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Summary

The multinomial processing tree (MPT) model class is well known in cognitive

psychology. With models of this class we try to explain the underlying cognitive mecha-

nisms of decision tasks. These mechanisms include cognitive processes and describe

how they interact with one another. From the frequencies of the responses it is possible

to estimate the probabilities of the process outcomes.

The Response-time extended MPT (RT-MPT; Klauer & Kellen, 2018) model class

extends the MPT model class by using response times in addition to the response

frequencies. It allows for the estimation of process completion times – the time it takes

for a process to complete with a given outcome – and the encoding and motor-execution

times – also known as non-decision time. Each process has two or more outcomes and

each process outcome in turn has an assigned probability and a respective completion

time. The first implementation of RT-MPT was in C++ which made it rather inaccessible

for potential users, except the developers, and contained a proprietary library. It was

therefore neither easy to use nor free to get.

In this thesis, I facilitate the use of the RT-MPT model class. In three articles, I

and my coauthors develop a software package that is easy to use, free, and open source,

extend the software package to allow for fitting even more RT-MPT models, validate

the algorithm of the software package, and lay a basis for efficiently modeling RT-

MPT models that assume Wiener diffusion processes. In our first project we integrate

the RT-MPT model class in the statistical programming language R by developing a

so called R package. In this project we also validate the resulting software package

and test whether it still produces the same results as in the original paper by Klauer

and Kellen (2018). In our second project, we extend the model class – or rather its

implementation – to allow for fitting RT-MPT models with repeating processes on a

path. Due to some properties of the old likelihood function this was not possible before.

We validate the new algorithm (with a modified likelihood function) to check whether

the new algorithm is still working properly. Finally, in the last project, we derive partial

derivatives of the first-passage time density and cumulative distribution function of

the Wiener diffusion model. As Klauer and Kellen (2018) suggest, the Wiener diffusion

model might be a promising framework for modeling cognitive processes. This would be

a competing alternative to modeling process times with exponential distributions as in

Klauer and Kellen (2018). Partial derivatives provide information that is needed for

efficient parameter estimation procedures.
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Chapter 1

Introduction

1.1 Multinomial Processing Tree Models

In cognitive psychology we are interested in cognitive mechanisms and processes

underlying the completion of tasks. The class of multinomial processing tree (MPT)

models or multinomial models as introduced by Riefer and Batchelder (1988) is a

class of models with which we can investigate such mechanisms and processes by

using frequency data. It is assumed that for a person to complete a task, e.g., a word

recognition task, there are certain necessary cognitive processes involved. Each process

can, with certain probabilities, lead to different outcomes which in turn might trigger

other processes. As Riefer and Batchelder (1988) state, these cognitive processes are

not directly observable. When employing MPT models we try to capture the relevant

cognitive processes and the cognitive mechanism underlying these processes.

To get a better understanding of what is meant by cognitive mechanisms and pro-

cesses we will take a look at an example. In a simple word recognition task participants

try to recall words from a studied list and try to distinguish them from new words.

The task is simple; in each trial, they have to state whether the presented word is old

(i.e., studied), or new. Even this seemingly simple task requires multiple cognitive

processes and a mechanism that defines how these processes interact with each other.

The cognitive processes involved might be a process for detecting studied words, a

process for detecting new words, and a guessing process. MPT models trying to capture

the mechanism behind such tasks are called threshold models (Krantz, 1969; Luce,

1963; Snodgrass & Corwin, 1988; Swets, 1961). For example, the two-high threshold

model (2HTM; Snodgrass & Corwin, 1988) assumes that words are either detected by

the corresponding detection process, or will be guessed. Therefore, detection can either

lead to a success or a failure, and guessing can either lead to a tendency to respond with

“old” or “new”. Only if detection fails a wrong answer might be produced by guessing, i.e.,

detection dominates guessing. The sequence with which the processes occur (detection-

first or guessing-first, see Figures 1.1 and 1.2) can also be considered as part of the

cognitive mechanism but cannot be distinguished within the MPT framework. The

two representations – or rather variants – of the model are mathematically equivalent.

This can be seen by comparing the probabilities for a miss in both representations;

in the Detect-Guess variant (i.e., detection-first) this is (1−DO)× (1− g) and in the
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Default-Interventionist variant (i.e., guessing-first) this is (1− g)× (1−Do), which is the

same multiplication, but with a reversed order. The probabilities of a false alarm for

the respective variants are (1−DN )× g and g× (1−DN ), respectively.

FIGURE 1.1

2HTM With Detection First a.k.a. Detect-Guess
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Note. This figure is a modified version from Hartmann et al. (2020). Instead of using the general notation for

probabilities θp abbreviations of the process names are used: Parameter g denotes the process-probability

for guessing “old”, DO for detecting a studied word as “old”, and DN for detecting a new word as “new”.

The circles indicate latent states; + and − denote biases/tendencies towards the responses “old” and “new”,

respectively, S1 and S2 states of certainty for old and new words, respectively, and S3 a state of uncertainty.

The rectangles indicate observable categories; On the left of each tree the trial categories and on the right

the response categories.

FIGURE 1.2

2HTM With Guessing First a.k.a. Default-Interventionist
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Note. This figure is a modified version from Hartmann et al. (2020). See Figure 1.1 for more details.

The interpretation of MPT models is quite intuitive. With only a few parameters,

representing the process probabilities (Riefer & Batchelder, 1988), and some if-then

structures we can describe how the underlying processes interact with each other to

form an answer, i.e., describe the cognitive mechanism we assume. Its simplicity has

made the model class of MPTs very prominent in cognitive psychology and beyond (for

reviews see Batchelder & Riefer, 1999; Erdfelder et al., 2009; Hütter & Klauer, 2016).

Despite its use and simplicity the MPT model class has some limitations. First,

latency information is not used to further improve inference. Even though for each trial

the reaction times (RTs) are often measured, this information is not integrated in MPTs.

Second, as already briefly mentioned above, the sequential order of the processes cannot

be tested. Whether the 2HTM starts with an initial guessing – or rather bias – (see

Figure 1.2) or directly with a detection attempt (see Figure 1.1), makes no difference

mathematically. Third, often MPT models are not identified (Klauer & Kellen, 2018).
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This, for example, happens when there are more parameters in the model than non-

redundant frequency categories (e.g., false alarms in new word trials). This is also the

case in our example; the 2HTM represented in 1.1 has three parameters but only two

non-redundant frequency categories (misses in old word trials and false alarms in new

word trials). Unfortunately, even if there are as many or more non-redundant frequency

categories than parameters, the model might still not necessarily be identified, i.e.,

there are more conditions that must be met, such that an MPT model is identified. For

more details about identifiability see Schmittmann et al. (2010).

All of these mentioned limitations can be tackled by integrating RTs into MPT

models. In the following section I will therefore briefly describe some approaches to do

so and illustrate their respective advantages and disadvantages.

1.2 RT-Extensions of the MPT Model Class

As early as 150 years ago, Donders (1868/1969) tried to measure process times with

his method of subtraction. Even though this procedure was restricted to measure

the completion time of only one cognitive process it still was an inspiration for other

approaches.

One such approach was proposed by Hu (2001) who generalized an earlier approach

by Link (1982) to integrate RTs in MPT models. In order to do that he used mean RTs

per category and mixture distributions to disentangle the mean process-completion

times – henceforth process times. Because of identifiability reasons this procedure was

restricted to setting the process times for all possible outcomes of a process to be equal.

In addition, encoding and motor-execution times – henceforth motor times – are not

considered. Nevertheless, this was a first large step into modeling latencies alongside

frequencies.

Another, more recent approach similar to the one by Hu (2001) was provided by

Heck and Erdfelder (2016). They developed a model class using a non-distributional

method to integrate RTs. The observed RTs (of each person separately) are split into

bins which are used as additional categories. This means that at the terminal nodes

of traditional MPT models an additional process is attached leading to the different

RT bins. With this procedure it is possible to estimate “relative” process times. In our

simple word recognition example with the 2HTM this means one could test whether

answering correctly to a studied word is faster with detection than with guessing. One

downside of this approach is that it is usually not identified if the underlying traditional

MPT is not identified.

A third noticeable approach is the generalized processing tree (GPT) model class

by Heck et al. (2018). In GPT models not only RTs but also other continuous random

variables (RVs) can be integrated. Each of these continuous RVs are modeled jointly

with the frequencies. For each possible path a distribution can be assigned which

the RTs (or other continuous RVs) are assumed to follow. Heck et al. (2018) use a

mixture distribution with the branch probabilities as weights to estimate properties of
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the branches. This approach is still not able to give separate estimates for the process

times and motor times. Nevertheless it can give a rough estimate of the decision and

non-decision times by using, for example, the ex-Gauss distribution and taking the

mean parameter of the Gauss component as an estimate for the non-decision time and

the inverse of the rate parameter of the exponential component as a decision time.

However, even if the underlying traditional MPT model is not identified, the GPT model

might still be.

The final approach by Klauer and Kellen (2018), called RT-extended MPT (RT-

MPT), also models RTs and frequencies jointly but in a slightly different fashion. The

completion time of each process outcome is assumed to be exponentially distributed and

the motor times nomally distributed with a truncation from below at zero. The RT for

each path is therefore assumed to be a sum of one or more exponential RVs and a RV

following a truncated normal distribution. In a sense, this model class can be seen as

a special case of GPTs. Nevertheless, there are some fundamental differences, which

will be apparent in the next section. One important feature of RT-MPTs by Klauer and

Kellen (2018) is that one can test the sequential order of the processes. Therefore one

can test, for example, which process comes first in the 2HTM, detection or guessing (see

Figures 1.1 and 1.2). In addition, many MPT models can become identified by using

RT-MPTs.

In the following section the model class of RT-MPT by Klauer and Kellen (2018) will

be described in more detail. This model class builds the basis for this dissertation.

1.3 RT-MPT Model Class

The approach by Klauer and Kellen (2018) uses a hierarchical Bayesian structure with

groups and persons within groups. It assumes two additional latent variables for each

person s compared to the MPT model class, namely the process times τs, and the motor

times δs. Each process p can have two potential outcomes o and there can be a different

motor time for each response r. As already mentioned above this leads to

τp,o,s ∼ Exp
(

λp,o,s

)

δr,s ∼ TN≥0

(

γr,s,σs

)

,
(1.1)

where Exp denotes the exponential distribution and TN≥0 the normal distribution

truncated from below at zero. There are four parameter vectors of interest – the process-

outcome probabilities θ which is already used in the MPT model class, the rates λ of

the process-time distribution, as well as the mean parameter γ and standard deviation

σ of the motor-time distribution.

Let us come back to our 2HTM example and take a look at the variant with guessing

first. For all branches leading to the response category “old” we might assume that

person s has a motor time δO,s and for all branches leading to the response category

“new” motor time δN,s. The time for person s to complete the detection process of an

old word with a success is denoted by τDO ,+,s and with a failure it is denoted by τDO ,−,s.
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Similar notation is used for the detection process of new words with τDN ,+,s and τDN ,−,s

for success and failure, respectively. For the guessing process τg,+,s and τg,−,s denote

the process times for a guessing in favor for the response “old” and “new”, respectively.

See Figure 1.3 for a graphical representation of the RT-extended 2HTM.

FIGURE 1.3

RT-2HTM With Guessing First
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Note. This figure is a modified version from Hartmann et al. (2020). See Figure 1.1 for more details about

the structure and the process-probability parameters. In blue color the different types of time parameters

are depicted. The τ’s represent process times with the abbreviated process names (detection old/new

and guessing) and their respective outcomes as subscript and the δ’s represent the motor times with the

abbreviated response names (“old” and “new”) as subscripts. The subscripts for a person s are omitted.

For the joint density of the response categories (c) and RT (t) in Klauer and Kellen

(2018) I need to introduce some additional formulae; let us start with the probability of

path B, P(B). It is just the product of all process-outcome probabilities on a path. In our

example the path probability for responding “old” to an old word with uncertainty is

θg,+,s ×θDO ,−,s, or in the simple notation without person subscripts g× (1−DO), where

g denotes the probability to guess “old” and DO the probability to detect an old item.

Next we need the density of the RT, given a path B, f (t|B). In Klauer and Kellen

(2018) this density is defined by the convolution of the exponential distributions of the

involved process times and the truncated normal distribution from the motor time on a

path B. This convolution is a modified ex-Gauss distribution for paths consisting of only

one process time. Modified because a truncated normal distribution is used compared

to the known ex-Gauss distribution (e.g., Matzke & Wagenmakers, 2009). When more

than one process time is involved, we call it modified hypoex-Gauss distribution (for

more details about the modified hypoex-Gauss distribution see e.g., Hartmann et al.,

2020). In our last example, it would be a modified hypoex-Gauss distribution arising

from the convolution of three distributions, namely the distributions of τg,+, τDO ,−, and

δO (omitting the subscript for person s).

The joint density of the RT and response category in Klauer and Kellen (2018) is

then

f (c, t)=
∑

B: B ends in c

f (t|B)P(B). (1.2)

This joint density and the conditional density of the RTs given a path will become
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important in Chapter 3 where it needs to be modified and in Chapter 4 where the

conditional density has no closed form, meaning it can only be calculated by numerical

integration.

Let us now turn to the most important prior choices of the parameters in the RT-MPT

model class by Klauer and Kellen (2018), namely the ones for the process probabilities

θ, process rates λ, and mean parameter of the motor times γ. The core feature is that

for each person the parameters come from a group mean and a person-specific deviation

from that mean. However, the parameters are first transformed, such that they are

on the same scale (−∞,∞). Klauer and Kellen (2018) define α=Φ
−1(θ) and β= log(λ).

The separation of group mean and person specific deviation is then given by:

αp,s =µ(α)
p +α′

p,s

βp,o,s =µ
(β)
p,o +β′

p,o,s

γp,s =µ
(γ)
r +γ′r,s,

(1.3)

where the µ’s denote the respective group mean, and α′
p,s, β

′
p,o,s, and γ′r,s denote the

person specific deviations from the group means.

For each person the process-related parameters in Klauer and Kellen (2018) are

assumed to correlate. This is implemented by using a multivariate normal prior with

mean zero and variance-covariance matrix Σ for the vector (α′
s,β

′
s). The parameter

µ(α)
p follows a normal distribution with mean zero and ǫ times an identity matrix as

variance-covariance matrix, where ǫ is a scaling parameter. Klauer and Kellen (2018)

decided that for the process rates the group-level parameter is transformed back to the

original scale, exp(µ
(β)
p,o), and follows an independent gamma distribution with shape

and rate parameters set to one and 0.1, leading to a mean process time of 10 ms and a

variance of 100. The parameter vector γ′s follows a multivariate normal distribution

with mean zero and variance-covariance Γ, allowing the motor times to correlate for

each person, and µ
(γ)
r follows a normal distribution with zero mean and ten times the

identity matrix as a variance-covariance matrix.

There is one special feature of the RT-MPT model class by Klauer and Kellen (2018)

I would like to outline here as well. For their inference they used a Markov chain Monte

Carlo (MCMC) algorithm. In particular, they used a Metropolis-within-Gibbs sampler

(e.g., Gelfand & Smith, 1990). This means, that whenever possible they use a Gibbs

sampler and otherwise a Metropolis-Hastings sampler. The Gibbs sampler is a special

case of the Metropolis-Hastings sampler that allows to sample from a multivariate

distribution, f (x1, x2, . . . , xd), without rejecting any sample, but requires the conditional

distribution of one parameter given all other parameters, f (xi|{x j : j 6= i}), which does

not always have a closed form. What can help is using a so-called data augmentation

method (Albert & Chib, 1993; Tanner & Wong, 1987). Data augmentation is, according

to Tanner and Wong (1987), a scheme of augmenting observed data to make analysis

easier. He points out that in ideal cases one can sample from the posterior given

the augmented data with ease. In Albert and Chib (1993) it is used in the context
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of probit regression; they use latent normal variables, Zi, for each trial i to get the

fully conditional posterior density of the regression parameter β, f (β|y, Z), which is the

same as for a normal linear model Z = Xβ+ǫ. Using this conditional distribution, they

developed a Gibbs sampler. Klauer and Kellen (2018) use a similar data-augmentation

approach to develop a Gibbs sampler for the process probabilities – or rather the probit

transformed probabilities α. Their procedure goes further to also make a Gibbs sampler

for β (log-transformed process rate parameters) and γ (mean parameter of the motor

times). This data augmentation will become important for Chapter 4.

1.4 Goals and Subgoals

Even though the RT-MPT model class was implemented very efficiently in the program-

ming language C++ it was not straight forward to fit an RT-MPT model to some data.

Furthermore, it required at least some knowledge of C++ and a proprietary C++ library

was used for optimizations and other algebraic routines.

The first goal of this dissertation was, therefore, the implementation of RT-MPT

into a more widely used programming language, namely as a software package of the

programming language R. There were several aspects that needed to be considered.

First, the usability; it should be as usable as possible, preferably by employing similar

conventions as used for other R packages for Bayesian inference and/or modeling MPT

models. Second, it should be free and open source; no proprietary software (packages)

should be included and the code should be made publicly accessible. Third, its validation;

the underlying algorithm should be validated in order to guarantee accurate estimates.

Beyond that, the speed of the software package was also an important aspect.

The next goal was the extension of the model class to enable it to work for as many

(RT-)MPT models as possible, i.e., it should not be restricted to only a subgroup of

(RT-)MPT models. For that an additional validation was necessary.

The last goal was to create the basis for modeling cognitive processes within the

RT-MPT structure with a Wiener diffusion model using gradient information. The

reason behind this was the relatively strong restricting assumption that the process

times follow an exponential distribution.
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Chapter 2

Implementation of RT-MPT in R

As already mentioned, in Hartmann et al. (2020)1, we decided to implement the RT-MPT

model class directly into R by developing a package that uses the already existing C++

code written by Klauer and Kellen (2018). The R environment serves as a wrapper for

the C++ code, i.e., everything can be accessed from R, which in turn executes the C++

program.

The communication between these two programming languages is established by

a function written in C. This function takes R objects as pointers – meaning it takes

the memory addresses of the objects as variables – and can then be used within C/C++.

In that way, the objects must not be copied and can be directly used for any sort of

calculation. Once the calculations within C/C++ are finished, the function then returns

a new R object to R with the desired results.

There were many subgoals for this project. The accessibility of the software package,

its usability, and the validation of its algorithm. Before I will discuss these subgoals in

the following sections, I will describe our first attempts to implement RT-MPT in R in

the next section.

2.1 Attempts

Our first idea was to implement the RT-MPT model class into an existing Bayesian

software package within the programming language R (R Core Team, 2020). This would

have been the most straight forward way to make the model class accessible to potential

users.

The first software package we used was rstan (Stan Development Team, 2018).

Even though this relatively new software package was very promising, it had the

problem that the likelihood function is required to be differentiable. Since this was not

the case, it led to so-called divergent transitions, which in turn led to biased estimates.

1Raphael Hartmann is credited as the main author of this article. He wrote the R code for the R package

rtmpt, adjusted some of the C++ code to enable the communication between R and C++, performed

the simulations and analyses and wrote the first draft of the manuscript. Lea Johannsen contributed

with the idea and setting of the validation study, wrote a script for the graphical visualization thereof,

and provided recommendations for improving the manuscript. Karl Christoph Klauer contributed by

modifying the C++ code, provided suggestions for the simulations studies, advised the analyses, and

provided recommendations for structuring and improving the manuscript.



10 Chapter 2

The second software package we used was rjags (Plummer, 2018). Even though

we managed to implement the likelihood function as an additional JAGS module (for

developing such modules see Wabersich & Vandekerckhove, 2013) there were problems

with convergence even for very simple models.

Only after these attempts we decided to directly implement the model class into R

using the already existing C++ code.

2.2 Accessibility

The original C++ source code contained a lot of routines from a proprietary library, since

the computations require operations from linear algebra and also some optimizations.

Such a library would have restricted the accessibility to people having a necessary

licence. Therefore we decided to replace this library with a free and open source library,

namely the GNU Scientific Library (GSL; Galassi et al., 2009).

The choice for using an R package as a wrapper over the C++ code is similar. R is a

free and open source programming language for statistical computation (R Core Team,

2020). In our opinion it is one of the most used statistical software in psychology. R

packages provide an easy way to make functions accessible to many researchers. They

can be easily installed an used.

2.3 Usability

The RT-MPT model class should be as easy to use as possible. This is another reason

why the programming language R is ideal. It consists of only a few data types, namely

numeric (integer as well as real numbers), logical (true and false), and character

(strings). All other R objects (e.g., array, vectors, and lists) consist of these types of

objects. All R objects can be used to define (new) functions. This rather simple structure

makes it very easy to use R.

Broadly speaking, R packages are nothing more than a collection of R functions that

can be installed and loaded with simple commands. Once a package is installed and

loaded all functions within it can be used.

For these reasons we developed an R package called rtmpt (Hartmann et al., 2020)

with some functionalities to enable other researchers to fit RT-MPT models to data. It

consists of mainly five functions. One function transforms the data and one transforms

the model file into the right format, such that they can be read within the C++ program.

Two functions allow for optional changes in the model specifications/restrictions. The

main function fits the model to the data, which is provided by the other functions.

To make the use of the main function as easy as possible we used similar notations

to other R packages using Bayesian inference like rjags (Plummer, 2018). For example,

the number of chains denoted with n.chains or the number of iterations denoted with

n.iter. For more details about the package, see Hartmann et al. (2020).
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2.4 Algorithm Validation

Since we decided to implement the RT-MPT model class directly into R using the already

existing C++ code, it was necessary to validate the underlying algorithm. Therefore, we

wanted to answer whether the algorithm is suitable for the RT-MPT model class.

For Bayesian inference using MCMC methods, one way to validate an algorithm is

by using simulation-based calibration (Talts et al., 2018). Similar to traditional recovery

studies datasets are randomly sampled for each of the I repetitions. The difference is to

chose a prior distribution from which the true values are sampled for each repetition,

unlike in traditional recovery studies where only one set of true values is used. These

true values are then used to simulate data. Talts et al. (2018) argue that by using the

same priors for the Bayesian model and because of the self-consistency condition the

data-averaged posterior distribution should equal the prior distribution, if the algorithm

is valid for the specified model. This is tested by histograms of ranks. For each of the

N repetitions and each parameter independent samples are drawn/selected from the

posterior distribution and compared to the ground truth. If the N +1 possible ranks

through all the repetitions differ significantly from a uniform distribution then we can

say that the algorithm is not valid for the model and should not be used.

In contrast, according to Talts et al. (2018), traditional recovery studies do not allow

for such conclusions. Even if the algorithm is not suitable for the inference the results

for the recovery might still suggest everything being acceptable. The same holds true

for the opposite. Even if the results suggest problems with the algorithm it might still

be valid.

Figure 2.1 depicts the histograms of the rank statistics for the group-level process-

related parameters. Only a few of the rank frequencies fall below the lower lines or

are higher than the upper lines, and the shapes of the rank frequencies look random,

suggesting no biases (see below for the types of biases simulation-based calibration can

detect). The same holds true for all other parameters. These results are supported by

the Pearson’s chi-square statistic used to test for uniformity. About four percent of these

statistics led to greater values than the critical value, which is expected with an α level

of 0.05.

The results in Hartmann et al. (2020) suggest that the data-averaged posterior

distributions equal the prior distributions. Therefore we do not have any evidence that

the algorithm in Hartmann et al. (2020) has any problems. This indicates that the

algorithm is indeed valid for the chosen models. Since we see no reason to expect other

RT-MPT models would be much different we assume the algorithm to be valid for all

RT-MPT models. Nevertheless, as Talts et al. (2018) argue, simulation-based calibration

should be done for any model to be sure.

Simulation-based calibration is quite sensitive to the model. It can detect many

types of biases. First, autocorrelation of the posterior samples. This means that there

is a substantive correlation between two successive posterior samples. Second, over-

and underdispersion. Overdispersion occurs when the posterior distribution is flatter
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FIGURE 2.1

Histograms of the Rank Statistic for the Group-Level Process-Related Parameters
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Note. This figure is copied from Hartmann et al. (2020). On the horizontal axes are the rank statistics and

on the vertical axes the relative frequencies (frequencies divided by N = 2000). The term µα denotes the

group-level parameters referring to the probabilities on the probit scale and µβ the process rates. Lower

and upper lines specify the critical values of the exact two-tailed binomial test with α= .05 for deviations

between the observed and the expected frequency (middle line) of each individual bin. D and g denote the

processes and − and + the outcomes for the process rates.

than the prior distribution. Third, bias of the mean. This means that the mean of the

posterior distribution is not at the same location as the mean of the prior distribuiton.

For reasons of comparison, we fitted the same models to the data of Dube et al. (2012)

and Arnold et al. (2014) as in Klauer and Kellen (2018) and compared the resulting

medians and 95% highest density intervals. The medians were almost identical, but

some of the highest density intervals were narrower in rtmpt compared to the results

in Klauer and Kellen (2018). This might be due to smaller changes in the prior choices

(for more details see Hartmann et al., 2020).

In addition to simulation-based calibration, we conducted smaller recovery studies.

They provide also no evidence of the algorithm being wrong, i.e., the true values were

recovered quite well in these studies.
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Chapter 3

Extending RT-MPT

In this chapter I want to outline the issue with the first algorithm we used for RT-MPT

modeling (Hartmann et al., 2020) and the way it was solved in Hartmann and Klauer

(2020a)1. Since this required a modified algorithm we wanted to make sure the modified

algorithm still works as well as the previous one.

3.1 Restriction on RT-MPTs

The algorithm in Hartmann et al. (2020) is based on a likelihood function that is not

differentiable at any point – or rather the implementation of the likelihood function is

not. It is constructed as the convolution of a hypo-exponential distribution and a trun-

cated normal distribution. The hypo-exponential distribution, in turn, is a convolution

of multiple exponential distributions with different rate parameters. Unfortunately, the

density of this distribution includes at least one term where two rate parameters are

subtracted in the denominator. If these two parameters coincide we divide by zero.

The consequence is that only RT-MPT models with distinct processes on each path of

the (RT-)MPT tree work, i.e., models with repeated processes on one path cannot be used.

One well known MPT model with repeated processes on a path is the pair-clustering

model by Batchelder and Riefer (1980, 1986). According to Batchelder and Riefer (1980)

this model can be used for free-recall tasks, where participants first study two types of

words within a word list. One type of words is refered to as pairs (two words belonging

to the same cluster) and one type of words is refered to as singletons (words belonging

to no cluster). Figure 3.1 depicts the tree of this model where two clustered words need

to be recalled. There are two paths in which a process is repeated, namely when the

cluster is not stored; the process for a successful singleton-retrieval, u, and the process

for a failed singleton-retrieval, 1−u, are used twice.

Even though the pair-cluster model is a point in case, it is used in the context of

free-recall tasks. This type of task does not allow for meaningful RT measures; it is not

possible to tell when a participant is concerned with the task and which word he tries

1Raphael Hartmann is credited as the main author of this article. He helped integrate the new PDF of

the RTs into the C++ code, performed the simulations and analyses, derived an exemplary proof of the new

formulae of the PDF, and wrote the first draft. Karl Christoph Klauer contributed by adjusting the C++

code, provided suggestions for the simulations studies, advised the analyses, derived the new formulae of

the PDF, and provided recommendations for structuring and improving the manuscript.
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FIGURE 3.1

Paired-Words Tree for the Pair-Clustering MPT by Batchelder and Riefer (1980, 1986)
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Note. “Category Pair item”-tree of Batchelder and Riefer’s (1980, 1986) pair-clustering model. The model

has two trees; One for clusterable paris (“Category Pair items”; two words that can be stored as a cluster)

and one for singletons (“Singleton items”; words belonging to no cluster). The second one is not depicted

here. Parameter c is the probability for storing a clusterble pair as cluster in memory, r the conditional

probability that the stored cluster is retrieved from memory, and u the joint probability that a singleton is

stored and retrieved. In the “Category Pair item”-tree u is the probability that a word from the clusterable

pair is stored as a singleton and retrieved. E1 is the response category for recalling both items as a pair,

E2 for recalling both items as singletons, E3 for recalling only one of both items (as singleton), and E4 for

no recalling.

to remember. Therefore it is not possible to assign an RT to a specific word from the

study phase.

Nevertheless, in general this type of model with repeating processes on one path

typically arise whenever two or more items need to be evaluated at once. Hartmann

and Klauer (2020a) uses variations of the 2HTM for two-alternative forced-choice tasks,

where participants study a list of words in the study phase. In the test phase in each

trial always two words are presented where one of which is a studied word and one is

new. The task is to identify the studied word. Figure 3.2 depicts a possible MPT model

for such a two-alternative forced-choice task.

Since the algorithms by Klauer and Kellen (2018) and Hartmann et al. (2020) are

restricted to models having no such repetitions of processes in their trees, it was desir-

able to develop a new algorithm with which RT-MPT models like the above mentioned

can be fitted. This improves the applicability of the model class of RT-MPTs.

3.2 The Modified Algorithm

The main problem of developing an algorithm able to handle process repetitions within

a tree of an RT-MPT model is the mix of processes with equal and unequal exponential

rates. As already mentioned, if the exponential rates are all distinct the convolution is a
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FIGURE 3.2

Tree Representation of an MPT Model for a 2AFC Task
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Note. This figure is copied from Hartmann and Klauer (2020a). Parameter D refers to the detection of one

word, and b to the bias towards the “old-new”-response (1−b is the bias towards the “new-old”-response).

The model assumes that as soon as one word is detected the corresponding response is given. Only if both

words are not detected, will the bias determine the response. The columns on the right side indicate for

each subtree/stimulus (“old-new” or “new-old” items) whether the branch leads to the correct answer or

not.

hypo-exponential distribution with n different rates. The convolution with a (truncated)

normal distribution has a closed form and was used in Klauer and Kellen (2018) and

Hartmann et al. (2020). The convolution of n exponential distributions with equal

rates is an gamma distribution with shape n (a.k.a. Erlang distribution with a shape

parameter n). The convolution of a gamma distribution (with n ∈N) with a (truncated)

normal distribution is not straight forward; there exists no closed-form expression for

an arbitrary n. Nevertheless, using a specific n there exists a closed-form expression.

In Hartmann and Klauer (2020a) such expressions are derived for n ∈ {2,3,4,5}.

In addition to that the convolution of exponential distributions with combinations of

both cases (equal and unequal rates) was also needed. Scheuer (1988) as well as Amari

and Misra (1997) provide a closed-form expression for the convolution of exponential

distributions with a mix of equal and unequal rates. Jasiulewicz and Kordecki (2003)

provide a proof of this formula.

Combining these two results Hartmann and Klauer (2020a) derived the convolution

of exponential distributions (with equal and unequal rates) and a truncated normal

distribution for cases when the number of equal rates equals n ∈ {1,2,3,4,5}. An RT-

MPT model with more than five equal exponential rates is rather improbable, but could

be implemented if needed.

3.3 Algorithm Validation

The newly developed algorithm in Hartmann and Klauer (2020a) was also validated

using simulation-based calibration (Talts et al., 2018) like the algorithm in Hartmann
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et al. (2020). For more details about the core idea see Section 2.4 and for the exact

procedure see Hartmann et al. (2020) as well as Hartmann and Klauer (2020a). The

only difference to the algorithm validation in Hartmann et al. (2020) is the model.

Hartmann and Klauer (2020a) used the 2HTM for two-alternative forced-choice tasks,

where both presented words in a trial are tried to be detected (with probability D) and

if both detection fail the studied word is guessed (with probability b). Figure 3.2 depicts

the graphical representation of the model.

The results in Hartmann and Klauer (2020a) indicate that there was no problem

with the modified algorithm. This suggests that the newly developed algorithm is valid,

at least for the chosen altered 2HTM. We strongly believe that for other RT-MPT models

the algorithm is valid as well, but according to Talts et al. (2018) this should be checked

for each model separately.
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Chapter 4

Basis for Modeling Processes

With Wiener Diffusion Models

Even though the algorithm in Hartmann et al. (2020) seems to work in a satisfactory

manner, it is still a restriction of the current RT-MPTs that the process-time and motor-

time distributions are fixed to an exponential and a truncated normal distribution,

respectively. In this chapter I want to discuss another possibility of modeling RTs. A

basis for this is provided by Hartmann and Klauer (2020b)1.

4.1 Process-Time Distribution

RT-MPTs (Hartmann et al., 2020; Hartmann & Klauer, 2020a; Klauer & Kellen, 2018)

so far are restricted to the chosen process-time and motor-time distributions. As already

mentioned this is due to the fact that convolutions of multiple distributions not always

have a closed-form expression. Nevertheless, the exponential distribution might be not

an optimal choice for a process time due to its properties. One such property is the

memorylessness:

P(T > s)=P(T > s+ t|T > t)=
P(T > s+ t)

P(T > t)
, (4.1)

where T is the process completion time, i.e., the probability for a process to complete

after a certain time s is the same as the probability of this process to complete after

time s+ t, given it has not finished until time t. In other words it does not depend on

whether the process just started or some time t has already passed without the process

being finished, the probability that the processes completes after time s is always the

same. This property might be unrealistic in most real processes. One would naturally

assume this probability would change over time t.

1Raphael Hartmann is credited as the main author of this article. He helped deriving the partial

derivatives, performed the simulations and analyses and wrote the first draft. Karl Christoph Klauer

contributed by deriving the partial derivatives, provided suggestions for the simulations, and provided

recommendations for structuring and improving the manuscript.
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4.2 Alternative Process-Time Distributions

Klauer and Kellen (2018) suggested other process-time distributions like the Wald

distribution, which is a first-passage time distribution of a Brownian motion with

positive drift. One problem that might arise is the number of parameters used for each

process. The exponential distribution has only one parameter but the Wald distribution

has two.

Another option discussed by Klauer and Kellen (2018) is a diffusion model for

modeling the process outcomes and process times together. For example, the Wiener

diffusion model without non-decision time seems to be a good option. In RT-MPT by

Klauer and Kellen (2018) for each process (outcome and times) three parameters are

needed (two process rates and one process probability). When using the Wiener drift

diffusion model without non-decision time to model the processes the number of required

parameters woul be the same.

The Wiener diffusion model (e.g., Ratcliff, 1978; Wabersich & Vandekerckhove, 2014)

is typically used in the context of decision tasks with two alternative choices. It provides

an elegant way of modeling frequency and latency data jointly. On a conceptual level

its core assumption is that the process of reaching a decision is an accumulation of

evidence or information over time and stopping at one of two barriers where enough

evidence for one or the other choice is gathered. The start z is somewhere between two

barriers – a lower at 0 and an upper at a – and the tendency for the process to drift

towards the upper barrier is denoted with v.

Figure 4.1 depicts such a model where the evidence accumulation leads to the

upper barrier (black path), i.e., to the corresponding outcome of the process (e.g., a

success in detecting a word). With this type of modeling processes it is only possible to

use processes having exactly two outcomes. If a process has more the model must be

transformed to fulfill this requirement, which is always possible.

4.3 Use of Density/Likelihood Functions

One problem already mentioned is the lack of a closed-form expression for the density

of a convolution in many cases. The density function of the RTs is needed in the MCMC

algorithm in order to use data augmentation for a more efficient Gibbs sampler (Albert

& Chib, 1993). In this data augmentation step the density for each possible path leading

to the same response category (e.g., responding “old” to an old word by detection or

by guessing) is compared by using ratios (for more details see Klauer, 2009; Klauer &

Kellen, 2018). Therefore, one can assign a probability to every path and sample one of

them in each MCMC iteration step. The likelihood functions are also needed for the

calculation of information criteria, like the deviance information criterion (Spiegelhalter

et al., 2002).

Since it is not possible to find a closed-form expression for a convolution of multiple

first-passage time distributions (and a motor-time distribution), another approach is
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FIGURE 4.1

Graphic Representation of a Wiener Diffusion Model for a Potential Process
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Note. The upper barrier is denoted with a, the relative starting point with w, and the drift rate with

v (depicted as an arrow). The lower barrier is denoted with 0. Above the upper barrier and below

the lower barrier the density for the corresponding responses – or rather outcomes in the context of

processes – is sketched. The black jittery line starting at aw and ending at the upper barrier represents an

exemplary evidence accumulation (random walk). The grey lines represent alternative exemplary evidence

accumulations, one for the same outcome and one for the other.

needed. Carlin and Chib (1995) provide a promising approach to solve the problem for

data augmentation. The idea is to treat each path as a separate model and calculate

Bayes factors for these models, which are nothing more than ratios. Therefore, one can

assign probabilities to the different paths leading to the same response category and

sample one of these paths in each MCMC iteration step.

This promising approach by Carlin and Chib (1995) cannot solve the problem of

calculating the information criteria. Therefore, model selection might not be possible or

would require a numerical approach.

4.4 Basis for Modeling Processes With a Wiener Diffusion

Model

The first-passage time PDF and CDF of the Wiener diffusion model can only be expressed

as infinite series (Blurton et al., 2012; Navarro & Fuss, 2009). For practical reasons

of computation these series need to be truncated at some point, i.e., only a specific

number of components is calculated. Blurton et al. (2012), Gondan et al. (2014), and

Navarro and Fuss (2009) derived upper bounds for the absolute approximation error,
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incurred by truncation, and for the number of components that is required to guarantee

a predetermined precision.

Unfortunately, calculating multiple components of a series can slow down compu-

tation. Therefore, it is even more important to have efficient optimization routines.

Feeding these routines with gradient information increases their efficiency.

There exist two different infinite-series expressions for the PDFs and CDFs – one of

which converges faster for small first-passage times and one converges faster for large

first-passage times. In Hartmann and Klauer (2020b) we derived the partial derivatives

of the first-passage time PDF and CDF for both series expressions. Since already the

PDF and CDF can only be represented as infinite series, so can the partial derivatives

thereof. Therefore we derived upper bounds for the absolute approximation error and

for the number of components that is required to guarantee a predetermined precision.

In addition Hartmann and Klauer (2020b) developed an R package for the calculation

of the partial derivatives
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Discussion

We successfully accomplished the three main goals. First, we implemented the RT-

MPT model class into R by developing an R package, called rtmpt. In addition, we

demonstrated that the algorithm underlying rtmpt is suitable for an RT-MPT model

and that the R package provides similar parameter estimation compared to the ones

in Klauer and Kellen (2018). Second, we extended the model class to enable the fit

of RT-MPT models with up to five identical processes on a path – or rather up to five

equal process times on a path. In addition, we demonstrated that the newly developed

algorithm for rtmpt that enables this is valid for an RT-MPT model. Third, we derived

the partial derivatives of the first-passage time PDF and CDF of the Wiener diffusion

model and developed an R package to use these derivatives. These derivatives can

be seen as a basis for efficiently modeling the processes within RT-MPT with Wiener

diffusion models. There are other related projects that we will work on or might be

interesting to do in the future.

One of the projects that we are working on concerns the robustness of the RT-

MPT estimation against the violation of the distributional assumptions underlying

the process times and motor times. We try to investigate how robust the estimates

are when using different process-time and motor-time distributions. As process-time

distributions we use the gamma distribution with a shape parameter of two (a.k.a.

Erlang distribution with shape of two), the Wald distribution (a.k.a inverse Gauss

distribution), and the first-passage time distribution of the Wiener diffusion model

without non-decision time. As a control we use the exponential distribution, which is

the assumed process-time distribution in RT-MPT (Hartmann et al., 2020; Hartmann &

Klauer, 2020a; Klauer & Kellen, 2018). As motor-time distributions we use Student’s

t distributions truncated from below at zero and with different degrees of freedom (5

and 15). As a control we use the normal distribution truncated from below at zero. So

far the results are quite mixed for the non-control conditions. Nevertheless, the results

suggest that using different process-time distributions in RT-MPT might be desirable.

Another project we have in mind is a sampling procedure to efficiently sample from

the first-passage time distribution of the Wiener diffusion model. In this project we will

use an adaptive sampling method based on Gilks and Wild (1992). For that the partial

derivative of the first-passage time PDF of the Wiener diffusion model with respect to t

is required.



22 Chapter 5

A more applied project might be a follow up on our paper Hartmann and Klauer

(2020a). In this paper we use the data from Province and Rouder (2012) with an

RT-MPT model based on an altered 2HTM to fit data from a two-alternative forced-

choice task. The task included a word-strength manipulation leading to three different

conditions: A target word was either seen once in the study phase, twice, or four

times. We used this data only to demonstrate the usefulness of our newly developed

algorithm. Nevertheless, Province and Rouder (2012) claimed that the mean RTs are

conditionally independent, i.e., conditioned on the mental state the mean RTs do not

depend on the stimulus condition. A mental state in this case might be the detection

of the target word. The stimulus condition in this case refers to the word-strength

manipulation. According to our findings in Hartmann and Klauer (2020a) we could not

support Province and Rouder’s (2012) conclusion. It would be interesting to further

investigate conditional independence with different RT-MPT models and/or different

manipulations (e.g., base-rate manipulation).

Mostly, the RT-MPT model class is applicable whenever the MPT model is applicable.

Erdfelder et al. (2009), for example, gives a broad overview of the psychological fields in

which MPT models are used. They name the MPT models typically used for each field.

Nevertheless, there are some restrictions to RT-MPT models. They can only be applied

whenever RTs are available. For example, when using a free-recall task we usually do

not have meaningful RTs. Therefore, extending the pair-clustering model (Batchelder

& Riefer, 1980, 1986) to an RT-MPT and applying it to a free-recall task would not be

feasible. The advantage of RT-MPT, thought, is that many unidentified MPTs become

identified once the models are extended to RT-MPTs (Klauer & Kellen, 2018).

With its possibility to estimate process times the RT-MPT model class has the poten-

tial to provide more insights into the cognitive mechanisms underlying the completion

of decision tasks. It allows for testing the order in which cognitive processes take place

as well as whether the completion time of two process outcomes is the same. Next to

questions from cognitive research RT-MPT models might also be of interest for research

about mental disorders. It could, for example, give an answer to whether there are

differences in the process times between a group of patients with a specific mental

disorder and a control group. Nevertheless, RT-MPT as it is implemented now cannot

be used as a diagnostic tool because of its hierarchical structure; The algorithm expects

more than one subject.

Next to different process-time and motor-time distributions, as discussed in Chapter

4, there are a few extensions one might want to introduce to RT-MPT. One of these

extensions could be the inclusion of a Bayes factor – or rather the calculation of the

marginal likelihood (the probability of the data given the model) – in order to have an

alternative method for model selection (e.g., Gelman et al., 2013) to the information

criteria already provided in Hartmann and Klauer (2020a). Bayes factors are analogous

to likelihood ratio tests in classical statistics. The Bayes factor is calculated by taking

the ratio of the marginal likelihoods of two models, p(y|M2)/p(y|M1), and if both models

have a priori the same probability, then the Bayes factor coincides with the probability
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of the second model, M2, given the data divided by the probability of the first model,

M1, given the data p(M2|y)/p(M1|y) (Gelman et al., 2013).

Another interesting extension might be the possibility to set process times equal –

or rather their distribution. So far, process times are only set equal if the underlying

processes are the same. For two different processes the process times differ, in general.

It might be of interest to set two process times equal, for example, when using a model

with different detection processes that are assumed to take the same time but have

different probabilities for successfully finishing. Suppose we have words from different

sources and these words need to be recalled. It would be a plausible assumption that the

probability for recalling words from different sources can differ but the time with which

they are recalled is the same. Or at least it might be interesting to test this assumption.

Another example would be when participants are required to give judgements about

the certainty with which they remember a word. Even though the probabilities for the

different judgements might differ, it is plausible to assume that the time to decide is

the same for all judgements.
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Appendix A

German Summary (Deutsche

Zusammenfassung)

Die Modellklasse der multinomialen Verarbeitungsbäume (MPT) ist sehr bekannt in

der Kognitionspsychologie. Mit Modellen dieser Klasse versucht man, kognitive Mecha-

nismen, die Entscheidungsaufgaben zugrundeliegen, zu erklären. Solche Mechanismen

beinhalten kognitive Prozesse und beschreiben, wie diese miteinander interagieren.

Mithand der Antworthäufigkeiten ist es möglich, die Wahrscheinlichkeiten für Prozes-

sausgänge zu schätzen.

Die Modellklasse der reaktionszeiterweiterten MPTs (RT-MPT; Klauer & Kellen,

2018) erweitert die MPT-Modellklasse, indem Reaktionszeiten zusätzlich zu den Ant-

worthäufigkeiten integriert werden. Diese erlaubt es, Prozess-Beendigungszeiten – die

Zeit bis ein Prozess in einem bestimmten Ausgang endet – und die Enkodierungs- und

Motorausführungszeit zu schätzen. Jeder Prozess hat zwei mögliche Ausgänge und

jeder mögliche Prozessausgang wiederum hat eine zugeordnete Wahrscheinlichkeit

und Prozess-Beendigungszeit. Die erste Implementierung von RT-MPT war in C++,

was es eher unzugänglich machte für potenzielle Nutzer, mal abgesehen von den

Entwicklern, und beinhaltete eine proprietäre Programmbibliothek. Deshalb war die

Implementierung weder einfach zu nutzen, noch kostenlos zu erhalten.

In dieser Dissertation erleichtere ich die Nutzung der RT-MPT-Modellklasse. In

drei wissenschaftlichen Artikeln entwickeln ich und meine Mitautoren und -autorinnen

ein Softwarepaket, das einfach zu nutzen, kostenlos und quelloffen ist, wir erweitern

das Paket, um noch mehr RT-MPT-Modelle fitten zu können, wir validieren den Al-

gorithmus des Softwarepakets, und wir legen eine Basis, um RT-MPT-Modelle, die

einen Wiener Diffusionsprozess annehmen, effizient modelieren zu können. In unserem

ersten Projekt integrieren wir die RT-MPT-Modellklasse in die Programmiersprache R,

indem wir ein sogenanntes R-Paket entwickeln. Ebenso validieren wir das resultierende

Softwarepaket und testen, ob es die gleichen Resultate liefert wie im originalen Artikel

von Klauer and Kellen (2018). Im zweiten Projekt erweitern wir die Modellklasse – bzw.

ihre Implementierung – so, dass RT-MPT-Modelle mit gleichen Prozessen auf einem

Pfad gefittet werden können. Aufgrund der Eigenschaften der vorherigen Likelihood-

Funktion war das bisher nicht möglich. Da sich der Algorithmus nun verändert hat,

validieren wir auch die neue Implementierung, um zu schauen, ob der neue Algorithmus
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richtig funktioniert. Im letzten Projekt leiten wir die partiellen Ableitungen der Dichte-

und Verteilungsfunktion der Absorptionszeit im Wiener Diffusionsmodell her. Wie

Klauer and Kellen (2018) andeuten, wäre das Wiener Diffusionsmodell eine geeignete

Option für die Modellierung von Prozessen. Es wäre eine konkurierende Alternative

zur momentanen Implementierung, in der die Prozess-Beendigungszeiten exponen-

tialverteilt sind (Klauer & Kellen, 2018). Partielle Ableitungen liefern Informationen,

die für effiziente Methoden der Parameterschätzung genutzt werden könnnen.
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