faking tendency θj is introduced.

The probability of faking a block increases both with the person’s faking tendency θj and

the block fakability αk:

P (Fjk = 1) = Φ (θj + αk) (6)

where Φ(x) denotes the cumulative standard normal distribution function, evaluated at x,

and Φ−1 its inverse.

The probability to select a rank order when faking P (Xk = r|Fjk = 1), called rank
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order probability, is modeled by rank order parameters βkr via the softmax function (like

a multinomial IRT model without a person parameter):

P (Xk = r|Fjk = 1) =
exp(βkr)

∑R
u=1

exp(βku)
(7)

The rank order probabilities are constant across persons in order to reflect item desir-

abilities, which depend on the situation but not on the person. (Therefore, the person

subscript j is dropped.) More precisely, the rank order probabilities reflect differences in

item desirabilities because they are not linked to the individual items. Further, they are

not related within traits. This facilitates the estimation of the rank order parameters while

at the same time being flexible to account for differential desirabilities of the items and

traits in the context of item blocks.

The block fakability αk is obtained from the sum of squares of the rank order probabil-

ities across all R = B! rank orders:

αk = Φ−1

(

R
∑

r=1

(P (Xk = r|Fjk = 1)−M [P (Xk|Fjk = 1)])2
)

(8)

Thus, the more respondents agree about which rank order to prefer when faking, the

more likely they are to fake on this block. This captures the idea underlying matching in

the MFC format, namely, that respondents are more likely to base their response on their

own content trait levels when items are closely-matched and vice versa (Berkshire, 1958;

Gordon, 1951).

The response probabilities when responding honestly P (Xjk = r|Fjk = 0) follow the

Thurstonian IRT model as formulated in Equation 4. Currently, there is no computer

software availabe that can estimate both the Thurstonian IRT model for rank orders and

the within-block mixture of the Faking Mixture model at once. Therefore, the response

probabilities when responding honestly are estimated with low-stakes data from the same

respondents and treated as fixed in the estimation of the Faking Mixture model. The

parameters of the Faking Mixture model are estimated in a Bayesian modeling framework

(for details, see Frick, 2021b). Note, that the Faking Mixture model is theoretically not

limited to the Thurstonian IRT model or to the MFC format; the response probabilities

when responding honestly could potentially follow any other IRT model.

3.3 Simulation on Parameter Recovery

I conducted a simulation study to examine how well the parameters of the Faking Mixture

model could be recovered. The simulation study investigated possible conditions from

minimum to extreme faking and fakability, varying the faking trait mean and variance,
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and the variance of the rank order parameters (i.e., the mean fakability across the test).

The results showed that the parameters were generally well recovered. Both the faking trait

θj and the rank order parameters βkr were recovered best when they had a high variance.

In addition, the faking trait θj was recovered better when its mean was medium, so that

there were no floor or ceiling effects. The rank order parameters βkr were recovered better

when the faking trait mean was high, because this allowed to observe more instances of

faking.

3.4 Empirical Validation

For the empirical validation, I re-analyzed a dataset from Wetzel et al. (2021). In this

dataset, N = 1244 respondents were randomly assigned to either the original version of

the Big Five Triplets (Wetzel & Frick, 2020), which is matched for social desirability, or a

version in which one item in seven triplets was replaced by a clearly more desirable one.

I fitted the Faking Mixture model to (a) the matched version and (b) to both versions

allowing the rank order parameters for the different items to differ between groups and

estimating differences in the block fakability parameters αk.

Applying the Faking Mixture model to the matched version showed that the blocks

had intermediate to high fakability. Figure 9 shows the rank order probabilities for two

exemplary blocks. In the matched version, for Block 3, it was undesirable to rank the

item "I am often sad" first, whereas the preferences for the other four rank orders were

approximately equal. For Block 5, ranking the item "I love big parties" last was desirable,

so that the probabilities were high only for the two rank orders where this was the case.

Therefore, Block 5 was more fakable than Block 3. Comparing the results for the mixed and

the matched version showed that the mixed blocks were more fakable than the matched

blocks (in all seven cases). Moreover, the clearly more desirable items were preferred when

faking. For example, when replacing "I act without thinking" with "I treat my belongings

with care", the probabilities for rank orders in which this item was ranked first increased

(Figure 9). Indeed, for all mixed blocks, the rank order probabilities were different from

zero only for two or three rank orders, always including the ones in which the highly

desirable item was ranked first.

Thus, this re-analysis validated the Faking Mixture model by showing that mixed blocks

were more fakable than matched blocks and that more desirable items were preferred in

mixed blocks. Moreover, it showed that matching alone was not sufficient, because even

the matched blocks were still fakable. Probably, item desirability was evaluated differently

in the context of item blocks. Hence, the Faking Mixture model is worth using, because it

can capture such item interactions.
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4 Block Information in the Thurstonian

Item Response Model

Frick, S. (2021). Block information in the Thurstonian item response model. Manuscript

submitted for publication to Psychometrika.

4.1 Motivation

Currently, information in the Thurstonian IRT model is calculated for binary outcomes of

pairwise comparisons (Brown & Maydeu-Olivares, 2011, 2018b). This procedure has several

disadvantages: First, possible item interactions are not fully accounted for. Indeed, some

authors reported that item properties differed depending on which items were combined

to blocks (Lin & Brown, 2017; Wetzel & Frick, 2020). Second, for a test constructor, it

is unclear which item to select if the item properties differ depending on which items are

compared. Third, the information for binary outcomes of pairwise comparisons is locally

dependent for block sizes B > 2 (Brown & Maydeu-Olivares, 2011, 2018a). Thus, test

information and estimates of standard errors and reliability based on pairwise comparisons

are biased. Therefore, I argue that information should be computed on the block level

instead (henceforth called block information).

Yousfi (2018) formulated the response probability on the block level (Equation 4) and

proposed to estimate it via numerical integration (using methods developed by Genz, 2004;

Genz & Bretz, 2002). He investigated how this formulation can be used to estimate the

person parameters without local dependencies and showed that it yields unbiased Fisher

information on the test level (Yousfi, 2020). However, to my knowledge, this procedure

was not used to compute Fisher information on the block level so far.

Fisher information for a block and a single rank order r is obtained as the negative of

the Hessian of the response probability P (Xjk = r) in Equation 4:

Ikr = −H (P (Xjk = r))) (9)

where H(f) denotes the Hessian of function f . Expected block information Ik is obtained
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by weighting with the probability for all R = B! possible rank orders:

Ik =
R
∑

r=1

IkrP (Xjk = r) (10)

Block information in Thurstonian IRT models comes with several challenges: First, there

is no closed-form expression for it, so that numerical approximation must be used, both for

the response probability (Equation 4) and for its hessian (Equation 9). Second, because

the Thurstonian IRT model is only identified with multiple blocks (Brown, 2016), block

information is not invertible. Third, block information is a matrix, because in an MFC

test, each block measures multiple traits. Information in matrix form again presents a

challenge for test constructors.

To address these challenges, first, the accuracy of the estimation procedure was eval-

uated in several simulation studies. Second, information summaries were proposed that

transform the block information matrix into a scalar or vector. Third, I examined how

these information summaries can be used for automated test assembly (ATA). In ATA,

items or blocks are selected from a pool to maximize some criterion (in this case, informa-

tion) and to simultaneously fulfill certain restrictions on test design, such as test length,

item keying, trait balancing, or fakability (for an introduction to ATA, see van der Linden,

2005). Thus, ATA can be used to integrate the diverse aspects of MFC test construc-

tion investigated in the three manuscripts of this thesis. Several types of algorithms are

available for ATA. Therefore, I explained which information summaries and algorithms

can be combined. Last, in two ATA simulations, it was investigated how the information

summaries perform in test assembly. For this purpose, each information summary was

combined with an exemplary algorithm and their performance was compared.

4.2 Block Information Summaries

The first information summary proposed was called block R2. Block R2 is computed from

the sampling variances of traits based on the test (or pool) including this block σ2T and

excluding this block σ2
T\k:

R2

k = 1−
σ2

T

σ2

T\k

(11)

Thus, block R2 summarizes block information on the level of traits, in the familiar R2

metric, and relative to the set of reference blocks T . Figure 10 shows an example of how

block R2 varies across trait levels for a block from a simulated test measuring five traits

with 20 blocks of size B = 3.

The other information summaries proposed are so-called optimality criteria originating
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Figure 10: Block R2 for Trait 5 from a simulated test block. Items 1-3 measured traits
2, 3, and 5, respectively. The simulated item parameters were µ1 ≈ 0.73, µ2 ≈ −0.89,
µ3 ≈ −0.62, λ1 ≈ 0.92, λ2 ≈ −0.90, and λ3 ≈ 0.94.

from the optimal design literature. They summarize an information matrix into a scalar,

that is, for block information, across traits. Optimality criteria have been used for ATA

and for computerized adaptive testing. For example, Debeer et al. (2020) investigated how

well linear approximations to A- and D-optimality perform in multidimensional ATA. A-

and D-optimality performed best in a simulation of computerized adaptive testing in which

items were adaptively combined to MFC blocks of size B = 2 (Lin, 2020). Therefore, A-

and D-optimality were also proposed to be used as block information summaries in this

manuscript. A-optimality is the sum of the sampling variances (i.e., the trace of the inverse

of the information matrix) and D-optimality is the determinant of the information matrix.

To calculate A- and D-optimality, the information matrix must be invertible. As previously

explained, for the Thurstonian IRT model, this is the case only for multiple blocks (i.e.,

for test information).
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If an ATA problem can be framed as a (constrained) linear optimization problem, the op-

timal solution can be found by mixed integer programming (MIP; Debeer et al., 2020; van

der Linden, 2005). A- and D-optimality are not linear (additive) across blocks and therefore

cannot be used in MIP algorithms, but T-optimality can. For this reason, I additionally

proposed to use T-optimality as a block information summary, although it performed worst

in the computerized adaptive testing simulation by Lin (2020). T-optimality is the trace

of the information matrix. Thus, it can be computed on a non-invertible matrix, but it is

not affected by trait correlations.

4.3 Block Information for Test Construction - Simulation

Studies

The first simulation study examined the accuracy of standard errors (SE s). Three types

of SE s were computed: Empirical SE s served as true SE s. Empirical SE s were defined as

SDs of MAP estimates across responses for the same trait levels (persons). Expected and

observed SE s were based on Fisher information. To compute expected SE s, the Hessian

for each rank order was weighted by its probability (Equation 10). To compute observed

SE s, the Hessian was calculated only for the observed rank orders (Equation 9). Across

blocks, this is equivalent to the Hessian at the likelihood of the trait estimate. Both ML

and MAP estimates were obtained. Additionally, the size of factor loadings and test length

were varied. The results showed that empirical SE s were smaller for the MAP estimator

than for the ML estimator, especially with small loadings. However, this gain in accuracy

was not detected by the information-based (expected and observed) SE s, i.e., they were

overestimated for the MAP estimator with small loadings. Overall, expected and observed

SE s were similarly accurate. Hence, if block-level information is not needed, researchers

can obtain observed SE s directly with the trait estimate and save computational time and

resources.

Since A- and D-optimality can only be computed for multiple blocks, I conducted two

ATA simulations, one on test construction and one on test extension. When extending

a test, information for multiple blocks is already available and therefore it is invertible.

Note, however, that as few as three blocks were sufficient in the current simulations. In

the simulation on test construction, the target information curve (flat vs. proportional

to information in the pool) and restrictions (only test length vs. additional restrictions

on trait balancing and item keying) were varied. The performance of T-optimality was

compared to that of block R2 and the mean of loadings within a block (mean loadings).

Mean loadings represent the procedure of using the size of factor loadings as the main

criterion for item or block selection. Block R2 was averaged across traits to obtain a

scalar. For the simulation on test extension, A- and D-optimality were added. Developing
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a sophisticated algorithm for ATA with a non-linear optimization criterion would require

a separate research project (e.g., Kreitchmann et al., 2021; Olaru et al., 2015). Therefore,

A- and D-optimality were combined with a simple (so-called greedy) algorithm and the

condition with more complex restrictions on test design was dropped. For details on the

algorithms, see the main manuscript (Frick, 2021a).

The results of both ATA simulations showed that all criteria performed better than

random block selection, but on par with each other. Therefore, the decision for an infor-

mation summary and an ATA algorithm should be based on other aspects such as whether

trait-level information is of interest or how accurately a target information surface should

be approximated. In sum, the three simulation studies showed that and illustrated how

block information can be used for test construction.
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Figure 11: Correlation between true and estimated traits (r(η, η̂)) by algorithm in the
simulation study on test extension for target information proportional to the block pool. A
= A-optimality, D = D-optimality, T = T-optimality, MIP = Mixed Integer Programming.
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5 General Discussion

In this cumulative thesis, I have developed and investigated IRT methods that can help

to improve the construction of MFC tests. We investigated the effect of test design on

the normativity of trait scores. We found that all positively keyed items were detrimental,

but that suboptimal designs only affected trait recovery with all positively keyed items. I

developed the Faking Mixture Model, which allows to assess the fakability of MFC blocks.

An empirical application showed that it is useful to apply the Faking Mixture model in

addition to matching, due to item interactions. Last, I investigated methods to estimate

and summarize block information and showed how they can be used to automatically

assemble MFC tests. I found that the estimation bias of expected and observed Fisher

information was comparable and small, and that all proposed summaries can be used to

construct MFC tests.

5.1 Recommendations and Methods for MFC Test

Developers

According to the results of our simulation (Frick et al., 2021), it is recommended that

MFC tests include at least some comparisons between items keyed in different directions.

This is in accordance with other simulations that found that trait recovery decreased

drastically with all positively keyed items (Brown & Maydeu-Olivares, 2011; Bürkner et

al., 2019; Schulte et al., 2020). The exact proportion of items keyed in different directions

is likely of minor importance, since it had a negligible effect in our simulation study. If

all items are positively keyed, assessing a high number of traits and assessing traits that

are uncorrelated or negatively correlated can yield better trait recovery. If the numbers

of items per trait are unequal (unbalanced), this will naturally lead to smaller recovery

for traits assessed with fewer items. However, we found no additional decrease in recovery

due to the inseparable design of MFC tests. Moreover, keeping the amount of information

equal, the decrease in precision due to local dependencies with block sizes larger than two

was negligible. If the test should reduce faking, based on the application of the Faking

Mixture model (Frick, 2021b), it is recommended to match items for desirability and in a

second step to examine fakability of the resulting MFC blocks.

Several new methods were developed that can aid MFC test developers: The Faking

Mixture model (Frick, 2021b) allows to estimate fakability on the block level, thereby
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accounting for item interactions. Block information in the Thurstonian IRT model can be

estimated and summarized (Frick, 2021a). Last, blocks can be selected automatically based

on their information while simultaneously taking into account other restrictions on test

design. Selecting blocks instead of items is more expensive in terms of respondent time.

Future MFC test development will show in which cases this is necessary and practical.

5.2 Statistical Analysis of Simulation Studies

Throughout the simulation studies in this thesis, I conducted statistical analyses of the

results to investigate which factors matter for the outcome of interest. For other examples

of this technique, see Plieninger (2017) or Lin (2020). It has been advocated since quite

some time (Harwell et al., 1996; Skrondal, 2000) that simulation results should be analyzed

statistically instead of only visually by examining tables of means and variances across

conditions.

Specifically, I summarized the simulation results in terms of variance explained by the

main factors and by orthogonal contrasts within an ANOVA framework. For example, in

the simulation study on normativity (Frick et al., 2021), I investigated how much variance

in trait recovery was explained by the difference between all positively keyed items and

various levels of mixed keyed items. Several properties of explained variance make it par-

ticularly suited for analyzing simulation studies: It is descriptive and therefore insensitive

to sample size. In simulation studies, sample size (i.e., the number of replications) can be

increased arbitrarily (up to the computational resources available). Further, in contrast

to inferential tests for ANOVA results, explained variance is insensitive to heterogeneous

variances across conditions, which can easily occur in simulation studies. For example,

when test length is manipulated, trait recovery will show higher variance in conditions

with shorter test lengths.

On the downside, explained variance yields only relative information about the compar-

ison of conditions. Therefore, throughout the simulation studies, I additionally reported

means and variances within conditions to evaluate the absolute level of recovery. Alter-

natively, for example, the number of replications can be planned a priori (Feinberg &

Rubright, 2016) so that the design is not over-powered. Or, equivalence testing could be

used to overcome the power problem by including effect sizes of interest in the testing

procedure.

Another issues in the analysis of simulation studies is how to correctly analyze the results

from Bayesian simulation studies (Boykin, 2020). In this thesis, only the second manuscript

(Frick, 2021b) used a truly Bayesian estimation procedure. To summarize the simulation

results, I used coverage rates, which carry the full distributional information, but also

measures such as mean bias, which originate from a frequentist view. Using frequentist
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statistics to summarize Bayesian simulation studies is not uncommon in psychometrics

(e.g., Leng et al., 2019). However, it could be argued that one should be consistent in the

use of inferential frameworks and analyze simulations of Bayesian models in a Bayesian

way (Boykin, 2020).

5.3 About the Relative Nature of MFC Responses

The MFC format is a relative response format: In contrast to single-stimulus formats such

as a rating scale or a true-false format, the response process for the MFC format involves

relative comparisons between the items (Sass et al., 2020). In this thesis, the relative nature

of MFC responses was observed and accounted for in several instances.

The relative response process can result in item interactions: Item properties from single-

stimulus items do not necessarily translate to MFC blocks. Moreover, item properties might

not even be invariant across different block compositions. For example, some authors ob-

served that estimates of item parameters differed depending on which items were combined

into blocks (Lin & Brown, 2017; Wetzel & Frick, 2020). By focusing on the block level,

both the Faking Mixture model (Frick, 2021b) and block information (Frick, 2021a) allow

to capture item interactions. The empirical validation of the Faking Mixture model (Frick,

2021b) contributes to evidence of item interactions: MFC blocks that were matched for

social desirability were still fakable. Thus, in the context of MFC blocks, item desirability

differed from that assessed through ratings of the individual items. Future research could

compare block information (Frick, 2021a) between different block compositions or response

instructions. This would allow to summarize all parameter differences on the block level

and to illustrate at which trait levels (or combinations thereof) item interactions impact

measurement precision.

Moreover, MFC test construction would benefit from being able to predict how items

interact when combined into blocks. Lin and Brown (2017) discussed how item interactions

could be predicted from the item content. In the context of faking and item matching, block

fakability estimates obtained from the Faking Mixture model could be compared to item

desirability estimates and it could be investigated which matching procedures yield smaller

fakability.

Moreover, due to the different response processes, the MFC format and single-stimulus

formats might measure (slightly) different constructs (Guenole et al., 2018; Wetzel & Frick,

2020; Wetzel, Roberts, et al., 2016). This raises the question which construct researchers

actually aim to assess. To better compare validities, future research should use designs

that can represent the specifics of both formats. Two limitations of our empirical study

(Frick et al., 2021) can guide this: First, future research could investigate construct validity

when both constructs are assessed with the same type of response format. For example,
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Wetzel and Frick (2020) found higher correspondence between self- and other-ratings when

both were assessed with an MFC as compared to a rating scale format. Second, future

research could compare criterion validities between absolute and relative response formats

using criteria that truly value differentiation between behaviors. The question of "ipsative"

criteria is not new to MFC research (e.g., Hicks, 1970). However, recent validity research

with normative IRT scoring did not explicitly address the type of criteria investigated

(Brown & Maydeu-Olivares, 2013; Lee et al., 2018; Walton et al., 2019; Watrin et al.,

2019; Wetzel & Frick, 2020; Zhang et al., 2019).

The Faking Mixture model (Frick, 2021b) integrates assumptions and empirical findings

about faking in the MFC format into a formal statistical model. In this way, this thesis

contributed to theories on the nature of faking in the MFC format. The Faking Mixture

model makes the assumption that item desirability is perceived by individuals in the same

way. When respondents disagree about which item to prefer when faking, the response

probability for each rank order is approximately equal and the block fakability is low.

However, empirically, individuals could be strongly convinced that a certain rank order is

desirable and be likely to fake. Future research could empirically investigate the assump-

tions underlying the Faking Mixture model. Moreover, faking good and faking bad can

lead to quite different response patterns (Bensch et al., 2019). This cannot be captured by

the current model formulation. Future research could extend the Faking Mixture model or

develop other modeling approaches to account both for faking good and faking bad.

5.4 Avenues for Psychometric Developments

The Faking Mixture model (Frick, 2021b) is an example of cognitive psychometrics. The

field of cognitive psychometrics tries to bridge the gap between psychometrics and cogni-

tion research by modeling heterogeneity in persons and items (stimuli) in cognitive (re-

sponse) processes (Batchelder, 1998; Riefer et al., 2002). In cognition research, this means

to model IRT-like heterogeneity in cognitive experiments and in assessment to understand

IRT models as models of the response process. Multinomial processing tree models are a

class of models that is especially suited for cognitive psychometrics (Batchelder, 1998). In

these models, nominal outcomes of responses are modeled by splitting the response process

into multiple sub-processes (Erdfelder et al., 2009). Different strategies exist to account for

heterogeneity in persons and/or items in these models (e.g., Klauer, 2010; Matzke et al.,

2015).

Any IRT model that can be represented with a tree structure can be conceived of as a

multinomial processing tree model (Plieninger & Heck, 2018). This applies to the Faking

Mixture model, as depicted in Figure 8. Other examples for IRT models with a tree

structure are item response tree models (Böckenholt, 2012; De Boeck & Partchev, 2012),
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the acquiescence model (Plieninger & Heck, 2018), and the retreive-deceive-transfer model

(Leng et al., 2019). To my knowledge, the Faking Mixture model is the first model for

response biases or - more generally - response processes in the MFC format that has a

tree structure. Future research could develop multinomial processing tree models for other

biases in the MFC format such as careless responding, which is the tendency to respond

without regard to the item content (Meade & Craig, 2012).

Moreover, response process data could be incorporated into IRT models for the MFC

format. Both multinomial processing tree models (e.g., Heck & Erdfelder, 2016; Klauer &

Kellen, 2018) and certain IRT models (e.g., Ulitzsch et al., 2020; van der Linden et al.,

2010) have been extended to incorporate response times. In addition, there are approaches

to modeling response sequences in computerized testing (e.g., Ulitzsch et al., 2021). In a

recent think-aloud study, it was found that respondents used different strategies to respond

to MFC blocks (Sass et al., 2020). Information about the sequence and timing of rank-

ings could be used to improve trait estimation and its reliability or to better disentangle

processes related to faking or careless responding.

In the third manuscript (Frick, 2021a), I investigated methods to automatically assemble

MFC tests. Such methods might prove particularly useful, since constructing an MFC test

is a complex combinatorical endeavor that requires considering several aspects simultane-

ously. Hence, future research should further develop algorithms and optimization criteria

for the automatic assembly of MFC tests. In the manuscript, for the criteria of A- and D-

optimality, I used a very simple greedy heuristic that sequentially selects the next item or

block that is optimal at this point. However, the resulting combination of items or blocks

might not be optimal. Alternatively, local search heuristics that introduce randomness to

keep the search from being trapped in a sub-optimal space can be used. They are often

inspired by natural processes, such as genetic algorithms (e.g., Kreitchmann et al., 2021)

or ant colony optimization (e.g., Olaru et al., 2015). Future research could develop a local

search heuristic, adapt a more sophisticated greedy heuristic (e.g., Luecht, 1998) to MFC

blocks or investigate optimization algorithms for non-linear criteria (e.g., Masoudi et al.,

2019; Masoudi et al., 2017).

Moreover, future research could investigate how block information can be used for CAT.

Two CAT algorithms for the assembly of MFC pairs, based on the Thurstonian IRT model

(Lin, 2020) and based on the generalized graded unfolding model for rank data (Joo et

al., 2020), already exist. Both algorithms make the assumption that item properties are

invariant across block compositions. A CAT algorithm that uses MFC block information

would be a useful complement because it can capture item interactions.

Throughout this thesis, I focused on the Thurstonian IRT model. However, it would be

interesting to compare and investigate other IRT models for the MFC format as well. The

main finding of the simulation study was that trait recovery decreased due to ipsativity
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when all items were keyed in the same direction (i.e., they all had positive factor loadings,

Frick et al., 2021). Similar effects were found with models for ideal-point items when

the item locations were identical (Hontangas et al., 2015; Hontangas et al., 2016). Future

research could develop the theoretical conditions for identifying the scale origin with ideal-

point items in an MFC format and investigate them in simulation studies. As previously

described, the Faking Mixture model could be populated with other IRT models for the

MFC format or for single-stimulus formats. Moreover, the block information summaries

proposed in the third manuscript (Frick, 2021a) could be adapted to other IRT models for

MFC data and it could be examined which algorithms for automated test assembly they

can be combined with.

5.5 Conclusion

In this thesis, I investigated and developed item response theory methods for the multi-

dimensional forced-choice format. I focused on three aspects which are relevant for test

construction: normativity, fakability and reliability. The research presented provides both

guidelines and new tools for MFC test developers. The empirical studies led to new in-

sights about the response process for MFC blocks and highlighted open research questions

in this area. The psychometric developments are a starting point for future research on

modeling response processes and biases and on automated test assembly. In sum, I hope

that the research presented in this thesis will prove valuable for the future construction and

psychometric modeling of tests in both multidimensional forced-choice and other response

formats.
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