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1 Introduction

What I cannot create, I do not understand.

—Richard Feynman

Mathematical models are becoming increasingly important for describing, explaining, and pre-
dicting human behavior in terms of underlying mechanisms and systems of mechanisms. Al-
though the ontology of suchmechanisms remains largely unknown, their epistemic value and in-
ferential power are nowwidely acknowledged throughout the behavioral sciences. Broadly speak-
ing, whenever an assumed mechanism transforms information into behavior, it is referred to as
a cognitive process. Cognitive processes are the conceptual fabric used to fill the explanatory gap
between the mysterious firing of neurons and the mundane recognition of a long-forgotten ac-
quaintance in the morning train. Consequently, modelers of cognitive processes earn their liveli-
hood in an attempt tomake the “ghost in amachine” tractable by replacing the ghost with hidden
parameters embedded in an abstract functional framework.

The purpose of such parametric models is twofold. On the one hand, they can be viewed as
formal expedients for understanding the messy and noisy human data in much the same way as
themodels physicists employ tomake sense of the data coming from spiral galaxies and interstellar
clouds. On the other hand, parametric models can be viewed as behavioral simulators and used to
mimic the output of cognitive processes by generating synthetic behavior. Interestingly, there is
a strange asymmetry in the challenges surrounding these two goals. Simulating behavior requires
only specifying a cognitive model as a computer program and running the program with a de-
sired parameter configuration. It is thus a generative process mainly constrained by the creativity
and imagination of individual modelers. Differently, reverse engineering human data to recover
hidden parameters is hampered by two external factors: the resolution and abundance of data
and the availability of universal and efficient inferential methods. As for the latter, behavioral sci-
entists have often sacrificed fidelity and complexity in order to adjust their models not to reality
but to the limitations of existing inferential methods. Such a strategy is definitely viable in the
early (often linear and beguilingly clear) stages of scientific inquiry, but it does not live up to the
challenges and questions posed by later (often non-linear and disconcertingly fuzzy) stages.

Themain argument of this thesis is that questions of inferential tractability are of secondary im-
portance for enhancing our understanding of the processes under study. Accordingly, the core pur-
pose of this thesis is to develop frameworks which leave such questions to specialized “black-box”
artificial neural networks and enable researchers to focus on developing and validating faithful
“white-box” models of cognition. Instead of a ready-made solution, the thesis explores a begin-
ning of a solution. It presents a potentially fruitful coupling between human and artificial intel-
ligence, an approach which is expected to gain more and more momentum as the world fills with
artificial agents. Ultimately, this thesis strives to increase creativity by embracing complexity.

3



1 Introduction

1.1 Motivation and Scope

This thesis is motivated by the question of how to offload parameter estimation andmodel com-
parison onto specialized neural network architectures. Undoubtedly, parameter estimation and
model comparison are two of the most common and most challenging tasks in model-based be-
havioral sciences. Accordingly, for each of the two tasks, we will offer a general framework for
composing neural networks capable of bootstrapping a wide range of inference tasks. The main
principle will be to utilize prior domain expertise and guide these networks through simulations
to become “experts” in inferring hidden parameters fromdata or selecting between plausiblemod-
els of the data. The proposed frameworks are themselves embedded into the meta-framework of
Bayesian inference which embraces probability theory as the logic of science [77].

Why probability theory? Simply put, a probabilistic approach to inference is appealing, as it
provides consistent equations and principled methods for quantifying and communicating un-
certainty [22]. Correspondingly, doing Bayesian inference and data analysis is nothing but ap-
plying the basic rules1 of probability theory to amount of information gained through empirical
inquiry. Curiously, it is primarily in the behavioral sciences that researchers applying probability
theory are given the cultist label Bayesians and often seen as representatives of a statistical oppo-
sition against traditional (the cultist label being frequentist) methods. Accordingly, whenever the
reader encounters the termBayesian in this thesis, it should be read as using the rules of probability
theory to express uncertainty, update beliefs, revise knowledge, and inform scientific conclusions.

Probabilistic reasoning is hard and time-consuming. It was not until general-purpose comput-
ers had shrunk considerably in size that Bayesian inference became useful for handling non-trivial
practical problems. Until then, practitioners could leverage only a limited subset of the tools prob-
ability theory had to offer. Moreover, this restricted inference was further constrained by the abil-
ity to solve complicated integrals, or, as David MacKay puts it: “...a macho activity enjoyed by
those who are fluent in definite integration" [103, p. 319].

With the advent of high-performance computing2, Monte Carlo methods came to the rescue
of probabilistic inference, the most prominent algorithmic family being Markov chain Monte
Carlo (MCMC) methods [109]. Initially, MCMC proved instrumental in approximating the
unimaginable integrals which had been thwarting the solution of relevant problems in chemical
physics [141]. Today, the heirs of those rather crude grandfather sampling methods have become
the Bayesian gold standard across the sciences, with novel and interestingmodifications spawning
in scientific journals on a regular basis. The behavioral sciences are no exception to this trend,
being a field of both active application and development of novel Bayesian methods.

Notwithstanding the major contributions of MCMC methods to large-scale inference prob-
lems, they remain notoriously slow and sequential in nature [12]. These drawbacks can render
inference with highly complex models practically infeasible, but they also transfer to applications
of relatively simple models to big data where relevant computations need to be repeated for each
observation. Consequently, it is not uncommon for researchers to wait a week or two for estima-
tion algorithms tofinish, only tonotice afterwards that critical adjustments to the algorithmor the

1Even though the rules of probability theory themselves are basic and intuitive, the application of these rules in prac-
tice can be anything but basic.

2The term high-performance having, of course, only a temporal meaning within the context of a computing genera-
tion.
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1.2 Contributions

model necessitate rerunning the entire loop from scratch. The inferential matters become even
worse, when themodel itself cannot be specified in a nicely closed, analytic form, but is only avail-
able as aMonteCarlo simulator program. The latter can often leave potentially relevantmodeling
territories vastly unexplored and confine certain model classes to a purely Platonic playground.
Our goal is to provide an efficient and scalable framework for designing and testing solutions to
precisely those challenging situations encountered frequently by behavioral scientists. Moreover,
webelieve that our ideas canpositively impact computationalmodeling in research areas not solely
confined to the behavioral sciences. At a high level, our framework is purely simulation-based and
leverages the representational power of deep learningmethods to build reusable estimators for two
of themost important constructs in Bayesian inference: the posterior distribution and the evidence.
Further, it utilizes the concept of amortized inference to increase the inferential efficiency of these
estimators at every modeling step, from model development, to model selection. Importantly,
our framework includes methods for self-diagnosis of miscalibrated inference due to algorithmic
errors, which is an essential precondition for computational faithfulness in anyBayesian data anal-
ysis pipeline.
Beyond the development of a novel Bayesian framework for simulation-based inference, this

thesis presents some concrete applications to relevant research questions in cognitive modeling
and beyond. These applications demonstrate the utility of the framework for tackling challenging
cognitive models dealing with both simple (typically independent and identically distributed, or
i.i.d.) and more complex probabilistic structure (typically exhibiting temporal dependencies, or
non-i.i.d.). Moreover, the models considered in these applications are themselves novel and serve
the purpose to inspire further research and exploration in the corresponding areas.
Finally, the thesis includes a starter Python library for building own estimation or model com-

parison networks with minimal programming skills.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• Chapter 3 provides the necessary background and conceptual machinery for understand-
ing uncertainty quantification in the context of Bayesian inference. It then discusses the
challenges faced by standard Bayesian methods when applied to complex models and how
these affect the field of cognitive modeling in particular. We introduce the concepts of
simulation-based and amortized inference with neural samplers and set the stage for pre-
senting our BayesFlow framework.

• Chapter 5 introduces our general BayesFlow framework for solving the task of amortized
Bayesian parameter estimation. We demonstrate how to perform inference on data sets
with different sizes and probabilistic structure by using specialized network architectures
which preserve the probabilistic symmetry of the target Bayesian posterior. We formally
derive a training procedure which ensures that neural networks in our framework recover
the true target posteriors under perfect convergence of the optimization algorithm. We end
the chapter with a simulation-study demonstrating the utility of our method.
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1 Introduction

• Chapter 6 introduces our Dirichlet evidence network for solving the task of amortized
Bayesian model comparison. We explore a method to quantify absolute evidence as com-
pared to relative evidence through a specific form of regularization in a meta-probabilistic
framework. As in chapter 5, we show how to deal with variable numbers of observations
and different model/data types. We also derive a simulation-based training method which
ensures that evidential networks in our framework recover the true model probabilities
under perfect convergence of the optimization algorithm. We end the chapter with two
simulation studies using complex computational models from cognitive science and neu-
roscience.

• Chapter 7 introduces a visionary approach towardsmeta-amortized inference. It combines
both parameter estimation and model comparison into a single unifying framework and
presents initial conceptual results.

• Chapter 8 presents applications of the proposed Bayesian frameworks for model-based in-
ference on real data. It starts with a direct estimation of an information-theoretic model of
adaptive performance inspired by the Bayesian Brain Theory (BBT). Then, we describe a
parameter estimation study concerned with a set of novel models of decisionmaking. This
is followed by an application of a customdiffusionmodel to amassive data set of human re-
sponse times to disentangle questions of cognitive aging. Finally, we present an application
to Covid-19 outbreak modeling with a version of BayesFlow for dynamic models.

1.3 List of Scientific Publications of the Publication-Based

Dissertation

The central ideas put forward in this thesis have been explored in the following publications by
the author and his cooperators:

• S. T. Radev, U. K. Mertens, A. Voss, L. Ardizzone, and U. Köthe. “BayesFlow: Learning complex

stochastic models with invertible neural networks”. IEEE Transactions on Neural Networks and

Learning Systems, 2020, pp. 1–15. doi: 10.1109/TNNLS.2020.3042395

• S. T. Radev, M. D’Alessandro, P.-C. Bürkner, U. K. Mertens, A. Voss, and U. Köthe. “Amortized

Bayesian model comparison with evidential deep learning”, Manuscript submitted for publication

• S. T.Radev, A.Voss, E.M.Wieschen, andP.-C.Bürkner. “AmortizedBayesian inference formodels

of cognition”. International Conference on Cognitive Modelling (ICCM) Conference Proceedings,

2020

• M. D’Alessandro, S. T. Radev, A. Voss, and L. Lombardi. “A Bayesian brain model of adaptive

behavior: an application to theWisconsin Card Sorting Task”. PeerJ 8, 2020, e10316

The author also contributed to the following publications which are related to the core topics of
the current thesis:
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1.4 Notes on Notation

• M. von Krause, S. T. Radev, and A. Voss. “Processing speed is high until age 60: insights from

Bayesian modeling in a one million sample (with a little help of deep learning)”, Manuscript sub-

mitted for publication

• S. T. Radev, U. K. Mertens, A. Voss, and U. Köthe. “Towards end-to-end likelihood-free inference

with convolutional neural networks”. British Journal of Mathematical and Statistical Psychology

73:1, 2020, pp. 23–43

• E.M. Wieschen, A. Voss, and S. Radev. “Jumping to conclusion? a lévy flight model of decision

making”. TQMP 16:2, 2020, pp. 120–132

• S. T.Radev, F.Graw, S.Chen,N.Mutters, V. Eichel, T.Bärnighausen, andU.Köthe. “Model-based

Bayesian inferenceofdisease outbreakwith invertible neural networks”. arXiv preprint arXiv:2010.00300,

2020

• S. Bieringer, A. Butter, T. Heimel, S. Höche, U. Köthe, T. Plehn, and S. T. Radev. “Measuring

QCD splittings with invertible networks”. arXiv preprint arXiv:2012.09873, 2020

• L.Konicar, S. Radev, K. Prillinger,M.Klöbl, R.Diehm,N. Birbaumer, R. Lanzenberger, P. Plener,

and L. Poustka. “Volitional modification of brain activity in adolescents with Autism Spectrum

Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback”. NeuroImage: Clinical,

2021, p. 102557

• U.K. Mertens, A. Voss, and S. Radev. “ABrox—A user-friendly Python module for approximate

Bayesian computation with a focus on model comparison”. PloS one 13:3, 2018, e0193981

1.4 Notes onNotation

Throughout this thesis, we will follow some simple conventions for consistent mathematical no-
tation. We will denote scalar variables by lowercase italic, e.g., x, y, z, vectors by lowercase bold
italic, e.g., x,y, z, and matrices by uppercase bold italic letters, e.g.,X,Y ,Z . Data sets com-
prising multiple observations (e.g., multivariate responses of a single participant to a particular
task) will be denoted as {xn}

N
n=1 = {x1,x2, ...,xN} ≡ x1:N , whereN indicates the number

of observations. Occasionally, and when possible, we might stack all observations comprising a
data set row-wise into a matrix, {xn}

N
n=1 ≡ X . Whenever the observations are assumed to be

time-dependent, we will use T to denote the total number of observations in the resulting (multi-
variate) time-series x1:T . Occasionally, we will include the superscript obs to denote an actually

observed data set, in contrast to a simulated one (i.e., x
(obs)
1:N vs. x1:N ).

Wewill always collect theparameters of amathematicalmodel into a vectorθ = (θ1, θ2, ..., θD),
and reserve the letterD for the dimensions of the parameter space. Finally, wewill collectively refer
to all trainable parameters of a neural network (e.g., weight matrices, biases, activation function
parameters) as a vector (e.g., φ,ψ, ...) even though these might be distributed across different
functional components or layers of the network. Importantly, neural network parameters are not
to be confused with the parameters of the mathematical model of interest, as the former are unin-
terpretable and high-dimensional, whereas the latter are carriers of theoretical value and usually
low-dimensional.
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1 Introduction

Table 1.1: Table of important symbols and their corresponding description

Notation (Symbol) Meaning

x,x1:N observed or simulated data point, data set
θ,ω parameters of a mathematical model (simulator)
z latent variable learned by a (deep) generative model
XN ,Θ,Ξ data space, parameter space, noise space
M,Mj candidate model set, model index
g generative (forward) model / simulator
p, q probability density (mass) functions
φ,ψ trainable parameters of neural networks
fφ, hψ functions parameterized via neural networks
E[·] expected value of a random variable (vector)
KL[p || q] Kullback-Leibler divergence between densities p and q
N number of observations in a (simulated) data set
D number of parameters / dimensions of the parameter space
B number of simulations per training step / batch size

For the most part of this thesis, we will be concerned with (absolutely) continuous random
vectors and their associated probability density functions (pdfs). For the sake of readability, the
latter will be denoted by p even when they refer to pdfs of different random vectors defined on
different spaces, whichwill be clear from the function arguments. For instance, wewill write p(θ)
for the (prior) probability density of the parameter vector θ ∈ Θ instead of pΘ(θ). Additionally,
each pdf of interest will be implicitly associated with a corresponding probability measure P .
Throughout the text, we will use density and distribution interchangeably.
By means of a slight abuse of notation, when a density function is approximated via a neural

network with trainable parametersφ, we will often write qφ(θ) ≡ q(θ |φ), or, for a conditional
density, qφ(θ |x) ≡ q(θ |x,φ). In this way, (i) we align our notation to the predominant no-
tation in the literature on deep generative modeling; (ii) implicitly denote the dependence of the
approximate density on the neural network parameters; (iii) make it immediately clear which is
the density being approximated, e.g., qφ(θ |x) approximates p(θ |x) by means of neural net-
work parametersφ.

The most important symbols and notation used throughout the text are summarized in Table
1.1.
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2 Models of Cognition

Murky thoughts, like murky waters, can serve two purposes only: to hide what lies be-

neath, which is our ignorance, or to make the shallow seem deep.

—Giulio Tononi

Reasoning with models of empirical phenomena lies at the very heart of science. Models abstract
away irrelevant details and focus attention on the theoretically relevant aspects of complex sys-
tems. Ideally, they simplify, but do not oversimplify reality. The importance of models for scien-
tific progress is twofold. On the one hand, theories can be systematically instantiated and tested
by specifying a mathematical model and inferring its hidden properties from data. On the other
hand, competing theories can be tested against one another via formal model comparison. Thus,
model-based reasoning complements verbal reasoning insofar as it reduces ambiguity and trans-
lates “murky” statements into precise and directly quantifiable hypotheses. Whether the latent
properties of cognitive models represent faithful descriptors of the unobservable causes of behav-
ior remains an open question whose surface we will only scratch here. The main purpose of this
chapter is to establish the notion of a cognitive model, fix a useful notation, and introduce the
concept of a likelihood function.

2.1 Cognition and Computation

Cognitivemodels exist to help cognitive scientistsmake sense of observed behavioral data in terms
of unobservable (latent) cognitive processes, such as attention, memory decay, evidence accumu-
lation, or belief updating, to name just a few [45]. Such models have been around for centuries
(see Figure 2.1), with themost notablemodern twists being a shift in contextualization (i.e., in the
reference theoretical framework) and an increase in mathematical formalism. Whether cognitive
processes actually exist as functional entities or simply represent useful metaphors psychologists
live by, is a question that currently extends from philosophy down to single-cell neuroscience.

In the year 1994, Francis Crick, essentially reinventing naturalism, formulated his astonishing
hypothesis in a rather flowery way:

The Astonishing Hypothesis is that “You”, your joys and your sorrows, your mem-
ories and your ambitions, your sense of personal identity and free will, are in fact
no more than the behavior of a vast assembly of nerve cells and their associated
molecules. As Lewis Carroll’s Alice might have phrased it: “You’re nothing but a
pack of neurons”. [28, p. 3]

At the time of writing, hardly any cognitive scientist would find the relationship between brain,
cognition, and behavior alien or astonishing. In fact, this relationship is the explicit or implicit
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Figure 2.1: Robert Fludd’s “model” of a mind in the world from 1619 [15]. The diagram can be seen as an
early predecessor of modern cognitive architectures incorporating cognitive functions such as
perception, memory as well as an explicit flow of information between themind and the world.
Cognitive functions are localized in the head, even though neurons are yet to be discovered.

working hypothesis behind some of themost prominent cognitive architectures andmodel classes
[91, 153, 162]. However, few would contend that even a complete description of all microtubules
in each and every neuron in the brain will ever be sufficient to explain why a grandmaster under
time pressure failed to spot an obvious checkmate in a crucial game of chess. Invoking such an
explanation appears to require more than just a description of the behavior ofmolecules and neu-
rons. In otherwords, the “nomore” and the “nothing but” parts of the astonishing hypothesis are
what provokes a certain theoretical dissatisfaction. Perhaps going up to a complete understand-
ing of neural firing patterns would resolve the dissatisfaction. But how far up should one climb
the reductionist ladder until a satisfactory level of analysis for cognition is reached? This is an ex-
ample of the so called bottom-up problem, starting from the small and tractable constituents of a
presumably complex process and building up towards its synthesis.
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In contrast, onemay start with a handy catalogue of cognitive processes inherited from the dic-
tionary of psychology and look down for the “neural correlates” of these processes. Necessarily,
such an approach rests on the assumption that there will be a serendipitous one-to-one corre-
spondence between cognitive and neural processes. This is an example of the top-down problem,
starting from the processes and analysing them in terms of their constituents.
Undoubtedly, both approaches bear obvious risks. Following a purely bottom-up research

agenda, we might run into the problem of being unable to reconstruct the entire list of assumed
cognitive processes. Following a purely top-down approach, we might not end up discovering
the neatly corresponding constituents we are looking for, leaving us with a list of substance-free
metaphors.
It is perhaps no coincidence, that neuroscientists favor a predominantly bottom-up approach.

For instance, György Buzsáki [18] outlines the threemissing pieces for a purportedly complete un-
derstanding of how thebrain generates behavior. These are the understanding of (i) the dynamical
structural organization of the brain; (ii) the physiological functions of its constituents; (iii) and
the computational mode of operation that enables the neurons in a given anatomical hardware to
execute actions [18, p. 24]. The eventual synthesis of this knowledge is expected to provide a sat-
isfactory explanation for all kinds of behavior in terms of underlying neural mechanisms. In the
process of studying and systematizing these mechanisms, only the neurophysiologically plausible
cognitive constructs would therefore stand the test of rigorous empirical verification.

Cognitive scientists, on theotherhand, preferMarr’s interpretative framework for talking about
cognitive processes [106]. Its starting point is the basic concept of information processing, that is,
the detectable (i.e., the difference that makes a difference) transformation of information (e.g.,
wavelengths becoming cone cell responses or the ringing of the phone becoming an increase in
heart-rate variability). It then distinguishes three levels of analysis for understanding any infor-
mation processing system: (i) computational theory - concerning the goals (the why) of the system
and its computational logic; (ii) representation and algorithm - concerning the representation of
input and output as well as the step-by-step instructions for carrying out the input-output trans-
formation (the how); (iii) hardware implementation - concerning the physical realization of the
algorithm [106, p. 25].

Accordingly, we can equate cognitive processes with the algorithms transforming neural repre-
sentations into observed behavior (or into further representations), without committing to a par-
ticular physical ontology. Thus, computational models of cognition (cognitive models, for short)
are our best instruments to learn something about these algorithms from behavioral data alone,
without resorting to the expensive methods of neuroscience. Ideally, the functional form and pa-
rameters of cognitivemodels would capture themost important algorithmic and representational
characteristics of the systemunder study. At the same time, the assumed hardware underpinnings
of a cognitive process should impose a number of parametric and functional constraints (e.g., the
maximal speed of information processing), if a model of the process is to be taken seriously by
substantive neuroscientists.
Cognitivemodels are occasionally termed computationalmodels, highlighting their algorithmic

essence and their conceptual relatedness with notions borrowed from computer science. Even
though neurophysiological plausibility seems to be a prerequisite for the ultimate validation of
any cognitive model, it is often ignored in favor of a strong embedding in the nomological nexus
of psychology. Accordingly, as long as the parameters of a cognitive model are interpretable with
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a reference to an overarching psychological theory, the actual neuroanatomical hardware becomes
of secondary importance. In addition, neurophysiological plausibility becomes even less impor-
tant if the presumed cognitive processes are eventually to be implemented by goal-directed artifi-
cial agents. In the latter case, an artificial agent may perfectly mimic human or animal behavior
without the need or physical possibility to invoke any neural representations. As a consequence,
the concept of a cognitive process may become decoupled from its neural realization and thus be-
come synonymous to an algorithm, which is per definition independent of its implementation.
Nevertheless, for those striving to infer something about real brains from real behavioral data,
the hope remains that their models are at least able to tap into the distant echo of neural system
parameters within a coherent “neurocognitive” framework.
Future theoretical developments may also see phenomenological plausibility come as an addi-

tional criterion for models representing cognitive processes which are experienced in some way
(e.g., the experience of coming to a decision as compared to all non-experienced factors that con-
tributed to the decision). However, the fact that information processing is experienced in a partic-
ular way seems less important for cognitive modelers than the functional task of describing how
information is transformed in a way that ultimately leads to manifest behavior. And even though
simulating experience appears to be unimaginably hard (except perhaps for the brain), we can eas-
ily “build” abstract machines which simulate behavior in various experimental and observational
contexts by executing a series of well-defined computational steps. It is this property whichmakes
model building a creative process and cognitive models generative in nature.

2.2 Behavioral Simulators

Formally, we can represent a cognitive model as a function g : Θ × Ξ → X which generates
observable quantities x ∈ X from a particular configuration of the hidden parameters θ ∈ Θ
and an independent source of noise ξ ∈ Ξ. The function is typically realized as a Monte Carlo
computer simulation which mimics quantifiable manifestations of actual behavior. Simulation
programs involving random number generation are also known asMonte Carlo engines or prob-
abilistic programs.
Since humans rarely behave the same way even when provided with the same information, the

stochastic component ξ in the model formulation ensures that g is non-deterministic given the
same time-invariant parameter configuration θ. Ideally, the noise in a cognitive model should
capture all non-modeled factors which nevertheless influence the generation of behavior, but it
may also reflect inherent randomness of the cognitive system under study. In the latter case, the
noise distribution might itself contain learnable parameters which are part of θ, so it should be
denoted as p(ξ |θ). Thus, the general functional form of a (stochastic) cognitive model is:

xn = g(θ, ξn) with ξn ∼ p∗(ξ) (2.1)

where the subscript n indicates that the simulator can be run repeatedly with the same parame-
ter vector to yield an entire data set {xn}

N
n=1 ∈ XN and p∗ denotes the true underlying noise

distribution. Usually, this distribution is unknown and its form needs to be either theoretically
deduced or approximated ad hoc via a simpler distribution p from which random samples can
easily be obtained (e.g., Gaussian, Poisson).

12



2.2 Behavioral Simulators

The model form in Equation 2.1 represents a memoryless or a stateless process: each run of
the simulator with a fixed parameter combination is independent of the previous runs and does
not influence future runs. As we will show later, such models generate data sets consisting of
independent and identically distributed (iid) observations. More complexmodels involving some
form of memory can be formulated by a recursive dependence of the simulator on the previous
observation:

xn = g(xn−1,θ, ξn) with ξn ∼ p∗(ξ) (2.2)

or by introducing a persistent memory variable ωn which is updated after each simulation run
and may itself be unobserved and treated as a time-varying parameter:

(xn,ωn) = g(ωn−1,θ, ξn) with ξn ∼ p∗(ξ) (2.3)

Importantly, such stateful models give rise to more complex sets of observations which are no-
longer i.i.d. and thus need to be tackled differently than i.i.d. observations. Accordingly, a major
aim of this thesis is to develop and validate a framework for performingmodel-based inference on
both i.i.d. and non-i.i.d. observations. In anticipation of future modeling challenges including
joint models of neural and behavioral data as well as more unstructured data such as graphs, text,
ormotion time-series, wewill ensure that our framework is extendable to incorporate these future
challenges. We further anticipate that our ideas will be potentially useful in different fields having
embraced model-based reasoning and inference.

Scientifically useful cognitive models should work both forward and backward. Given a set of
parameters, researchers should be able to generate artificial observations and data sets which are
indistinguishable from their real counterparts even when scrutinized by expert observers or sub-
jected to rigorous statistical tests. Conversely, given only a set of observations, researchers should
be able to recover the hidden data-generating parameters which are seen as epistemically valuable
explanans of the data. We call this the inverse inference problem.

As already briefly mentioned in the introduction, the two tasks are notably asymmetric with
respect to the computational and epistemic burden they carry. To further appreciate this asymme-
try, consider the example of an ice cube left at room temperature to eventually become a puddle
of water [154, p. 196]. Having a model of the process of fusion, one can feasibly simulate how
an arbitrary ice cube transitions into a puddle over time (forward inference). However, suppose
that you are presented with only a puddle and tasked to recover an unobserved cube (inverse in-
ference). Even though you can infer something about the volume or the density of the ice cube,
the task as a whole appears insurmountable, since there are different cubes that could havemelted
into the same puddle, which presents a case of inherent non-identifiability. What is more, there
is uncertainty about the model of the ice cube itself, since there is a multitude of ice forms, not
necessarily cubic, that could have resulted in the same puddle.

Researchers striving to understand andmodel how “themind can occur in a physical universe”
[2] face a similarly tough challenge. When it comes to modeling cognition and behavior, this
challenge is further aggravated by the possibility that there could have been no ice cube to begin
with, but an entirely different puddle-generating process.

In short, forward inference is easy, whereas inverse inference is hard. Forward inference requires
“only” the ability towrite down themodel as a simulator program in a programming language and
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run the simulation with the desired set of parameters. It also requires creativity and theoretical
insight (as well as acceptance by the community of other modelers). Inverse inference, on the
other hand, requires invoking additional estimation procedures, largely external to the model or
the modelers themselves. Further, it implies facing a large portion of epistemic uncertainty. In
addition, estimation procedures are impeded by the following properties of complex simulators:

1. The simulator is typically non-deterministic, so that there is intrinsic uncertainty about the
true value of θ.

2. The simulator is typically not information-preserving, so that there is ambiguity among
possible values of θ.

3. The simulator is typically too complex to admit a closed-formmathematical expression for
evaluating the likelihood of θ.

A multitude of inference frameworks with a varying degree of generality have been proposed for
addressing problems of inverse inference. The most prominent among these are manual tun-
ing, parameter search methods, kernel methods, optimization methods, maximum likelihood,
maximum-a-posteriori (MAP inference), variational inference, fully Bayesian inference, approxi-
mate Bayesian computation (ABC), machine learning approaches as well as various hybrid meth-
ods [12, 29, 52, 105, 123, 136, 140, 142, 150]. A comprehensive review of the multiverse of methods
for inverse inference is beyond the scope of this work (but see Chapter 4 or the excellent review by
[27] for a broad classification). Essentially, all approaches for inverse inference optimize a trade-off
between efficiency, scalability, accuracy, and practical utility. As there is no free lunch in capital
markets, there is no silver bullet in statistical inference. Put differently, there is no method or
framework that simultaneously maximizes all of the above criteria and the best method will be
application-dependent.
This thesis focuses on scaling and utilizing fully Bayesian inference for very complex (often

deemed intractable) models exhibiting all three inferential predicaments. In the next chapter, we
will see why such models necessitate a simulation-based approach to Bayesian inference. Before
we conclude this chapter, however, a word on the concept of likelihood seems warranted.

2.3 The Likelihood

When lookedupon through aprobabilistic lens, the outputs of a cognitivemodel canbe associated
with some (potentially very complex) probability distribution. This distribution is referred to as
the likelihood and denoted as p(x |θ). Loosely speaking, when evaluated, the likelihood returns
the relative probability of an observation x given a set of parameters θ. When the parameters are
systematically varied, the likelihood can be used to quantify how well each model instantiation
fits the data.
If the likelihoodhas a knowndistributional form (e.g., Gaussian, Laplace,Dirichlet), themodel

in Equation 2.1 can be formulated entirely in terms of the likelihood. Moreover, in these simple
cases, the likelihood can be evaluated analytically or numerically for any pair (x,θ). In a sense, all
stochastic models have a dual generative representation:

xn ∼ p(x |θ) ⇐⇒ xn = g(θ, ξn) with ξn ∼ p(ξ) (2.4)
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where the likelihood function p(x |θ), being a probability distribution itself, naturally captures
the effects of the extrinsic stochastic factor ξ. Note, that this representation can be trivially ex-
tended to incorporate models with memory (Equations 2.2 and 2.3). In fact, each stochastic
model viewed as aMonte Carlo simulator defines an implicit likelihood given by the relationship:

p(x |θ) =

∫

Ξ
δ(x− g(θ, ξ)) p(ξ |θ) dξ (2.5)

where δ(·) is the Dirac delta function and the integral runs over all possible execution paths of
the stochastic simulation for a fixed θ. For most complex models, this integral is analytically in-
tractable or too expensive to approximate numerically, so it is much easier to specify the model
directly in terms of the simulation program g instead of using the likelihood. However, according
to Equation 2.4, we can still sample from the likelihood by running the simulator with different
Monte Carlo realizations of ξ.

It is at this point where likelihood-based and simulation-based inferencemethods diverge. The
former require the ability to evaluate the likelihood for any pair (x,θ). The latter require only
the ability to sample (simulate) arbitrary pairs (x,θ) from the likelihood1. In the next chapter, we
will see how the inability to evaluate or derive the likelihood prohibits standard Bayesian meth-
ods. Wewill then briefly peruse the frontier of simulation-based inference before introducing our
frameworks for parameter estimation and model comparison.

1Although the literature has adopted the term likelihood-free inference, we will completely avoid it in this text, since
it incorrectly implies the absence of a likelihood, even though the likelihood is implicitly defined via the action of
the simulation program. It is the calculation of its actual numerical value for simulated or real observations which
is impossible. We will therefore prefer the term simulation-based inference, since it unambiguously captures the
essence of the task.
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It is an extraordinary feature of science that the most diverse, seemingly un-

related, phenomena can be described with the same mathematical tools.

—Benoit Mandelbrot

Probability theory is the language for describing uncertainty with mathematical objects. Uncer-
tainty is not merely a philosophical phantasm or a convenient excuse for the erroneous forecasts
of meteorologists, but rather a fundamental epistemic basis for decisionmaking in an incomplete
universe. Scientists face uncertainty both in their academic and private lives. Finite data, approx-
imation errors, noisy measurements, and inherently stochastic models are the common culprits
for cultivating the habit of reporting some confidence measures alongside point estimates. But
also everyday questions such as "Will it rain tomorrow?", "Which party is likely to win the elec-
tion?", or "What is the likelihood of encountering a dragon in the park tonight?" call for reasoning
with a varying degree of confidence. Since the core topic of this thesis ismodel-based inference, we
will see in this chapter howBayesianmethods provide a self-consistent framework for uncertainty
quantification and communicationwhen trying to extract cognitivemodels frombehavioral data.
Apart from the parlor of behavioral sciences, Bayesianmethods have been employed for tasks as di-
verse as predicting global equity indices [73], inferring latent infectious disease dynamics [42], and
evaluating forensic DNAprofiles [9].Henceforth, we will assume the utility of Bayesianmethods
as given and proceed to the conceptual and mathematical details of Bayesian inference.

3.1 From Prior to Posterior

The core mathematical workhorse in Bayesian probabilistic reasoning is the famous Bayes’ rule
[52], which specifies how to update prior knowledge about a given quantity upon making an in-
formative observation. In cognitive modeling, the quantities of interest are the parameters of a
cognitive model, which capture relevant computational characteristics of the process under sci-
entific scrutiny. Thus, when collecting behavioral data, we ultimately strive to increase our knowl-
edge about these parameters as a proxy for understanding the assumed cognitive processes.

The point of departure in Bayesian inference is the prior distribution (or just prior1, for short),
denoted as p(θ). Ideally, the prior is supposed to capture both what we already (believe to) know
about the parameters, but also what we still do not (believe to) know. Knowledge is expressed
through a reasonable domain and concentration of probability density (i.e., our “best” guess).
Lack of knowledge is expressed through the spread of probability density over the domain (i.e.,

1Whenever amodel has amulti-dimensional parameter space, one speaks of a joint prior highlighting the fact that the
the distribution p extends over multiple parameters (dimensions). Correspondingly, one speaks of a joint posterior
when referring to the updated distribution of multiple parameters.
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our uncertainty about the “best” guess). Tomake this idea concrete, Figure 3.1 depicts three one-
dimensional priorswith the same average value of zero but different allocations of uncertainty and
belief.

Even though the prior is typically defined as an unconditional density, this definition is merely
an aesthetic consideration, since knowledge and uncertainty are fundamentally contextual. Thus,
p(θ) is really a shorthand for p(θ |C), where C is a placeholder for all contextual information,
such as previous research, theoretical constraints, model assumptions, and cultural preferences.
Indeed, one of the greatest appeals (and, perhaps, at the same time, greatest deterrents) of Bayesian
inference is that it allows to systematically and explicitly incorporate contextual information.

In a sense, Bayesian inference does awaywith the illusion of objectivity by allowing subjectivity
to be expressed explicitly and transparently. Accordingly, one might question the specification of
p(θ |C) on empirical or theoretical grounds and propose p(θ |C ′) as an alternative. In this case,
the difference in contextual information leads to different epistemic states prior to observing any
new data and potentially different conclusions after observing some data2.

The process of knowledge updating in Bayesian inference essentially consists in transforming
the prior into the posterior according to the well known Bayes’ rule:

p(θ |x) =
p(x |θ) p(θ)

p(x)
=

p(θ,x)

Ep(θ)[p(x |θ)]
(3.1)

where p(x |θ) denotes the likelihood function, as discussed in the last chapter, and p(θ |x) de-
notes the posterior given some observation x. In the context of model-based inference, attain-
ing the posterior corresponds to Bayesian parameter estimation and is sometimes referred to as
inverting the likelihood, due to the reflection of the arguments across the | symbol. The denom-
inator p(x) in the second term of Equation 3.1 is known as the evidence and represents a nor-
malizing constant for the posterior. The equivalent denominator in the third term rephrases the
evidence as the expectation of the likelihood with respect to the prior, that is, Ep(θ)[p(x |θ)] =∫
Θ p(x |θ)p(θ)dθ. The latter definition underlines the useful interpretation of the evidence as
an average over all possible θ or, equivalently, as amarginal likelihood. Even though the marginal
likelihood is usually bypassed in parameter estimation tasks due to the obvious proportionality

p(θ |x) ∝ p(x |θ) p(θ), (3.2)

it becomes a key object in the context of Bayesian model comparison.

Importantly, all distributions in Equation 3.1 are implicitly conditioned on a given generative
model g, in addition to unspecified contextual information C . Looking at the computational
definition of the posterior, another consequence of Bayesian inference stands out, namely, that
different observations will lead to different updated epistemic states. Thus, observingx′ will gen-
erally elicit a different change in knowledge, that is, p(θ |x) 6= p(θ |x′), and, again, a poten-
tially different conclusion based on that modified knowledge3. This property seems desirable, as

2The influence of different prior specifications onmodel-based inference andmodel-derived decisions can be system-
atically investigated and quantified via prior sensitivity analysis [7].More on this in Chapter 7.

3However, if the observations are equally informative or equally uninformative, the two posteriors may be the same.
In general, the information gained by observing different states of the world will be different.
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Figure 3.1: Three different ways to express prior knowledge and uncertainty about a single parameter θ in
a probabilistic way. The left panel depicts a uniform prior around 0 which assigns constant
density to values within the interval [−6, 6] and treats all values outside this interval as literally
impossible. The middle and right panel depict symmetric stable priors [179] around 0 which
assign highest density to the central value of 0 and exponentially decaying density to values di-
verging from the center. Note, that the distribution in the right panel appears shorter than its
normal counterpart in the middle panel, since it has thicker tails and treats values farther from
0 as less improbable.

it captures the (rather trivial) intuition that two learners presented with different facts will learn
different things.

A further desirable property of Bayesian inference is that it allows the simultaneous or sequen-
tial integration of all available information (i.e., yesterday’s posteriors become today’s priors).
Provided that information does not decay between sequential updates, both simultaneous and
sequential updating should lead to the same endpoint posterior. The latter method is especially
useful when data are collected at different points in time or arrive as a stream of observations.
Curiously, even though often cited as a crucial asset of Bayesian inference, sequential updating is
largely underutilized in behavioral research4.

3.2 Uncertainty Reduction and Bayesian Surprise

The transition fromprior toposterior essentially conveys a reduction inuncertaintybrought about
byobserving reality. Equivalently, it canbe seen as communicating the gain in information achieved
by querying nature through an empirical endeavor. Accordingly, we expect the posterior to be
narrower or sharper than the prior, as the opposite would imply a loss of information through
observation - a scenario which appears rather paradoxical. However, it is reasonable to expect cir-
cumstances when the posterior will exactly equal the prior, namely, whenever the data carry no
information about the parameters of interest.

The concept of posterior contraction formalizes the idea that the posterior should get sharper
as the numberN of available observations increases. In the simplest case, the posterior variance
should decrease at rate 1/N , but amore nuanced behavior can occur formore complexmodels in-
ducing, for example, multi-modal or asymmetric posteriors. In general, the posterior contraction
(PC) formultivariate posteriors can be formally expressed as a ratio between generalized variances:

4And for good reasons, since updating turns out to be technically hard if the posterior is represented only as random
draws (e.g., as provided byMCMC algorithms).
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PC[θ |x] = 1−
det(Cov[θ |x])

det(Cov[θ])
(3.3)

where Cov[θ |x] and Cov[θ] denote the posterior and prior covariance matrices, respectively.
Posterior contraction near zero indicates that the data contribute little to nothing to reducing
prior uncertainty about θ. Posterior contraction near one indicates a large reduction in prior
uncertainty after accounting for the data [144]. Note, that Equation 3.3 provides local (i.e., per-
observation) information about information gain. If one is interested about global (i.e., in expec-
tation over all possible observations) information gain for a particular model, then the expected
posterior contraction (EPC) should be considered:

EPC[θ |x] = 1− Ep(x)

[
det(Cov[θ |x])

det(Cov[θ])

]
(3.4)

Accordingly, different model parameterizations can be compared with respect to their expected
information gain by computing the corresponding EPCs. However, the EPC will usually be in-
tractable for complex models, so it needs to be approximated via its empirical mean over a suf-
ficiently large number of different observations. For most non-trivial models, this will only be
feasible in an amortized inference setting (to be discussed in the next chapter) which makes infer-
ence globally efficient.
Notably, posterior contraction only considers the variance, that is, the second moments of the

prior and posterior distributions. However, other differences between prior and posterior may
manifest themselves in differences between higher-moments of the distributions. A concept for
quantifying arbitrary differences between prior and posterior is the Bayesian surprise, which can
be defined as the Kullback-Leibler (KL) divergence between the two densities:

B = KL[p(θ |x) || p(θ)] (3.5)

=

∫

Θ
p(θ |x) log

(
p(θ |x)

p(θ)

)
dθ (3.6)

Importantly, the Bayesian surprise is non-negative and equals zero if and only if the two densities
are equal. In information theory, this quantity is termed the relative entropy, which, in a Bayesian
context, represents the information gained by replacing the prior with the posterior. The units
of information are then determined by the base of the logarithm. The expected Bayesian surprise
(EBS) then encodes the average information gained from applying a particularmodel to the entire
data space. If evaluation of the prior and posterior densities is analytically tractable, the empirical
approximation of the EBS can therefore be used to quantify the impact of the data on Bayesian
updating5.
Global information gain and uncertainty reduction are especially useful in the model develop-

ment phase, since they can inform researchers about the general utility of a computationalmodel.
Accordingly, a researchermay experiment with different theoretically plausible parameterizations
of a model and prune those which result in a poor information gain. Such an approach involves

5In cases where even approximating the (expected) Bayesian surprise is infeasible, an integral metric such as the max-
imummean discrepancy (MMD, [61]) can be used to define Bayesian surprise as well.
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performing repeated simulations from each model and then obtaining a posterior for each single
simulation andmodel6. Notably, this approach can quickly become practically infeasible even for
a few simulations if estimating the posterior is computationally demanding. Again, we will see in
later sections why efficient amortized inference is particularly helpful for such undertakings.

3.3 Types of Uncertainty

The notion of uncertainty is central to scientific and daily life. However, in most research con-
texts dealing with probabilistic matters, it is often useful to introduce a taxonomy of uncertainties.
A canonical approach in predictive modeling draws a distinction between aleatoric (sometimes
called ontic) and epistemic uncertainty [74, 82].

Broadly speaking, aleatoric uncertainty is caused by intrinsic randomness, whereas epistemic
uncertainty is brought about by ignorance. To illustrate this distinction with a (rather trivial)
example [74], consider a coin-flipping game taking place in Bulgaria. A probabilistic model of
the coin-flipping process could inform us about the likelihood of obtaining head or tail on any
given toss. Further, assuming our probabilistic model is calibrated to reality, we can derive from it
the expected value of the coin-flipping game and use decision theory to select certain actions (i.e.,
whether to bet my watch on the next toss). However, our model cannot foretell the concrete fu-
ture outcome due to aleatoric reasons (matters of statistical physics aside), so there is uncertainty
regarding the future possession of my watch. Differently, one might be equally uncertain about
the meaning of the word “ezi” in Bulgarian. Yet the possible answers (and corresponding proba-
bilities) are the same as before: head or tail. In this case, the ensuing uncertainty is caused purely
by our lack of linguistic knowledge (i.e., epistemic uncertainty).

It has been argued that distinguishing between aleatoric and epistemic uncertainty constitutes a
so-called distinction without a difference [154], that is, one without any practical consequences for
decision makers. However, since ignorance (as opposed to intrinsic randomness) can in principle
be reduced or even removed with additional information, it appears that pinpointing the source
of uncertainty implies different handling of uncertainty. Thus, in our coin-flipping game, one can
easily get rid of the epistemic uncertainty surrounding the word “ezi” by means of a dictionary.
No need to set up a probabilistic model. Accordingly, epistemic uncertainty is generally treated
as reducible; aleatoric uncertainty is generally treated as irreducible.

Note, however, that the irreducibility of aleatoric uncertainty is, inmost cases, rather a practical
decision than an ontological necessity. For instance, even in the coin-flipping game (the all-time
favorite example of probability textbooks), knowledge of the initial conditions and of all forces
acting on the coin at all times would, in principle, render the system deterministic. To further
illustrate this point, consider the following (deterministic) linear model with two covariates, x1,
x2, and one outcome y:

yi = β0 + β1x1i + β2x2i (3.7)

6Despite being self-consistent, such an approach does not guarantee the utility of a model when applied to real data.
A potential simulation-gap between simulation and reality can be detected in later modeling stages with different
tools.
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Figure 3.2: An illustrative example of the contextual irreducibility of aleatoric uncertainty. Left panel: hav-
ing limited access to the relevant data (onlyx1) induces aleatoric variability which cannot be re-
duced with further observations of the same kind. The deterministic model appears stochastic.
Right panel: having access to the full data (both x1 and x2) makes the uncertainty disappear,
since the true model is deterministic.

with all x ∼ N (0, 1). If one were to fit a proverbial simple linear regression on a reduced data set
D = {x1i, yi}

N=30
i=1 generated from the model, with x2 treated as unknown to the modeler, the

data would behave as if they had been generated via the well-known:

yi = β0 + β1x1i + ξi (3.8)

with ξ ∼ N (0, σ), where σ is aleatoric Gaussian noise dependent on the unknown β2 and x2.

The data set and the resulting best-line fit are depicted in the left panel of Figure 3.2. In this
simple regression scenario, epistemic and aleatoric uncertainty are seemingly separable. Due to
the finite N , there is epistemic uncertainty about the precise values of β0 and β1, which might
change if a different set of 30 observations was generated from the model. In a Bayesian setting
this uncertainty would be captured via the posterior distribution p(β0, β1 |D), which will get
narrower asN increases. Note also, that the epistemic uncertainty in β0 and β1 results in uncer-
tainty in the best-line fit, as depicted by the multiple shaded lines. However, regardless of how
largeN gets, the aleatoric factor ξ will cause the points to vary unsystematically around the line,
and, correspondingly, there will be irreducible predictive uncertainty about the true outcome of
an upcoming observationx1i′ . On the other hand, if we could augment our original data set with
(the previously hidden) x2, that is, if we useD

′ = {x1i, x2i, yi}
N=30
i=1 in a multiple regression

model, all previous aleatoric uncertainty disappears, since the additional information of x2 ren-
ders all points to perfectly lie on the best-fitting plane (cf. Figure 3.2, right panel). Thus, what
we ultimately treat as irreducible uncertainty might depend on the particular modeling context
instead of referring to an absolute notion.

When performing Bayesian inverse inference with Monte Carlo simulators, we typically want
to mimic the real-world randomness, regardless of its source, via the stochastic component p(ξ)
involved in forward inference:

xn = g(θ, ξn) with ξn ∼ p(ξ) (3.9)
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Since we are dependent on computer-based random number generation, we typically need to as-
sume a parametric form for p(ξ) in order to make forward inference tractable in the first place.
Even though in some applications (mostly experiments in physics), the precise source and form
of the data-corruption process might be known in advance, most cognitive models are confined
to a convenient form of uncertainty (i.e., one which we can easily simulate or write down math-
ematically). Thus, there is uncertainty about the chosen form of randomness, which, along with
the uncertainty about the generative capabilities of the simulator, would fall under the rubric
of model uncertainty, generally considered as another (sub-)type of epistemic uncertainty [74].

However, since the true data generator in areas reserved for the behavioral sciences is almost never
transparent,model uncertainty is almost always practically irreducible. Accordingly, the reducible
uncertainty encoded by the Bayesian posterior p(θ |x1:N ) is immersed into an ocean of poten-
tially irreducible uncertainty and the sought-after Bayesian surprise is only guaranteed when the
observed data are informative for the target parameters θ.

3.4 Exchangeable Observations

In the previous chapter, we briefly touched upon the idea of amemoryless probabilistic program.
Running a memoryless simulation means that each run of the simulator is not affected by any of
the previous runs and will, in turn, not affect any of the future runs. But on what grounds can we
assume that such models can even remotely do justice to the noisy vicissitude of reality?

The answer is simplicity. Consider an observed sequence of N data points x1:N , that is, a
data set obtained from an experiment or in an observational study, waiting to be analyzed by an
eager scientist. Without a model in mind, the data set can be assumed to arise from an unknown
random process p∗(x1,x2, ...,xN ), also known to statisticians as the data-generating process.
Generally, it will be beyond our intellectual reach to provide a complete description of how even
a single observation in a givenbehavioral data set has come about7. Thus, weoftenneed to leverage
someprobabilistic symmetry imposed onp∗which renders the data describablewith compact and
interpretable models. One such symmetry, tirelessly assumed in the Bayesianmodeling literature,
is exchangeability.

To illustrate exchangeability, imagine a scenario, in which researcher A, for whatever reasons,
conspired to shuffle the observations in a data set collected by their colleagueB.Under the assump-
tion of exchangeability, the mischievous researcher A would be wasting their time - the ordering
of the data points does not matter at all to researcher B. Formally speaking, researcher B views the
sequence of data points as invariant under all permutations of the data points and plans to build
a memoryless model of the data conforming to this view.

Exchangeable observations may come in various forms, for instance, patients entering a hos-
pital, psychology students participating in a response time experiment, or raw response times
recorded from a single participant. Exchangeable observations are not only conceptually simple to
work with, but also admit a particularly useful probabilistic treatment. According to de Finetti’s

7Just try to think of all possible factors affecting a single response time of a drunk participant in a reaction time study.
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representation theorem [33, 116], an exchangeable data-generating distribution p∗ has the follow-
ing integral decomposition:

p∗(x1,x2, ...,xN ) =

∫

Υ
p∗(υ)

N∏

n=1

p∗(xn |υ) dυ (3.10)

with υ ∈ Υ being an (potentially infinitely dimensional) absolutely continuous random vector.
Even though the representation theorem does not provide any clues on how to actually find the
correct integral decomposition, it motivates the formulation of Bayesian models of the form

p(θ,x1, . . . ,xN ) = p(θ)
N∏

n=1

p(xn |θ) (3.11)

as useful approximationsof theunknown“parameter vector”υ anddensitiesp∗(υ) andp∗(x |υ).
Note also, that Equation 3.11 represents the numerator of Bayes’ rule for multiple i.i.d. observa-
tions. Essentially, this equation represents a statement of conditional independence and specifies
a generative recipe for simulating synthetic observations: first, obtain a random sample from the
prior p(θ) and run the simulatorN times with the corresponding sample to obtain a simulated
tuple (θ,x1, . . . ,xN ).

Exchangeable observations impose a symmetry on the posterior as well. As a consequence
of the assumption, the resulting posterior p(θ |x1:N ) should also be invariant with respect to
the ordering of the individual observations xn. In other words, if the function SN (x1:N ) =
(xπ(1), . . . ,xπ(N)) represents an arbitrary permutation of N elements, the following should
hold for the posterior:

p(θ |x1:N ) = p(θ | SN (x1:N )) (3.12)

The same applies to any (sufficient) summary statistic of the data h(x1:N ):

p(θ |h(x1:N )) = p(θ |h(SN (x1:N ))) (3.13)

and, by extension, to any estimator of the posterior which is a function of the raw data. In
later chapters, we will elaborate on why the preservation of posterior symmetry poses a chal-
lenge to standard neural network estimators. We will further discuss and describe how to em-
ploy specialized symmetry-preservingnetworks for addressing this challenge [13]. Albeit common,
memoryless models are not ubiquitous throughout the behavioral sciences. Thus, our inference
frameworks will incorporate different choices of neural architectures for statefulmodels and non-
exchangeable distributions.

3.5 BayesianModel Comparison

Our discussion on Bayesian inference so far has concentrated on a single abstract model. In fact,
we have even treated the model as an invisible part of the unspecified context C implicit to all
distributions involved in the computation of Bayes’ rule (Equation 3.1). However, this simplified
setting is rather rare in the behavioral sciences. Inmostmodel-rich research areas, such as decision
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making, attention, judgement formation, risk-taking, andmemory, there is amultitude ofmodels
andmodel parameterizations competing to account for a given behavior. Moreover, in a Bayesian
context, differentmodels can be defined not only via different generativemechanisms, but also by
different priors (e.g., as in prior sensitivity analysis, [163]), or by different data processing pipelines
(e.g., as in multiverse analysis, [149]). Thus, researchers often find themselves in a scenario calling
for formal model comparison, model selection, or model averaging.
In order to extend our discussion and formal notation to multiple models, consider a collec-

tion of J candidate models M = {M1, ...,MJ} and corresponding parameter spaces H =
{Θ1, . . . ,ΘJ}. We assume that each model is realizable via a generative algorithm and a simula-
tion program, such that gj(θj , ξj) realizesMj for each j. Thus, in order to perform Bayesian
parameter estimation for eachmodel given an observationx, we need to compute J posteriors of
the form

p(θj | x,Mj) =
p(x |θj ,Mj) p(θj |Mj)

p(x |Mj)
(3.14)

with the prior, posterior, likelihood, and marginal likelihood explicitly written as dependent on
the particular modelMj .
How does one assign preferences to competingmodels using a probabilistic toolkit? Assuming

that all quantities in Equation 3.14 are tractably computable, Bayesian methods for model selec-
tion revolve around two key concepts: prior predictive measures and posterior predictive measures
[52]. Prior predictive and posterior predictive approaches tomodel comparison answer somewhat
different questions, so asking “which one is better” for a specific modeling problem is rarely expe-
dient. Moreover, their answers can occasionally diverge, so oftentimes, it is informative to explore
both approaches in order to obtain amore nuanced picture of the candidatemodels’ performance.
Themost commonly faced obstacle in practice is feasibility: both approaches are computationally
expensive (sometimes intractable) for complex models and can thus benefit from our proposed
frameworks. We now briefly discuss each approach.

3.5.1 The Prior Predictive andOccam’s Razor

The canonicalmeasure of prior predictive performance is the already encountered evidence, which
is the denominator in Bayes’ rule:

p(x |Mj) =

∫

Θj

p(x |θj ,Mj) p(θj |Mj) dθj (3.15)

Note, that the integral runs over the prior space of each modelMj and thus represents the ex-
pected likelihood with respect to each model’s prior. The evidence thus penalizes prior complex-
ity, that is, the inelegance, of a model, since the prior acts as a weight on the likelihood. It also
induces a well-known and widely appreciated source of intractability in Bayesian inference, since
it typically involves a multi-dimensional integral over potentially unbounded parameter spaces.
For most non-trivial models, this integral cannot be computed in closed-form or approximated
numerically. Sophisticated algorithms for efficiently approximating the evidence have been pro-
posed in the Bayesian universe, such as bridge sampling and path sampling [54, 62]. However,
these methods still depend on the ability to evaluate the likelihood p(x |θj ,Mj) for each candi-
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Figure 3.3: An illustrative example of BayesianOccam’s razor. The figure depicts the hypothetical evidence
(marginal likelihood) of a simple modelM1 vs. that of a more complex modelM2. The com-
plexmodel has a larger generative scope and thus accounts for a broader range of observations by
spreading its marginal likelihood to cover the whole range. It does so at the cost of diminished
sharpness. Even though observation x1 is well within its generative scope, the simpler model
M1 yields a higher evidence and is therefore favored. In contrast, observation x0 has a higher
evidence under modelM2, as it is very unlikely to be generated by the simpler model.

date model. If the likelihood itself is intractable, as is the case with complex simulators, the task
becomes increasingly hopeless even with the most efficient current methods.

Provided that themarginal likelihood can be reliably approximated, one can compute the ratio
of marginal likelihoods for two modelsMj andMk

BFjk =
p(x |Mj)

p(x |Mk)
(3.16)

This famous ratio is called a Bayes factor (BF) and is used in Bayesian settings for quantifying
relative model preference. Thus, a BF > 1 indicates preference for model j over model k, tak-
ing observation x into account. Alternatively, one can directly focus on the (marginal) posterior
probability of a modelMj

p(Mj |x) ∝ p(x |Mj) p(Mj) (3.17)

which equips themodel space itself with amultinomial prior distribution p(M) encoding poten-
tial prior beliefs on the plausibility of eachmodel before collecting any data. Such a priormight be
useful if a model embodies extraordinary claims (e.g., psychokinesis) and thus requires extraordi-
nary evidence supporting it. However, if no prior reasons can be given for favoring some models
over others (i.e., one prefers not to prefer), a uniformmodel prior p(Mj) = 1/J can be assigned.

The ratio of posterior model probabilities is called the posterior odds and is connected to the
Bayes factor via the corresponding model priors:

p(Mj |x)

p(Mk |x)
=

p(x |Mj)

p(x |Mk)
×

p(Mj)

p(Mk)
(3.18)
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If both models are deemed equally likely a priori, that is, p(Mj) = p(Mk), the posterior odds
are identical to the Bayes factor. In this case, if the Bayes factor, or, equivalently, the posterior
odds equal one, the observed data provide no evidence for favoring one of the models over the
other. Importantly, a relative evidence of one does not distinguish whether the data are equally
likely or equally unlikely under both models, as this is a question of absolute evidence. It simply
means that the observations are not informative to the question of model comparison8.

It follows from our discussion so far, that, from a prior predictive perspective, model complex-
ity is determined by (i) the prior of a model and (ii) the likelihood function of a model. Together,
these two quantities establish the generative scope of a model and dictate how to select between
two hypothetical cognitive models which both provide a reasonable account of some behavioral
manifestations.
Thus, a complex model gj with a large generative scope can generate a larger variety of behav-

iors, and so the density of p(x |Mj)must spread over a larger portion of the observation space
X . On the other hand, a simpler model gk with a smaller generative score can generate a limited
range of behaviors, so its densitywill be restricted to a smaller portion ofX , and thusmore peaked
(cf. Figure 3.3). This is the reason why a marginal likelihood is said to automatically embody a
fundamental trade-off between a model’s complexity (an antonym of scientific elegance) and its
ability to convincingly account for a wide variety of empirical phenomena. Indeed, this trade-off
is sometimes embraced as a probabilistic version of the famous Occam’s razor.
From a generative perspective, simpler simulators will tend to produce synthetic observations

which are more similar to each other compared to those generated via more complex simulators.
Indeed, this is the most important property of Bayesian models that we will later leverage in or-
der to perform efficient model comparison between complex cognitive simulators. Essentially,
by approximating Equation 3.17 directly, we will be circumventing two common sources of in-
tractability: the marginal likelihood and the likelihood function itself.

3.5.2 The Posterior Predictive and Fortuna’s Knife

Prior predictive measures such as the Bayes factor do not utilize the posterior when comparing
models (cf. Equation 3.15). In contrast, posterior predictivemethods quantify the ability ofmod-
els to forecast new observations which have not been used for Bayesian updating. In other words,
if the posterior of eachmodel represents a modified state of knowledge upon integrating observa-
tionx, one tests which form ofmodified knowledge can “best” predict an unseen observationx′.
The most straightforward way to perform such an operation consists in computing the posterior
predictive distribution:

p(x′ |x,Mj) =

∫

Θj

p(x′ |θj ,x,Mj) p(θj |x,Mj) dθj (3.19)

where the likelihood p(x′ |θj ,x,Mj) simplifies to p(x′ |θj ,Mj) when working with memo-
ryless models. The main difference now is that integration is performed with respect to the pos-
terior distribution of each model. Intuitively, the posterior predictive uses all information gained

8Unless one assumes that themodel setMprovides an exhaustive descriptionof reality, inwhich case relative evidence
is absolute evidence.
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through previous observation(s) to provide an uncertainty-aware forecast for the new query x′,
where the parameter posterior p(θj |x,Mj) acts as a weight on the likelihood. Thus, the prob-
ability of an upcoming observation under a modelMj is a weighted average over its probabilities
under all plausible parameter configurations θj . Thereby, epistemic uncertainty, as captured by
the parameter posterior, is essentially “averaged out” in the posterior predictive.
The canonical approach forBayesianposterior predictive comparisons are cross-validation (CV)

methods [166]. Examples for widely applied methods that fall into this category are approximate
cross-validation methods using Pareto-smoothed importance sampling (PSIS-CV) [17, 165], in-
formation criterion measures, such as the widely applicable information criterion (WAIC; [171]),
or stacking of posterior predictive distributions [176]. All of these methods require not only the
ability to evaluate the likelihood of eachmodel for each observation during parameter estimation,
but also for new observations during prediction.
What is more, if application of exact CV methods is required because approximations are in-

sufficient or unavailable, models need to be estimated several times based on different data sets or
subsets of the original data set. This renders such methods practically infeasible when working
with complex simulators for which posterior inference is already computationally demanding.
Thus, even a single intractable model in the candidate model set suffices to disproportionately
increase the difficultly of performing posterior predictive model comparison.
Posterior predictive measures based on evaluating the likelihood of new data points provide

information about the relative performance of models. For certain applications, one can replace
the likelihood in Equation 3.19 with a scoring function S : X → R and arrive at a measure of
model predictive performance with respect to the scoring function:

sj =

∫

Θj

∫

Ξj

S(x′, gj(θj , ξj)) p(ξj |θj) p(θj |x,Mj) dξj dθj (3.20)

where the integrals are typically approximated via Monte Carlo samples from the corresponding
posterior and noise distributions. If the scoring function is well aligned with the particular goals
of an inference task, it can serve as a useful proxy for quantifying both absolute and relative per-
formance of the models under scrutiny. Moreover, it replaces the dependence on the likelihood,
at least during prediction. Still, the estimation of each posterior and its repeated re-estimation for
different data sets when using variants of exact LOO-CV remain as potential bottlenecks. These
bottlenecks become even more challenging to overcome when doing simulation-based inference
even with a single model of interest.
Note, that oftentimes researchers use the term predict when they are actually referring to a

model’s ability to reproduce the data used to inform the estimation of model parameters [177].
Formally, this amounts to replacing the new observation x′ in the previous two equations with
the observationx (or set of observationsx1:N ) used to condition the posterior. Such a procedure
is indeed useful, since it can be indicative of a model’s generative performance [120] and can thus
help in diagnosing model misspecifaction or a simulation gap. However, generative performance
is generally not indicative of a model’s predictive performance [53, 177], so we find it important to
highlight and keep the distinction as clear and explicit as possible.
At this point, there is an important distinction to be made when it comes to predicting new

observations. Suppose that each observation in a data set was generated by the unknown process
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p∗ of which we formulate a parametric model pθ . If we now make the model “blind” to certain
observations in the original data set (as in CV) and use these observations to assess predictive per-
formance, we are essentially testing the model’s ability to perform induction about the statistical
regularities of the process. In such a scenario, however, we are not assessing the model’s ability to
faithfully forecast the future, since the observations are new only from the relative perspective of
model fitting. An attempt to forecast future behavior with a static cognitive model will only be
meaningful, if the process p∗ is stationary (i.e., its regularities are invariant with respect to time)
or if the model somehow explicitly incorporates a potential time-dependent change inherent to
the generator. Since such changes are extremely hard to know in advance (otherwise they would
have been predicted and incorporated into the model’s equations), a model which claims time-
invariant performance should regularly be subjected to the falsification of time.

Finally, note that the probabilistic Occam’s razor from prior predictive approaches does not
automatically show up in posterior predictive approaches. Differently, from a posterior predic-
tive perspective, a model’s quality should be judged based on how well it generalizes to unseen
instances it is supposed to accurately predict. In other words, a model has to withstand the sharp
challenges of its future, and models which fail to do so, are discarded. However, one might still
anticipate that overly complex models would overfit the data at hand and fail dramatically at pre-
dicting new data, again being implicitly subjected to some form of Occam’s razor. Indeed, such
an anticipation has been formally framed under the so called bias-variance dilemma [47] which
bounds the generalization error of supervised learning algorithms. However, the practical conse-
quences of such a dilemma have recently been called into question by the achievements of “black-
box” neural networks having billions of parameters and still being able to generalize beyond their
training data [111]. It remains therefore unclear towhat extentOccam’s razor is implicitly encoded
in posterior predictive measures when applied to “white-box” models of cognition.

3.5.3 BayesianModel Averaging andWisdom of the Crowd

A rather disparate approach to model selection is that of not selecting a single model but instead
averaging across the predictions of all candidate models. However, in a Bayesianmodel averaging
(BMA) setting,models are not created equal, and thus notweightedwith indifference to their per-
formance or elegance. Instead, posterior model probabilities are used as weights in the aggregate
prediction:

p(x′ |x) =
J∑

j=1

p(x′ |x,Mj) p(Mj |x) (3.21)

Crucially, BMA depends on the marginal likelihoods of the different models, as well as on their
likelihood functions. Naturally, BMA can also be used for averaging over scoring functions in-
stead of posterior predictive distributions, when a proxy of absolute performance is needed. BMA
is particularly useful when predictive performance matters and predictions of a single model are
expected to be unstable. In fact, model averaging generally yields superior predictive results in
expectation compared to those obtained by model selection [126]. Broadly speaking, it can be
regarded as the Bayesian embodiment of the well-known wisdom of the crowd, or vox populi, sta-
tistical phenomenon [50].

29



3 Bayesian Inference

Clearly, BMA is of limited use when the goal of inference is to compare competing theories
instantiated by formal models and subsequently choose the most plausible among all (in a prob-
abilistic sense). However, BMA might still come in handy for selecting between model classes,
where the performance of single model instances is not crucial or when competing models might
admit different plausible parameterizations.
Consider, for example, a class of mathematical modelsA = {MA

j }
J
j=1, having propertyA in

common, and another class ofmodelsB = {MB
j }

J
j=1, having propertyB in common. Applying

Equation 3.21 to the models in each class, we can obtain twomodel-averaged posterior predictive
distributions p(x′ |x,A) and p(x′ |x,B). Subsequently, we can use these to quantify and com-
pare the bulk predictive performance of the two model classes.
Performing BMA for selecting between model classes featuring complex models (e.g., memo-

ryless vs. stateful models) is, however, even more computationally demanding, which makes it
a highly underutilized approach in the behavioral sciences. It also presents a challenge we con-
sider worthy of future investigation in the context of frameworks for simulation-based Bayesian
inference.

3.6 Bayesian Simulation-Based Inference

We have seen that all central objects in Bayesian inference, from the Bayesian parameter poste-
rior to the Bayesian model-averaged predictive distribution, depend on the likelihood function.
Thus, we reiterate, when the likelihood cannot be efficiently evaluated or is not available in closed-
form, standard Bayesianmethods relying on the central proportionality p(θ |x) ∝ p(x |θ)p(θ)
do not apply. This includes both the less efficient but asymptotically appealing MCMC and the
more efficient but asymptotically less winsome variational methods. Moreover, a potential in-
tractable likelihood can also appear on top of the well-known intractability of themarginal like-
lihood, which is necessary for model comparison in a prior predictive context. In fact, this is not
just a theoretical hardship, but a real practical predicament faced by researchers working with var-
ious complex models [27]. Complexity is usually a direct consequence of the desire to build high-
fidelity models of cognitive processes, sometimes coupled with a modicum of neurophysiological
realism.
In such cases, not all is lost. Instead of simplifying the model ad hoc, one can still retain the ad-

vantages (and disadvantages) of Bayesian inference by “simply” performing repeated simulations
and using them to guide the process of inference. Such an approach is known as simulation-based
inference. When the resulting quantities still represent the reduction of prior uncertainty by con-
ditioning on data, we are essentially doing the same Bayesian inference as before, only with the
likelihood implicitly involved in the process. All Bayesian simulation-based methods repeatedly
go through the following three steps, given informally by:

1. Obtain a random sample from the prior.

2. Simulate an artificial data set with the sampled parameters.

3. Do something with the simulated pair of parameters and data.
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Figure 3.4: An abstract overview of the central idea underlying our proposed solutions to Bayesian inverse
inference.

The essential difference between most Bayesian simulation-based methods lies in the particular
implementation of step number three. Our frameworks are no exception to this pattern. A com-
mon themewill be to use the cognitivemodel as a trainer for a specialized neural network, which is
driven through a number of simulations towards the Bayesian answer to an estimation or amodel
comparison problem (cf. Figure 3.4. The next chapter will provide a brief and very broad survey
of the related work on simulation-based inference. Before we move on, however, we shortly dis-
cuss the idea of samplers, as it is central to our developed methods and probabilistic modeling as
a whole.

3.7 Samplers andNeural Samplers

It is important to note, that the posterior distribution itself is hardly ever available as a known
density functionwhich can be analytically calculated. In the typical textbook cases where the like-
lihood belongs to a known family of probability distributions and the prior is chosen to be conju-
gate to the likelihood, then the posterior must belong to the same distribution family as the prior.
However, suchmathematical convenience has proven insufficient for addressingmost unidealized
real-worldproblems, as it leaves little roomfor flexible or high-fidelitymodeling. Thus, researchers
and statistical software developers have resorted toMCMCmethods.
MCMCmethods, such as theMetropolis-Hastings algorithm [66],Gibbs sampling [51],Hamil-

tonianMonteCarlo [112] or its extension toNo-U-Turn sampling [71], approximate the posterior
in the form of random samples from the target posterior. MCMCmethods belong to a family of
stateful algorithms which generate a sequence of correlated samples that converge in distribution
to a target equilibrium distribution (i.e., the posterior, in a Bayesian setting).
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The idea of approximating a complicated distribution via dependent random samples, albeit
rather straightforward in hindsight, has gradually transformed and shaped the field of Bayesian
inference. Moreover, it forms the main logic behind major probabilistic programming languages
such as JAGS [127] or Stan [19],which return posterior estimates in the form of random samples.
A sampler is thus a programwhich uses computer-generated randomness to “draw” samples from
a distribution instead of deriving or estimating its algebraic form.
Recently, the idea of random sampling has entered the rapidly expanding field of deep learn-

ing under the umbrella term deep generative modeling. As a consequence, the concept of neural
samplers has emerged [72, 87, 113, 114]. Neural samplers emulate sampling from a distribution
via neural networks that transform a random input vector into a sample from a target proba-
bility distribution defined by the network weights. The random input vector is typically drawn
from a simple distribution (e.g., uniform or Gaussian) which is computationally cheap and easy
to sample from. The expressive transformation of simple inputs creates diversity and flexibility.
Accordingly, the network weights defining the transformation are optimized in a way to ensure
that the subsequently generated samples are actually representative of the target distribution.
Neural samplers have so far shown tremendous success in computer vision andnatural language

processing. Our inference frameworks also make extensive use of neural samplers. However, our
neural networks are trained to approximate the Bayesian posterior induced by a particular model
given a set of observations and thus generate posterior samples in a way similar toMCMC.More-
over, we will utilize the important fact that neural samplers distil global information about a par-
ticular model family into their trainable parameters (e.g., network weights). Thus, once trained,
neural samplers are easy to store on a computer or a server (a couple of megabytes memory de-
mand) and re-use across multiple applications of the same model family to many data sets of po-
tentially variable size. This property gives rise to amortized inference, a concept we will repeatedly
encounter in later chapters.
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As with any new and rapidly expanding field, it is nearly impossible to manage a comprehensive
review of the existing literature, since new methods would have emerged upon the review’s com-
pletion. Indeed, this is exactly what happened during the (rather expeditious) completion of this
thesis. Thus, this chapter attempts to provide a cursory glance upon the landscape of simulation-
based inference with a special focus on deep learning methods. For a more detailed review of
recent developments, see, for example, [27]. For a collection of classical methods with a focus on
cognitive science, see, for example, [119].
There aremultipleways to devise a taxonomy formembers of the zoo of simulation-based infer-

ence. For the purpose of this thesis, we can classify methods as amortized vs. non-amortized, with
different degrees of amortizationpossible (seeChapters 5 and7). Themain difference between the
two methodological endpoints is this. Non-amortized methods require a repetition of the same
computations for eachmodel application, that is, estimation starts from scratch for each observed

data set x
(obs)
1:N . In contrast, amortized methods involve an upfront optimization/training phase

which ensures that subsequent applications of the model to any observed data set are very cheap
(i.e., the cost of the optimization phase amortizes over multiple inferences).

The standard non-amortized solution to intractable modeling problems is offered by approxi-
mate Bayesian computation (ABC) methods [29, 150]. ABC methods approximate the posterior

by repeatedly samplingparameters fromaproposal (prior) distributionθ(l) ∼ p(θ) and then sim-
ulating a synthetic data set by running forward inference, xn ∼ p(x |θ(l)) for n = 1, . . . , N ,
with the sampled parameters. If the simulated data set is sufficiently similar to an actually observed
data set (as measured by a user-defined distance function), the corresponding parameter configu-
ration θ(l) is retained as a random draw from the desired posterior, otherwise rejected. However,
in practice, ABC methods are notoriously inefficient and suffer from various problems, such as
the curse of dimensionality or curse of inefficiency [104], to name the most severe.

More efficient and sophisticated methods, such as sequential Monte Carlo algorithms (ABC-
SMC) orMarkov chainMonte Carlo with implicit likelihoods (ABC-MCMC), employ different
creative techniques to optimize sampling or correct potential biases [65, 90, 107, 119, 123, 157, 158,
160]. Currently, the gold-standard in cognitive science andmathematical psychology appears to be
non-amortized ABC-MCMC with kernel density estimation (KDE) [44, 160, 161]. This method
has the advantage of doing away with hand-crafted summary statistics and distance functions,
since each (simulated or actual) observation xn enters the KDE computation at each MCMC
step. However, the application of KDE-based MCMC to stateful models yielding non-i.i.d. ob-
servations is not at all straightforward, since KDE methods typically assume i.i.d. observations.
Furthermore, every non-amortizedmethod becomes infeasible in data-rich settings which require
the estimation of the same model hundreds or even thousands of times (or even more than one
million times, as was the case in [94]), unless a researcher has access to a high-end computing clus-
ter with countless cores.
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4 RelatedWork

Recently,machine learning anddeep learning innovationshavepermeated thefieldof simulation-
based inference with the goal of scaling up standard ABC methods. Most of these innovations
yield amortized methods, since they involve an expressive machine learning approximator (e.g.,
random forests or neural networks) trained on simulations from the Monte Carlo engine which
emulates the behavior of the analytically intractable model. These approximators are either only
able to return summaries of the full posterior (e.g., posterior means, variances, or quantiles) or
capable of performing fully Bayesian inference. We now discuss each of the two approaches in
turn.

Perhaps the most straightforward inference method has been to cast the problem of parameter
estimation as a supervised regression task [14, 79, 136, 140]. In this setting, the simulator is run

repeatedly to create a large dataset of the formD = {(h(x
(m)
1:N ),θ(m))}Mm=1, also referred to as

a reference table in the ABC literature [150]. Typically, the dimensionality of the simulated data
is reduced by computing summary statistics with a fixed summary function h(x1:N ) (but see
[136]). Then, the reference tableD is used as training data for a supervised learning algorithm (e.g.,
random forest [140], or a convolutional neural network [136]). The learning algorithm is trained to
output an estimate of the true data-generating parameters and an optional uncertainty estimate
(e.g., the posterior variance [14, 136] or quantiles [140]). Thus, supervised methods attempt to

approximate the intractable inverse model directly and globally via non-linear regression θ̂ =
f(h(x1:N )). Importantly, the trained algorithms canbe cheaply stored and re-used for estimation
on an arbitrary number of observed data sets or integrated into an ABC routine [79].

A severe shortcoming of supervised approaches is that they provide only limited information
about the full posterior or impose overly restrictive assumptions on its distributional form (e.g.,
Gaussian). This is especially problematic when the true posterior is acutely skewed or multi-
modal, in which case the mean or the variance are not particularly representative of its relevant
characteristics.

To address this shortcoming, neural density estimation (NDE) methods employ specialized
neural networks capable of performing fully Bayesian inference (i.e., returning full posteriors).
NDE methods approximate different components of the intractable joint Bayesian model, that
is, p(θ,x1:N ) = p(θ)p(x1:N |θ).

Sequential neural posterior estimation (SNPE) methods iteratively refine a proposal distribu-
tion via specialized neural networks (e.g., mixture density networks, autoregressive or normalizing
flows) to generate parameter samples which closely match a particular observed data set [60, 101,
121]. Even though these methods also entail a relatively expensive learning phase and a cheap in-
ference phase, they are capable of amortized inference only when operating in a non-sequential
manner (i.e., the prior is used as a proposal throughout every optimization step). Otherwise, a
separate neural density estimator has to be trained for each observed data set, which quickly be-
comes infeasible when working with many data sets. The main feature of SNPE methods is that
they avoid MCMC sampling altogether and are able to sample from the true posterior given per-
fect convergence. This is in contrast to variational methods which optimize a lower-bound on the
posterior [87, 89], and oftentimes need to assume Gaussian approximate posteriors through the
reconstruction error.

The sequential neural likelihood (SNL, [122])method and themethod of emulated likelihoods
[100] propose to learn the likelihood instead of the posterior. In this way, the trained neural ap-
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proximators can be integrated into standard Bayesian pipelines and can be re-used across changes
in the priormodelp(θ), as long as the likelihood remains invariant. Sequential neural ratio (SNR)
methods [40, 68], on the other hand, propose to train a classifier to approximate density ratios.
These density ratios can then be used to sample from the posterior via standard MCMC meth-
ods. Of course, the computational time of SNL and SNR methods will still be dominated by
the non-amortized components (e.g., MCMC or alternative sampling schemes) when faced with
more than a few data sets. The same will be true for inference compilation approaches, which cali-
brate specialized neural networks through simulations in order to improve proposal distributions
within (non-amortized) sequential Monte Carlo [117].

An interesting approach for amortized inference which does not rely on neural networks is the
pre-paid estimation method without likelihoods [108]. This method memorizes a large database
of pre-computed summary statistics for fast nearest-neighbor inference, aided by advanced inter-
polation methods. Even though the pre-paid method is very powerful and applicable to all kinds
of models, it still crucially depends on the ability to (heuristically) select good summary statistics.
Thus, in a future work, it seems worthwhile to explore the possibility of combining the pre-paid
method with a neural network capable of learning maximally informative summary vectors (as
proposed in our frameworks).

Ideas for direct posterior estimation viaNDEare closely related to the concept of optimal trans-
port maps and its application in Bayesian inference [11, 23, 36, 125]. A transport map defines a
transformation between (probability) measures which can be constructed in a way towarp a sim-
ple probability distribution into a more complex one. In the context of Bayesian inference, trans-
portmaps have been applied to accelerateMCMCsampling [125], to perform sequential inference
[36], and to solve inference problems via direct optimization [11]. In fact, our BayesFlow frame-
work can be loosely viewed as a parameterization of invertible transportmaps via invertible neural
networks. An important distinction from this line of research is that NDE methods do not re-
quire an explicit likelihood function for approximating the target posteriors and are capable of
amortized inference.

Curiously, throughout the advancement of amortized NDE methods, the task of simulation-
based Bayesian model comparison appears to have taken a backseat. With certain caveats, neural
density estimators can be adapted for posterior/prior predictive Bayesian model comparison by
post-processing the samples from an approximate posterior/likelihood over each model’s param-
eters. However, such an approach will involve training a separate neural estimator for eachmodel
in the candidate setM and has not yet been systematically investigated. In addition, most NDE
methods also rely on fixed summary statistics [121, 122]) as inputs to the networks and few appli-
cations using raw data directly exist [60].

Alongside advancements in simulation-based inference, there has been an upsurge in the de-
velopment of methods for uncertainty quantification in deep learning applications [74]. For in-
stance, much work has been done on the efficient estimation of Bayesian neural networks [69, 96,
99] since the pioneering work of [102]. Parallel to the establishment of novel variational methods
[85, 86], the drive for representing uncertainty has paved the way towards more interpretable and
trustworthy neural network applications. Moreover, the need for distinguishing between differ-
ent sources of uncertainty and the overconfidence of deep neural networks in both classification
and regression tasks has been demonstrated quite effectively in recent works [82, 145].
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4 RelatedWork

Our frameworks are inspired by recent methods for deep probabilistic modeling [38, 88] and
uncertainty representation in classification tasks [145, 156]. However, our goal is to efficiently
approximate Bayesian posteriors and posterior odds between competing mechanistic models us-
ing non-Bayesian neural networks, not to estimate neural network parameters (e.g., weights) via
Bayesian methods. Indeed, the incorporation of Bayesian neural networks into our frameworks
appears to be an interesting avenue for future research. Moreover, our frameworks combine some
of the latest ideas from simulation-based inference and uncertainty quantification for training ef-
ficient and uncertainty-aware estimators capable of amortized Bayesian parameter estimation and
model comparison.
Accordingly, we propose to solve each task globally, that is, over the entire range of plausible

parameters, data sets, and models. For parameter estimation, we will employ invertible neural
networks (INN, [3, 4, 37, 38]). Previously, INNs have been successfully employed to tackle inverse
problems in astrophysics and medicine [3]. We will adapt these flow-based INN architectures to
suit the task of Bayesian parameter estimation in the context of various intractablemodel and data
types. As formodel comparison,wewill employ evidential neural networks, whichhavepreviously
been convincingly employed for uncertainty-aware classification [145].

Finally, by introducing our frameworks, we will further discuss many open questions, such as
end-to-end estimation of various model classes (e.g., memoryless models, stateful models, joint
models) via algorithmic alignment, model validation, Bayes factor approximation, and ideas for
meta-amortized inference.
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5 Amortized Parameter Estimationwith

BayesFlow

Let reality be reality. Let things flownaturally forward inwhateverway they

like.

—Laozi

Estimating the parameters of cognitive models is a crucial task in behavioral and cognitive model-
ing. However, the task can prove notably difficult or even impossible when amodel can faithfully
simulate behavior but the probabilistic form (i.e., the likelihood) of its outputs cannot be de-
scribed analytically. In this chapter, we introduce our framework for amortized Bayesian parame-
ter estimationwhichwe coinedBayesFlow. It comprises a newBayesian solution to the simulation-
only setting in terms of invertible neural networks and the theory of normalizing flows. The main
idea behind BayesFlow is to split Bayesian analysis into a potentially expensive upfront training
phase, followed by a much cheaper inference phase. The goal of the upfront training phase is
to train a neural sampler that yields well-calibrated posteriors for any observed data set from the
generative scope of a model. Subsequently, applying the neural sampler to specific observations
during inference is very fast and can easily be performed inparallel, so that the training effort amor-
tizes over repeated evaluations. The following chapter describes the mathematical details behind
BayesFlow and discusses its strengths, limitations and future enhancements.

5.1 Desiderata

We have seen in the previous chapter that simulation-based methods need to optimize multiple,
often conflicting, requirements concerning their performance. We therefore commence this chap-
ter by stating the concrete desiderata for the utility of our framework:

1. Fully Bayesian estimation without framework-imposed restrictions on the type of priors,
simulators, and posteriors amenable for inverse inference

2. Automatic extraction of maximally informative data representations instead of reliance on
potentially suboptimal hand-crafted summary statistics

3. Scalability to high-dimensional problems (regarding both the data spaceX and the param-
eter spaceΘ) via algorithmic alignment and considerations on probabilistic symmetry

4. Full amortization over multiple empirical data sets and data set sizes

5. Parallel computing and GPU acceleration applicable to forward inference (simulations),
training, and inverse inference
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5 Amortized Parameter Estimation with BayesFlow

6. Low memory demands, both during training (i.e., through online learning and on-the-fly
simulations) and after training (i.e., no need to store large grids, reference tables or param-
eter databases)

7. A theoretical guarantee for convergence of the approximate posterior to the true posterior
under certain optimal conditions

Throughout this chapter, wewill gradually introduce our BayesFlow framework and discuss how
it addresses each desideratum. Along the way, we will point out unexplored conceptual or empir-
ical territories and lay out ideas for potential future improvements and applications.

5.2 Background

5.2.1 Deep GenerativeModeling

As previouslymentioned, BayesFlow draws onmajor advances inmodern deep generativemodel-
ing, also referred to as deep probabilistic modeling. The core idea behind deep generative model-
ing is to represent a complicated target distribution as a non-linear transformationof some simpler
latent distribution (e.g., Gaussian or uniform), a so called pushforward. Density estimation of the
target distribution, a very complex task, is thus reduced to learning a non-linear transformation,
a task that is ideally suited for gradient-based neural network training via standard backpropa-
gation. Typically, deep generative models approximate the target distribution by sampling from
the simpler latent distribution and applying the (inverse) transformation learned during gradient-
based optimization. Consequently, we will train our neural networks to sample from intractable
posterior distribution over the parameters of complex (behavioral) simulators.
Deep generativemethodshavedemonstrated tremendous successes in applications dealingwith

very high-dimensional data, such as images, texts, or videos [88, 170, 175]. To draw an equivalent
between these applications and simulation-based inference, consider a prototypical generative task
in computer vision. In this context, the target distribution runs over the pixels of an image, and
estimating a generative model of this distribution poses a major challenge. Conditional image
generation, an even more challenging task, involves modeling the distribution over pixels contin-
gent on additional information, such as image categories anddescriptions (captions). Notably, the
same ideas can be seamlessly transferred to model-based Bayesian inference, where the associated
challenge is estimating the distribution overmodel parameters contingent on some observed data.
Moreover, recent work demonstrating excellent generative performance with high-resolution im-
ages [88] suggests that deep generative models might be excellent candidates for overcoming the
curse of dimensionality from which standard simulation-based methods notoriously suffer [27].

5.2.2 Forward Inference

BayesFlow depends on the ability to (efficiently) perform forward inference, that is, simulate ar-
tificial data sets given possible parameter configurations. Moreover, in order to use the simulator
as a calibrator for the neural networks involved in BayesFlow, we need to simulate multiple data
sets from the Bayesian joint distribution p(θ,x1:N ) = p(θ) p(x1:N |θ), which, for memoryless
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5.2 Background

models, decomposes further into p(θ)
∏N

n=1 p(xn |θ). As already mentioned, the decomposi-
tion of the joint distribution is essentially a generative receipt, which can be carried out with or
without an explicit likelihood (due to Equation 2.4).

Corresponding to the previous description, Algorithm 1 describes the steps for generating a
batch of synthetic data sets using simulations from a memoryless model and a randomly drawn
data sizeN for each batch. The data-set size will typically be drawn from a discrete uniform dis-
tribution, p(N) = U(Nmin, Nmax), but fixed sizes or different distributions are possible (and
reasonable for certain applications). Note also, that the algorithm is trivially extendable to state-
ful models by includingmemory variables or an explicit dependence of the simulator on previous
outputs.

Algorithm 1Monte Carlo generation ofB synthetic data sets

Require: g(θ, ξ) - stochastic model simulator, p(θ) - prior over model parameters, p(ξ) - noise
distribution, p(N) - distribution over data set sizes,B - number of data sets to generate.

1: Draw data set size:N ∼ p(N).
2: for b = 1, ..., B do
3: Drawmodel parameters from prior: θ(b) ∼ p(θ).
4: for n = 1, ..., N do
5: Sample noise instance: ξn ∼ p(ξ).
6: Run simulator to obtain n-th synthetic observation: xn = g(θ(b), ξn).
7: end for
8: Store pair (θ(b),x(b)

1:N ).
9: end for
10: Returnmini-batchD(B)

N := {θ(b),x
(b)
1:N )}Bb=1.

Importantly, the efficiency of Algorithm 1 depends highly on its actual implementation. The
naive complexity of the data-generation algorithm is at least O(N ∗ B ∗ G), where G denotes
the cost of executing the simulator once to obtain a single synthetic observation xn. Thus, the
algorithm can benefit from three levels of parallelism: i) over the number of data sets (B); ii)
over the number of observations in each data set (N ); iii) and over the computational steps of the
simulator itself (G). In the ideal casewhere all levels can be executed in parallel, the computational
complexity reduces to O(1). For some applications, even parallelizing the most costly level can
bring about a significant speedup in practice. Notably, the parallelization of data generation with
stateful models is generally not immediately obvious due to the sequential dependence of each
output on previous outputs (the loop overN ), but multiple data sets from a stateful model can
still be readily generated in parallel (the loop overB).

5.2.3 Normalizing Flows

In order to perform neural density estimation, we will implement a normalizing flow via an in-
vertible neural network (INN, [37, 38]). A normalizing flow represents a transformation of a sim-
ple probability density (e.g., Gaussian) into a more complex (unknown) density by a sequence of
invertible and differentiable mappings [38]. In contrast to variational methods [12], flow-based
methods can perform asymptotically exact inference by using lossless compression. Additionally,

39



5 Amortized Parameter Estimation with BayesFlow

they scale favourably from simple low-dimensional problems to (potentially intractable) high-
dimensional distributions with complex dependencies [4, 88].

To set the stage, let z ∈ R
D be a random variable with a known (simple) probability density

and θ ∈ R
D a random variable with an unknown (complicated) probability density. Let f :

R
D → R

D be an invertible, differentiable function such that z = f(θ) and θ = f−1(z).
By using the change of variable rule of probability theory, the density of the variable θ can be
computed as:

p(θ) = p(z = f(θ))

∣∣∣∣det
(
∂f(θ)

∂θ

)∣∣∣∣ (5.1)

In our framework, we use a unit Gaussian as a base distribution, p(z) = ND(z |0, I), and the
pushforward density will be the posterior p(θ |x) over model parameters θ given a single (for
now) observation x. Thus, our aim is to learn an approximate posterior q which matches the
pushforward posterior. Accordingly, we reparameterize the approximate posterior in terms of a
conditional invertible neural network (cINN) estimator fφwhich implements a normalizing flow
between θ and z given observation x:

qφ(θ |x) = p(z = fφ(θ;x))

∣∣∣∣det
(
∂fφ(θ;x)

∂θ

)∣∣∣∣ (5.2)

Accordingly, sampling from the approximate posterior involves sampling from the base density
and transforming the sample via the inverse operation of the cINN into the pushforward poste-
rior:

θ ∼ qφ(θ |x) ⇐⇒ θ = f−1
φ (z;x)with z ∼ ND(z |0, I) (5.3)

Thus, our solution to the task of simulation-based parameter estimation is to train a cINNwhich
approximates the true posterior for all possible observations x arising from a given model Mj

as accurately as possible. There are many ways to implement a cINN in practice, and we will il-
lustrate our preferred architecture below based on coupling flows. Note, however, that the field
of deep generative modeling is rapidly expanding, with novel architectures emerging almost on
a daily basis. Thus, it is likely that the concrete cINN architecture proposed in this work might
be supplanted by a better candidate in the not-so-distant future. In any case, the problem of in-
verse inference in science is here to stay, so the BayesFlow framework could easily be adapted to
incorporate a different neural sampler fφ.

5.2.4 Coupling Flows

Coupling flows are one of the most widely used invertible architectures [92] because they are i)
conceptually simple; ii) easily invertible; and iii) able to represent highly expressive transformation
with tractable Jacobian determinants [88]. A coupling flow Cφ : R

D → R
D with trainable

parameters φ between θ ∈ R
D and z ∈ R

D can be realized as follows. Consider a disjoint
partition of the input parameters θ ∈ R

D into two subspaces: (θA,θB) ∈ R
d × R

D−d. Input
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partitioning is required bymost coupling flows to ensure invertibility [92]. The invertible forward
transformation of a coupling flow can be defined as:

zA = C1(θ
A; Ω1(θ

B)) (5.4)

zB = C2(θ
B; Ω2(z

A)) (5.5)

z = (zA, zB) (5.6)

whereC1 andC2 are invertible functions andΩ1 andΩ2 are called conditioners. The conditioners
can be realized via arbitrarily complex functions (e.g., deep neural networks) which themselves
need not be invertible, as long as C1 and C2 are (easily) invertible. Correspondingly, the inverse
transformationC−1

φ of a coupling flow is defined as:

θB = C−1
2 (zB; Ω2(z

A)) (5.7)

θA = C−1
1 (zA; Ω1(θ

B)) (5.8)

θ = (θA,θB) (5.9)

Note, that there are many viable ways to parameterize a coupling flow [92]. Our BayesFlow
method uses a composition of conditional affine coupling layers (cACLs). A single cACL per-
forms the following bijective mapping on its split input

zA = θA ⊙ exp(S1(θ
B;x)) + T1(θ

B;x) (5.10)

zB = θB ⊙ exp(S2(z
A;x)) + T2(z

A;x) (5.11)

z = (zA, zB) (5.12)

where⊙ denotes element-wise multiplication and the functions S1, S2, T1, T2 are implemented
as fully connected (FC) neural networks with x passed through an additional input head. By
construction, this bijection works independently of the form of the functions s and t, which
themselves are never inverted. The inverse transformation of the cACL is thus given by:

θB = (zB − T2(z
A;x))⊙ exp(−S2(z

A;x)) (5.13)

θA = (zA − T1(θ
B;x))⊙ exp(−S1(θ

B;x)) (5.14)

θ = (θA,θB) (5.15)

The Jacobian of the forward coupling transformation is a product of two triangular matrices

∂Cφ(θ;x)

∂θ
=

[
diag(exp(S1(θ

B;x)) finite
0 1

][
1 0

finite diag(exp(S2(z
A;x))

]
, (5.16)

so its determinant is easy to compute and given by

detJCφ
= exp

(
d∑

i=1

S1(θ
B;x)i) +

D−d∑

i=1

S2(z
A;x)i

)
, (5.17)
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wherewehave abbreviated the Jacobianof the cACLasJCφ
. In section5.3.1, wewill showhow to

compose multiple cACLs into an invertible network and discuss some additional features for im-
proving the basic design introduced here. Before we introduce our complete Bayesian framework
for amortized inference, we briefly peruse the concepts of distribution matching and amortized
inference.

5.2.5 DistributionMatching and Amortization

The term amortized inference refers to an approachwhich reduces the cost of inference by casting
some or all inferential phases as an optimization task. In particular, for a given simulator, one
can approximate an unknown ground-truth posterior distribution p(θ |x) via a parameterized
distribution qφ(θ |x) by minimizing some f -divergence between the two distributions:

φ∗ = argmin
φ

Df (p(θ |x) || qφ(θ |x)) (5.18)

= argmin
φ

∫

Θ
qφ(θ |x) f

(
p(θ |x)

qφ(θ |x)

)
dθ (5.19)

where f is a convex function. Usually, the Kullback-Leibler (KL) divergence is chosen, so the
objective becomes:

φ∗ = argmin
φ

∫

Θ
p(θ |x) log

p(θ |x)

qφ(θ |x)
dθ (5.20)

= argmin
φ

Ep(θ |x)[− log qφ(θ |x)]−H[p(θ |x)] (5.21)

= argmin
φ

Ep(θ |x)[− log qφ(θ |x)] (5.22)

where H[p(θ |x)] in Equation 5.21 is the Shannon entropy of the true posterior and can be
dropped from the optimization objective since it does not depend onφ. Wewill nowdifferentiate
between three types of amortized inference, which all leverage the fact that we can generate syn-
thetic datasets via a scientific simulator. We believe that such an explicit distinction is important,
given the current abundance of neural network methods for Bayesian inference.

Case-wise amortization In case-wise amortized inference, we perform an optimization loop for
each individual observation x (e.g., as in sequential neural posterior estimation, [40, 60]). Thus,
in expectation over all possible observations, the criterion can be expressed as:

Ep∗(x)

[
min
φx

Ep(θ |x)[− log qφ(θ |x)]

]
(5.23)

and inference is only amortized in the context of individual observations andmodels. This implies
that different neural network parametersφ∗

x are found for each approximate posterior defined by
a particular observation x and a particular modelMj . Crucially, the fact that the minimization
objective is inside the outer expectation can render inference infeasible when multiple observa-
tions and models are available.
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5.3 BayesFlow: Building Amortized Neural Samplers

Model-wise amortization In themodel-wise amortized scenario, optimization is performedglob-
ally for the entire range of plausible observations, which involves pulling the minimum operator
(min) out of the outer expectation:

min
φ

Ep∗(x)

[
Ep(θ |x)[− log qφ(θ |x)]

]
(5.24)

In this case, the training effort amortizes over the entire data range for a given model. This is the
main approach taken in the BayesFlowmethod. The training (optimization) phase in the model-
wise amortized setting is considerably longer than the training phase in the case-wise amortized
setting. However, once optimization has converged to an approximator ofφ∗, the resulting neu-
ral estimator fφ∗ can be reused for arbitrarily many observations assumed to arise from a given
model Mj . In some cases, the break-even in terms of efficiency between case-wise and model-
wise amortized inference occurs even after a few observations, without noticeable accuracy degra-
dation [133]. However, when multiple candidate models should be estimated and compared, the
training effort can become prohibitively large, since a separate set of neural network parameters
needs to be learned for each model.
Meta-amortization In the meta-amortized setting, optimization is performed over all possible
models simultaneously, introducing one more expectation into the objective:

min
φM

Ep(M)

[
Ep∗(x)

[
Ep(θ |x,M)[− log qφ(θ |x,M)]

]]
(5.25)

In thisway, an estimatorwithparametersφ∗
M (the subscript denoting amortizationover the entire

model setM) can be reused for inference on multiple observations with an arbitrary number of
competingmodels fromaparticular researchdomainormodel class. Importantly, such setting can
only be useful if the latent parameter spaces are allowed to vary across the models, as competing
models in various domains can have widely different parameterizations. Note also, that both the
model-wise andmeta-amortized setting can employ amortization over different dataset sizesN (to
be discussed shortly) as long as the dimensionality of the data summary statistic stays the same, a
property which can be of great utility in practice.
Nevertheless, each further amortization step might introduce an amortization gap. The issue

has been discussed in the context of variational inference [25] and refers to a potential drop in
performance as a consequence of optimizingneural networkparameters in expectation as opposed
to optimizing for each individual observation. However, a potential amortization gap has not
been investigatedoutside the context of variational inference andwarrants an empirical assessment
in a meta-amortized context.
In a later chapter, we will show how to make the meta-amortized objective tractable by using

ideas from the literature on normalizing flows and multi-task learning. For now, however, we
focus on model-wise amortization with BayesFlow.

5.3 BayesFlow: Building Amortized Neural Samplers

At a high level, BayesFlow [133] incorporates a summary network h and an inference network f
to jointly invert a generative Bayesian model. The summary network h(x1:N ) reduces data sets
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5 Amortized Parameter Estimation with BayesFlow

Figure 5.1: Both phases of the BayesFlow framework. Left panel: During the training phase of our
BayesFlow method, a summary (h) and an inference network (f ) are trained jointly with ran-
dom draws from the prior and synthetic data from the simulator; Right panel: During the in-
ference phase, BayesFlow works entirely in a feed-forward manner, that is, no training or op-
timization happens in this phase. The upfront training effort amortizes over arbitrary many
observations and data sets from a research domain working on the same model family.

of arbitrary size to fixed-size vector representations. The inference network samples from an ap-
proximate posterior q via a conditional invertible neural network (cINN) f which implements
a normalizing flow between θ and a normally distributed z given the outputs of the summary
network:

q(θ |x1:N ) = p(z = f(θ;h(x1:N )))

∣∣∣∣det
(
∂f(θ;h(x1:N ))

∂θ

)∣∣∣∣ (5.26)

where the dependence on all neural network parameters is implicit and has been omitted for clar-
ity. The introduction of a summary network whose structure is aligned to the structure of the
simulator (i.e., stateless vs. stateful) frees our framework from a restriction to a particular model
class or data type. Moreover, the summary network itself does not have to be invertible, since
its output is concatenated with θ and fed to each coupling layer, but not directly mapped to z.
Figure 5.1 illustrates the different components and phases of our BayesFlow framework.

5.3.1 Composing Invertible Networks

In this section, we describe how to stack multiple coupling layers to obtain a deep invertible net-
work. For now, consider the case when raw simulated datax1:N of sizeN = 1 is entered directly
into the invertible network without using a summary network. In order to ensure that our archi-
tecture is expressive enough to encode complex posterior distributions, we chain multiple ACLs,
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5.3 BayesFlow: Building Amortized Neural Samplers

so that the output of eachACLbecomes the input to the next one. In this way, thewhole network
remains invertible from the first input to the last output and can be viewed as a single bijective
function. Such chaining of operations is possible, since a composition of invertible functions is
itself invertible and its Jacobian determinant is the product of the Jacobian determinants of the
individual coupling blocks. Therefore, we refer to a cINN as a composition of K conditional
ACLs.

z = fφ(θ;x) ≡ CφK
◦ CφK−1

◦ · · · ◦ Cφ1
(θ;x) (5.27)

with trainable parametersφ = (φ1, . . . ,φK) and inverse:

θ = f−1
φ (z;x) ≡ C−1

φ1
◦ C−1

φ2
◦ · · · ◦ C−1

φK
(z;x) (5.28)

Note, that the observationx (or a transformation thereof) is fed unchanged to each coupling layer
Cφk

. In our applications, the input to the first ACL is the parameter vector θ, and the output
of the final ACL is aD-dimensional vector z representing the non-linear transformation of the
parameters into z-space. Shortly, we will show how to ensure that z follows a unit Gaussian dis-
tribution through optimization, that is, we will enforce p(z) = ND(z | 0, I). We also use fixed
permutation matrices before each ACL to ensure that each axis of the transformed parameter
space z encodes information from all components of θ, in order to capture posterior dependen-
cies (e.g., posterior covariance). In addition, we apply soft clamping of the exponential outputs
in each ACL for numerical stability.
Intuitively, our cINN realizes the following process: the forward pass maps data-generating

parameters θ to z-space using conditional information from the observationx, while the inverse
pass maps data points from z-space to the data-generating parameters of interest using the same
conditional information.

5.3.2 Summary Networks

Since the number of observations might vary in practical scenarios (e.g., different number of tri-
als or time points) or measurements might arrive in streams, we need to perform some form of
dimensionality reduction on the data before feeding it to the cINN. As previously mentioned,
we want to avoid information loss through restrictive hand-crafted summary statistics and, in-
stead, learn the most informative finite summary vectors directly from data. Therefore, instead
of feeding the raw simulated or observed data to the cINN, we pass the data through an auxiliary
summary network to obtain a fixed-sized vector representation x̃ = hψ(x1:N ).

As already alluded to in previous sections, the architecture of the summary network should
match the probabilistic symmetry of the observed data (which, in turn, is dictated by the simula-
tor), a property we refer to as algorithmic alignment [174]. In other words, different network ar-
chitectures are needed for exchangeable (generated bymemorylessmodels) and non-exchangeable
(generated by stateful models) data. In the following, we illustrate three common scenarios in
model-based inference.
Memoryless ModelsMemoryless models typically generate i.i.d. observations, which imply ex-
changeability and induce permutation invariant posteriors. In other words, changing (permut-
ing) the order of individual elements should not change the associated likelihood or posterior (see
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Section 3.4). Memoryless models abide in the cognitive sciences [39, 43, 138, 162],mainly due to
their convenient simplicity, but also due to the computational limitations of existing methods
for Bayesian estimation. Following [13],we encode probabilistic permutation invariance through
functional permutation invariance realized by a deep invariant network. Such a network is capa-
ble of learning expressive permutation invariant functions through a combination of equivariant
and invariant transformations.

First, we can obtain a permutation invariant function via an invariant module ΣI which per-
forms an equivariant non-linear transformation h1 followed by a pooling operator (e.g., sum or
max) and another non-linear transformation h2:

x̃ = ΣI(x1:N ) = h1

(
N∑

n=1

h2(xn)

)
(5.29)

where h1 and h2 can be arbitrarily complex neural networks (cf. Figure 5.2, lower left panel).
Second, in order to increase the capacity of the invariant transformation, we can stack together
multiple equivariant modules ΣE . Each equivariant module implements a learnable equivariant
transformation by performing the following operations for each input element xn:

yn = ΣE(xn, x̃) = h3(xn, x̃) for n = 1, . . . , N, (5.30)

so thatΣE is a combinationof element-wise (equivariant) and invariant transforms (cf. Figure 5.1,
lower middle panel). Again, the internal function h3 can be parameterized via an arbitrary feed-
forward neural network. Importantly, each equivariant module also contains a separate invariant
model whose output is concatenatedwith each observation in order to increase the expressiveness
of the learned transformation.

Finally, we can stack multiple equivariant modules followed by an invariant module, in order
to obtain a deep invariant summary network hψ : XN → R

S :

x̃ = hψ(x1:N ) = (ΣI ◦ Σ
(K)
E ◦ Σ

(K−1)
E ◦ · · · ◦ Σ

(1)
E )(x1:N ), (5.31)

whereψ denotes the vector of all learnable neural network parameters and S denotes the dimen-
sionality of the output layer of the last invariant module ΣI . The complete inference phase of
BayesFlow using a deep invariant summary network is depicted in Figure 5.1.

Stateful Models Stateful models incorporate some form ofmemory and are thus capable of gen-
erating observations with complex dependencies. A prime example are dynamic models, which
typically describe the evolution trajectory of a system or a process, such as an infectious disease,
over time [81]. Observations generated from such models are usually the solution of a stochastic
differential equation (SDE) and imply a more complex probabilistic symmetry than those gener-
ated frommemoryless models.

In a recent application of the BayesFlow framework for estimating key epidemiological pa-
rameters [135], we have proposed a set-up specifically designed to tackle dynamic models with
simulation-based inference. Our BayesFlow architecture comprises three sub-networks: (i) a con-
volutional filtering network performing noise reduction and feature extraction on the raw time-
series data; (ii) a recurrent summary network reducing pre-processed time-series of varying length
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Figure 5.2: Inference with BayesFlow on i.i.d. data from amemoryless model using a deep permutation in-
variant summary network. The summary network is composed of a sequence of flexible equiv-
ariant neural modules followed by an invariant neural module. In this way, i.i.d. data (sets) of
varying length are embedded into fixed-size vector representations which carry maximal infor-
mation for posterior inference with a memoryless model.

to statistical summaries of fixed size; (iii) a cINN inference network performing Bayesian parame-
ter inference given the learned summary vectors of the observations. Figure 5.2 depicts the archi-
tecture of this composite network.

The design of the convolutional network is inspired by that of the Inception neural architec-
ture which has demonstrated tremendous success in a wide variety of computer vision tasks [152].
In particular, our network is implemented as a deep fully convolutional network which applies
adjustable one-dimensional filters of different size at each level (cf. Figure 5.3, lower left panel).
The intuition behind this design is that filters of different size might capture patterns at different
temporal scales. For instance, if t = 1, . . . , T is measured in days, a filter of size one will capture
daily fluctuations whereas a filter of size sevenwill capture weekly dynamics. This, in turn, should
ease the task of extracting informative temporal features for Bayesian updating.

The output of the convolutional network is a multivariate sequence containing the filtered
time-seriesx1:T . In order to reduce the filtered sequence to a fixed-size vector, we pass it through
a long-short term memory (LSTM) recurrent network [57]. Importantly, the LSTM network
(see Figure 5.3, lower right panel) can deal with sequences of varying length, which enables online
learning (i.e., Bayesian updating when new observations become available) and makes the same
inference network applicable to settings with different degrees of data availability. Compared to
a fixed pooling operation (e.g., mean or max), our many-to-one recurrent network performs a
learnable pooling operation which respects the sequential probabilistic symmetry of the data. In
this way, the composite summary network learns to filter and extract the most informative fea-
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Figure 5.3: Inference onmultivariate time-series data arising from a stateful model using a composite sum-
mary network architecture. The summary network is composed of an inception-like 1D fully
convolutional network, followedby amany-to-one recurrent LSTMnetwork. In thisway, time-
series of varying length are embedded into fixed-size vector representationswhich carrymaximal
information for posterior inference with a stateful model.

tures from the noisy observations in an end-to-endmanner, such that nomanual (and potentially
suboptimal) selection of hand-crafted data features is required from the user at any point.

More formally, let us denote the functions represented by the filtering and summary networks
as hc and hr. Then, the convolutional filtering network yields a filtered time-series x̃1:T ′ =
hc(x1:T ) from observed data x1:T , where the number of time steps T may vary according to
data availability. The recurrent summary network turns the outputs of the filtering network into
fixed-size vectors x̃ = hr(x̃1:T ′). The cINN thus generates samples θ ∼ qφ(θ | x̃) from the
parameter posterior by computing θ = f−1

φ (z, x̃) with normally distributed random vectors
z ∼ ND(0, I). The complete inference phase of BayesFlow using a deep sequence network is
depicted in Figure 5.3.

Joint Models Joint models are an attempt to account for different processes (e.g., neural and
cognitive) within a single composite model [30, 118, 159]. Thus, joint models integrate different
sources and types of data and require more complex summary architectures. A hypothetical sce-
nario with three data sources (e.g., behavioral data, neural data, and eye-tracking data) is depicted
in Figure 5.4. In this case, a separate processor network, each aligned to the particular data type,
reduces a separate set of observations from a given source. The outputs of the individual pro-
cessor networks are then concatenated and fed through an integrator network, which combines
the information from all processor networks into a single vector representation. In this way, the
main cINN architecture can remain the same as in the previous examples and utilize themodular-
ity of neural network. Since the application of integrative joint models is still in its infancy, such
composite BayesFlow architectures are yet to prove their usefulness.
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Figure 5.4: Inference on different data sources from a jointmodel using an ensemble of summary networks
and an integrator network. The different data sets, potentially of varying size and structure, are
processed by separate algorithmically aligned summary networks. The outputs of all summary
networks are then combined into a fixed-size vector representations by the integrator network,
which informs the inference network about the joint posterior over all model parameters.

Regardless of the summary network’s concrete design, its parametersψ are optimized jointlywith
those of the cINN via backpropagation. Thus, the training phase remains completely end-to-
end, and BayesFlow learns to generalize to data sets of different sizes by suitably varyingN during
training (see Algorithm 1).

5.3.3 Optimization Objective

For any given (simulated or observed) dataset x1:N , our framework needs to ensure that the in-
verse transformation of the trained cINN, θ = f−1

φ (z;hψ(x1:N )) with z ∼ ND(z | 0, I),
yields samples from the true posterior p(θ |x1:N ). To achieve this, we resort to the concept of
distribution matching introduced earlier and minimize the expected KL divergence between the
true and the approximate posterior for all possible observations within the generative scope of a
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Monte Carlo simulator. For clarity, we first derive our optimization objective withN = 1 and
no summary network,

φ∗ = argmin
φ

Ep∗(x)[KL(p(θ |x) || qφ(θ |x))] (5.32)

= argmin
φ

Ep∗(x)

[
Ep(θ |x)[log p(θ |x)− log qφ(θ |x)]

]
(5.33)

= argmin
φ

Ep∗(x)

[
Ep(θ |x)[− log qφ(θ |x)]

]
(5.34)

= argmin
φ

−

∫

X
p∗(x)

∫

Θ
p(θ |x) log qφ(θ |x)dθ dx (5.35)

which corresponds to model-wise amortization, as defined earlier. To render optimization of this
criterion tractable, we first apply the change of variable rule to qφ(θ |x) as given in Equation 5.2
to obtain:

φ∗ = argmin
φ

−

∫

X

∫

Θ
p∗(x)p(θ |x)

(
log p(fφ(θ;x)) + log

∣∣detJfφ

∣∣)dθ dx (5.36)

where we have abbreviated ∂fφ(θ;x)/∂θ (the Jacobian of the entire cINN fφ evaluated at θ
and x) as Jfφ and moved p∗(x) inside the inner expectation, as it does not depend on θ. Since
Equation 5.36 defines an expectation over the true and unknown data-generating distribution,
we replace it with the Bayesian joint model p(θ,x) fromwhich we can obtainMonte Carlo sam-
ples (e.g., by using Algorithm 1). Accordingly, for a batch of B parameters and corresponding
synthetic data setsD(B) = {(θ(b),x(b))}Bb=1, we can define the following loss function

L(φ) =
1

B

B∑

b=1

(
− log p

(
fφ(θ

(b);x(b))
)
− log

∣∣∣detJ (b)
fφ

∣∣∣
)

(5.37)

=
1

B

B∑

b=1




∥∥∥fφ
(
θ(b);x(b)

)∥∥∥
2

2

2
−

K∑

k=1

log
∣∣∣detJ (b)

Cφk

∣∣∣


, (5.38)

which we minimize using standard backpropagation to arrive at an unbiased estimate φ̂ of φ∗.
The first term follows from Equation 5.36 due to the fact that we have prescribed a unit Gaussian

distribution to z. It represents the negative log ofND(z | 0, I) ∝ exp(
∥∥−1

2z
∥∥2
2
). The second

term follows from Equation 5.27 and controls the rate of volume change induced by the non-
linear transformation from θ to z learned by fφ. Thus, minimizing Equation 5.38 ensures that
z follows the prescribed unit Gaussian and that fφ∗ is a model-wise amortized neural sampler
which yields independent samples from the true posterior under perfect convergence [133].

When the number of observations varies during inference, we need to vary it during training
as well, in order to achieve amortization over data sets x1:N with different sizes (if required by
the application). Thus, we introduce a suitable summary network hψ which renders the cINN
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independent ofN and learns to extract maximally informative statistics from the (raw) simulated
data in an end-to-end manner. Our modified criterion then becomes:

φ∗,ψ∗ = argmin
φ,ψ

Ep(N,θ,x)[− log qφ(θ |hψ(x1:N ))] (5.39)

Accordingly, our modified loss function for a batchD(B)
N = {(θ(b),x

(b)
1:N )}Bb=1 simulated from

the Bayesian model p(N,θ,x) becomes:

L(φ,ψ) =
1

B

B∑

b=1




∥∥∥fφ
(
θ(b);hψ(x

(b)
1:N )

)∥∥∥
2

2

2
−

K∑

k=1

log
∣∣∣detJ (b)

Cφk

∣∣∣


, (5.40)

which corresponds to a trivial change that simply sets the conditioning vector of the cINN to the
output of the summary network. Again, we can use backpropagation with any gradient-based

optimization method to obtain unbiased estimates φ̂, ψ̂ of the optimal neural network parame-
ters φ∗,ψ∗ from Equation 5.39. Note, that minimizing the above loss function leads to a self-
consistent criterion which recovers the true posterior p(θ |x1:N ) over allx andN under perfect
convergence of both networks [133]. However, perfect convergence is often a chimera in prac-
tice, so, in a later section, we will discuss the potential sources of errors and respective remedies
in detail. Having formulated our optimization criterion, we now describe the different training
regimes of BayesFlow.

5.4 Training Phase

The training phase of the BayesFlow framework (left panel of Figure 5.1) can be implemented
in different ways, depending on the modeling scenario and the modelers’ computational budget.
The starting point of all Bayesian analysis is the observed data itself. If a single observed data set
x1:N should be analyzed with a complex model that is custom-tailored for this and only this data
set, it is worth considering a case-wise amortized approach, such as SNPE [60, 122]. The speed
break-evenpoint between case-wise andmodel-wise amortized inference is application-dependent
and currently being investigated [133].However, at present, a systematic quantitative comparison
between different model classes and network architectures is missing from the literature, so mod-
elers need to base their decisions on empirical considerations or pilot simulation studies. Be that
as it may, we now present and discuss three viable simulation-based training approaches in the
context of model-wise amortization with BayesFlow.
Offline learning The starting point of traditional simulation-based approaches has been the so-
called reference tableD(S), which is simply a large data structure containingS pairs of parameters
and summary statistics of synthetic observations [29, 150]. Indeed, initial machine learning ap-
proaches have already recognized the potential of using the reference table as training data for
learning algorithms, such as quantile random forests [140] or deep neural networks [79], [136]. In
this way, the problem of inverse inference becomes a supervised learning task which can easily be
tackled with expressive learning algorithms. With BayesFlow, we can take a similar approach, as
outlined in Algorithm 2.
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Algorithm 2 BayesFlow training phase using offline learning

Require: fφ - invertible inference network, hψ - algorithmically aligned summary network, S -
total number of simulations,B - number of simulations per batch (batch size).

1: Generate a large reference tableD(S)
N := {θ(s),x

(s)
1:N )}Ss=1 using Algorithm 1.

2: repeat

3: Sample a mini-batch: D(B)
N ∼ D

(S)
N .

4: Pass each synthetic data set through the summary network: x̃(b) = hψ(x
(b)
1:N ).

5: Pass each pair (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ
(b), x̃(b)).

6: Compute loss according to Equation 5.40 from the training batch.
7: Update neural network parametersφ,ψ via backpropagation.

8: until convergence to φ̂, ψ̂
9: Return trained inference and summary networks f

φ̂
, h
ψ̂
.

A few points regarding Algorithm 2 are worth mentioning. First, it involves a single call to
Algorithm 1 to generate the entire reference table (step 1), which will return data sets with the
same sizeN if called only once1. Thus, if we want to varyN during offline learning, we need to
create the reference table via multiple calls to Algorithm 1 andmake sure that we have an efficient
data structure to store entries with different sizes. Second, steps 3− 7 can be executed with GPU
parallelization leading to a considerable speed-up in convergence. Third, the convergence criterion
canbe chosen as in standard deep learning application. For instance, we can establish a pre-defined
number of epochs (i.e., loops through the entire training data) or an early stopping condition (i.e.,
if the loss does not improve in some number of consecutive epochs).
The offline learning regime is particularly useful when active calls to the simulator are compu-

tationally expensive, since data generation and training are clearly separated. It also has the ad-
vantage of reusing the simulated data and being closest to standard applications of deep learning.
Obvious drawbacks of the offline learning regime are thememory demands for storing potentially
large and heterogeneous data structures as well as the need to address potential overfitting.
Online learning An alternative to the offline learning regime utilizes the possibility to generate
a theoretically limitless number of synthetic data sets on-the-fly. In this way, the networks never
“experience” the same inputs (simulated parameters and data sets) twice, since simulations are dis-
carded after each backpropagation update. Moreover, since classical overfitting is nearly impos-
sible in an online learning regime, training can continue as long as the networks keep improving
(i.e., the loss keeps decreasing).
Algorithm 3 outlines the online learning regime with BayesFlow. Note, that the key difference

to offline training is the fact that learning and data generation are tightly intertwined when per-
forming online learning. Themost prominent advantage of online learning is also itsmost notable
disadvantage: since simulations are not reused, the simulator needs to work actively and presents
a potential bottleneck. Note also, that this detail presents less of a problem if simulations are com-
putationally cheap or implemented efficiently (e.g., by utilizing different forms of parallelism as
discussed in section 5.2.2).

1Mathematically, the fixedN scenario is simply a special case where p(N) reduces to a point mass distribution.
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Algorithm 3 BayesFlow training phase using online learning

Require: fφ - invertible inference network, hψ - algorithmically aligned summary network,B -
number of simulations per iteration (batch size).

1: repeat

2: Generate a mini-batchD(B)
N := {θ(b),x

(b)
1:N )}Bb=1 using Algorithm 1.

3: Pass each simulated data set through the summary network: x̃(b) = hψ(x
(b)
1:N ).

4: Pass each pair (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ
(b), x̃(b)).

5: Compute loss according to Equation 5.40 from the training batch.
6: Update neural network parametersφ,ψ via backpropagation.

7: until convergence to φ̂, ψ̂
8: Return trained inference and summary networks f

φ̂
, h
ψ̂
.

Hybrid learningOffline and online learning represent the two endpoints on a hypothetical con-
tinuum of training strategies. However, various hybrid learning approaches appear viable for op-
timizing the total simulation budget available for a givenmodeling problem. For instance, we can
use a techniqueusedwidely in reinforcement learning called experience replay [98, 148]. Experience
replay is a hybrid learning approach aimed at balancing data usage and computational efficiency.
It uses a data structure called a circular buffer which keeps past simulations in main memory and
discards the oldest once its capacity has been exceeded. We outline this type of hybrid learning in
Algorithm 4.

Algorithm 4 BayesFlow training phase using hybrid learning with experience replay

Require: fφ - invertible inference network, hψ - algorithmically aligned summary network, S -
memory capacity,F - replay memory buffer,B - number of simulations per iteration (batch
size).

1: Initialize replay memory bufferF with capacity S.
2: repeat

3: Generate a mini-batchD(B)
N := {θ(b),x

(b)
1:N )}Bb=1 using Algorithm 1.

4: Store mini-batchD(B)
N in memory bufferF .

5: Sample a mini-batch D̃(B)
N randomly fromF .

6: Pass each pair (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ
(b), x̃(b)).

7: Compute loss according to Equation 5.40 from the sampled batch.
8: Update neural network parametersφ,ψ via backpropagation.

9: until convergence to φ̂, ψ̂
10: Return trained inference and summary networks f

φ̂
, h
ψ̂
.

To further increase the efficiency when using experience replay, we can introduce a dummy
parameter α ∈ [0, 1] which controls the probability of creating new simulations by executing
Algorithm 1. In other words, if α = 0.5, new parameters and synthetic observations will be
generated in roughly every other pass through lines 3 − 8, thus reducing the overall number of
simulations by a half.
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Another hybrid learning approach utilizes a round-based strategy inspired from SNPE meth-
ods [40, 60]. Accordingly, the training phase moves through a progression of rounds and each
round introduces its own simulation phase. In this way, we keep a reference table in main mem-
ory and augment it in a step-wise manner for a pre-defined number of roundsR. Thereby, each
round becomes potentially longer but also reuses simulations from all previous rounds. This ap-
proach appears preferable to pure offline learning, especially when it is difficult to estimate the
required number of simulations in advance. Moreover, an early stopping criterion can be grafted
in-between rounds, in case further training is not conductive to the networks’ performance. Al-
gorithm 5 lays out the essential steps of the round-based approach.

Algorithm 5 BayesFlow training phase using round-based hybrid learning

Require: fφ - invertible inference network, hψ - algorithmically aligned summary network,R -
number of rounds, S - number of simulations per round,B - batch size.

1: Initialize reference tableD(R×S) := {}.
2: for r = 1, ..., R do

3: Generate synthetic dataD(S)
r := {θ(s),x

(s)
1:N )}Ss=1 using Algorithm 1.

4: Aggregate data: D(R×S) := D(R×S) ∪ D
(S)
r .

5: repeat

6: Sample a mini-batch: D(B)
N ∼ D(R×S).

7: Pass each synthetic data set through the summary network: x̃(b) = hψ(x
(b)
1:N ).

8: Pass each (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ
(b), x̃(b)).

9: Compute loss according to Equation 5.40 from the sampled batch.
10: Update neural network parametersφ,ψ via backpropagation.

11: until convergence to φ̂r, ψ̂r

12: end for
13: Return trained inference and summary networks f

φ̂R
, h
ψ̂R

.

To sum up, one should keep an openmind regarding alternative training regimes which go be-
yond the ones discussed in this section. The field of neural Bayesian inference is new and, despite
being an area of active research, systematic analyses of key practical issues are currently missing
from the literature. As we saw in this section, there are various ways to implement the training
phase of BayesFlow in practice, each coming with its own advantages and disadvantages. Ideally,
the training phase should be structured so as to maximize the performance of the networks while
minimizing the number of simulations. Albeit not always easy to achieve in practice, the attain-
ment of this (informal) criterion can greatly benefit from prior considerations on computational
resources and domain knowledge of the modeling problem.

5.5 Inference Phase

Once the training phase has completed, the converged BayesFlow networks can be stored on any
computer and used for efficient amortized inference on any upcoming data set from the genera-
tive scope of the simulator. In otherwords, the summary and the inference networks have become

54



5.6 Sources of Error

“domain experts” for Bayesian inference with a particular model family. Moreover, since the price
of inference has been pre-paid during the upfront training phase, uncertainty-aware model in-
version is now extremely efficient using the pre-trained networks. Indeed, we have extensively
demonstrated the efficiency benefits of amortized inference with BayesFlow in our main paper
[133]. Throughout the examples considered there, we have shown that we can obtain thousands
of samples on hundreds of data sets for a couple of seconds. Algorithm 6 describes the inference
phase of BayesFlow (see also Figure 5.1, right panel) on a list of I observed data sets.

Algorithm 6 BayesFlow inference phase with pre-trained networks

Require: f
φ̂
- pre-trained invertible inference network, h

ψ̂
- pre-trained summary network,

{x
(i,obs)
1:Ni

}Ii=1 - list of observed data sets for inference,L - number of posterior samples.
1: for i = 1, ..., I do

2: Pass the i-th data set through the summary network: x̃(i,obs) = h
ψ̂
(x

(i,obs)
1:Ni

).
3: for l = 1, ..., L do

4: Sample a latent variable instance: z(i)l ∼ ND(z | 0, I).

5: Evaluate the inference network in reverse: θ(i)l = f−1

φ̂
(z

(i)
l ; x̃(i,obs)).

6: end for
7: Store {θ(i)l }Ll=1 as samples from the i-th posterior p(θ |x1:N = x

(i,obs)
1:Ni

).
8: end for

Note, that all components of Algorithm 6 can also benefit from a tremendous speed-up with
the aid of GPU acceleration. In particular, both loops over I and L can be performed in parallel
using a GPU. Thus, it seems evident that every step of a BayesFlow analysis pipeline is amenable
to modern parallel computing, fromMonte Carlo simulations to inference on real data (and also
validation, as we will discuss shortly). The correctness of Algorithm 6 is guaranteed under the
conditions of perfect convergence and self-consistency, that is:

f−1
φ∗ (z;hψ∗(x1:N )) ∼ p(θ | x1:N ) with z ∼ ND(z | 0, I)) (5.41)

whereφ∗,ψ∗ are global minimizers of themodified criterion (Equation 5.39) and the simulation
gap induced bymodeling p∗(x1, . . . ,xN ) via p(x1, . . . ,xN ) =

∫
Θ p(x1, . . . ,xN |θ)p(θ)dθ

is negligible (see [133] for a detailed proof). Moreover, the samples obtained byperfectly converged
BayesFlow networks are fully independent, in contrast to MCMC and other stateful Bayesian
methods which sometimes induce severe auto-correlation among successive samples. In practice,
however, it is important to be aware of potential deficiencies in computational faithfulness, to
which we turn next.

5.6 Sources of Error

Computational faithfulness refers to the adequacy or the ability of a Bayesian method to recover
the correct target posterior in aparticular (simulatedor real-world)modeling scenario. Thus, com-
putational faithfulness is not just a nice-to-have extra, but a crucial prerequisite for trustworthy
model-based inference. No Bayesian method is exempt from the privilege of occasionally leading
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modelers and decision makers astray. Therefore, even though each method will eventually err in
some (inevitably unexpected) situation, it seems important to at least have a handy catalogue of
errors, listed together with their potential causes and fixes. Such a catalogue does not have to be
static, but can dynamically grow as a particularmethod is continuously used in novel applications
or integrated in existing analysis pipelines. In the following, we discuss five prominent sources of
error which can potentially compromise faithful Bayesian inference with BayesFlow.
The first source of error is the simulation gapwhich can occur undermodelmisspecification or

when the observed data are contaminated in ways not covered by the stochastic component ξ of
the simulator. Despite being an issue which needs to be addressed via prior predictive checks, that
is, before doing inference, errors due to model misspecification will result in incorrect posteriors
that might be hard to detect in practice. In some cases, model misspecification might manifest
itself in posteriors which are incompatible with the prior (e.g., posterior samples having 0 density
under the prior), butmore complexmisbehavior is also possible. In other cases, researchers might
anticipate how data will be contaminated (e.g., inattention by participants in an experiment or
guesswork during a performance test) and explicitly model the contaminants2. However, inmost
cases, model misspecification will be far from obvious (otherwise one would have taken steps to
eliminate it), so its potential to bias subsequent inference remains a real issue. This underlines the
importance of domain expertise consistency when setting up amodel and highlights the fact, that
all steps in a Bayesian workflow are inter-dependent, with errors inherent in initial phases tacitly
propagating to further phases of data analysis.
The second source is theMonte Carlo error introduced by necessarily using a finite number of

simulations from the joint model p(N,θ,x) to approximate the expectation in Equation 5.39.
This source is also referred to as approximation error and is a widely accepted concomitant of all
Monte-Carlo methods. It is also relatively easy to mitigate in an online learning regime, since, in
principle, we can run the simulator as long as we can afford and thus generate a potentially infinite
amount of training data. In this respect, neural simulation-based inference is in a better position
to exploit the capacity of data-hungry deep neural networks thanmore prototypical deep learning
applications operating a limited-data regime.
The third source is the amortization gapwhich refers to a potential deficiency in the inference

phase due to the use of a single set of summary and inference networks parameters (ψ̂, φ̂) to per-
form inverse inference globally (i.e., to obtainmodel-wise amortization). An amortization gap can
be elusive and non-trivial to detect with certainty in practical scenarios unless one performs case-
wise inference alongside (which would be wasteful in practice) and quantifies the quality of both
analyses. Sometimes, an amortization gap can be detected via probabilistic calibration methods
(e.g., simulation-based calibration, SBC, [155]), although the reasons for miscalibrated inference
might be obscure at first. The more severe problem with this approach, however, is that miscali-
brated inferencemight have different and overlapping causes, and thus not be directly attributable
to an amortization gap. Tomakematters worse, perfectly calibrated inference on the basis of sim-
ulations might still be perfectly miscalibrated when transferred to real data, so, detrimentally, an
amortization gap can manifest effects similar to a simulation gap. Thus, proper posterior model
checking is needed to ensure a model’s generative and predictive performance meet the modeler’s
needs. In the case of a determinable amortization gap, moving to case-wise amortizationmight be

2In fact, this is what we did in our application of BayesFlow to Covid-19 modeling [135]
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a viable optionwhen dealing with complexmodels. Alternatively, increasing the expressiveness of
the summary and inference networks could also ameliorate amortization-related problems (to be
discussed shortly).
The fourth source is due to a summary network which may not fully capture the relevant in-

formation in the data or when sufficient summary statistics do not exist. All things being equal,
not capitalizing on the information contained in the data will result in incorrect inference, usu-
ally in the form of overdispersed or otherwise miscalibrated posteriors [133]. Thus, the choice of
summary network is a crucial proviso for the overall performance of a BayesFlow application. In-
deed, the design and architecture of optimal summary networks is a subject of ongoing research.
And even though concrete guidelines for optimal summary network design are currently lacking,
there are at least two wells of guidance. On the one hand, recent work on probabilistic symme-
try [13] and algorithmic alignment [174] can provide theoretical ideas on how to select a suitable
summary architecture for a particular problem. On the other hand, recent simulation-based appli-
cations using the BayesFlow framework to tackle complex stochastic models in different research
domains can provide viable empirical hints for aligning the summary network to the data at hand.
Currently, the BayesFlow method has been employed to perform inference on complex models
frompsychology [172], cognitive science [137], computational psychiatry [31], epidemiology [135],
mathematical finance [147], and physics [10]. Nevertheless, more theoretical and empirical work
is needed for definite recommendations at the current stage of development.
The fifth source is due to an inference network which does not accurately transform the true

posterior into the prescribed (Gaussian) latent space. This error can be easily detected by pass-
ing multiple simulations through the networks and exploring the structure of the latent space
p(z). Industrious modelers might even consider computing a formal metric between the desired
latent space (e.g., Gaussian) and the one obtained by the networks. In the presence of amismatch,
increasing the capacity of the inference network should be the first step to take before further in-
vestigations into the problem. Accordingly, both the depth (number of coupling layers) of the
cINN as well as the design of the coupling layers themselves could be tuned to increase the expres-
siveness of the learned transformation from θ-space to z-space. The benefits of neural network
depth have been confirmed both in theory and in practice [5, 97], so one should expect better per-
formance in complex settings with increasing network depth. However, one should also bear in
mind, that anunderexpressive summary network could also be responsible for a deficient transfor-
mation, since summary and inference network are optimized jointly during the training phase of
BayesFlow. Thus, an exclusive focus on the inference networkmight not be conductive to solving
all possible transformation errors. In any case, visualizing the learned latent space and inspecting
it for deviations from the desired one (i.e., as prescribed by the optimization criterion) is integral
to any application of BayesFlow.
To sum up, as in any Bayesian framework, care should be taken to ensure computational faith-

fulness as a basis for reliable amortized inference with BayesFlow. Fortunately, we can address
model misspecification (error 1) with standard Bayesian prior/posterior predictive checks [52, 56,
144]. Moreover, we can establish deficiencies in self-consistency (errors 2-5) by simply visualizing
the latent space obtained in any application of BayesFlow, which provides uswith a self-diagnostic
method. Naturally, using this method does not help us pinpoint the exact source of error, but
only indicates its potential presence. As previously discussed, certain heuristics can be applied
for a more detailed error checking in particular applications. In addition, future research should
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take steps towards a more fine-grained theoretical error analysis, elucidating the consequences of
imperfect convergence and investigating error bounds.

5.7 A BayesianWorkflowwith BayesFlow

Wewill now briefly discuss the place of BayesFlow in a principled Bayesian workflowwith a focus
on cognitive modeling [144]. In the context of a single cognitive model, a principled Bayesian
workflow proposed by [144] goes through the following steps:

1. Prior predictive checks

2. Computational faithfulness checks

3. Model sensitivity checks

4. Posterior predictive checks

Prior predictive checks are designed to test whether a model is consistent with the relevant
domain expertise. Computational faithfulness refers to the accuracy of the estimation method.
Model sensitivity asks whether the parameters of amodel can be recovered given themodel’s prior
specification, generative scope, and algorithmic from. Finally, posterior predictive checks assess
whether the model captures the relevant structure of the assumed true data generating process.
Needless to say, these steps are all computationally intensive and associated with their own spe-
cific challenges. In the following, we describe the significant role of amortized inference with
BayesFlow at each step of the Bayesian workflow.

5.7.1 Prior Consistency

Since no inference happens at the (pre-data) stage of ensuring consistency with domain expertise,
there is little room for amortized inference either. However, prior predictive checks should be an
integral part of any Bayesian (simulation-based) analysis. Inconsistent models can require either a
modification of the prior p(θ) or/and the simulator g(θ, ξ), in order to resolve conflicts with self-
evident domain expertise. Ideally, cognitive models should (re-)produce meaningful patterns of
humanbehavior andnot harness pathological patterns in their generative scope (e.g., superhuman
reaction times or flawless memory). The easiest way to control for inconsistent model behavior is
to constrain the priors to meaningful domains (numerical ranges). In other cases, incorporating
certain constraints into the simulator and extensive exploration of the data space (e.g., via prior
pushforward checks) might be necessary.

5.7.2 Computational Faithfulness

Computational faithfulness is best ensured when performing Bayesian inference with methods
capable of self-diagnosis. For example, convergence issues in MCMC sampling methods in gen-
eral can be detected by inspecting the Gelman-Rubin (R̂) metric [55] or specific problems with
HamiltonianMonte Carlo (HMC) can be indicated by divergent transitions [8].
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5.7 A BayesianWorkflow with BayesFlow

Figure 5.5: Simulation-based calibration (SBC) results for a Lévy flight model with 8 parameters atN =
800 trials as a validation check for computational faithfulness. The histograms indicate no sys-
tematic deviations from uniformity across marginal posteriors.

A natural self-diagnostic of BayesFlow can be derived by inspecting its the ability to correctly
transform p(θ |x) into p(z) for any x. To ensure this, one can simulate a set of pairs (θ,x),
pass them through a converged BayesFlow configuration and inspect the resulting latent space
for deviations from the prescribed latent space (a spherical Gaussian in our case). This can be
done either visually, or numerically, by computing, for instance, the maximummean discrepancy
(MMD, [61]). Note, that this procedure is very fast, since it requires only simulations and forward
evaluations of the network, which can all be performed in parallel and furthered through GPU
acceleration.

Alternatively, one can resort to calibration algorithms, which can reveal systematic biases in the
approximate posteriors. One such approach is simulation-based calibration (SBC, [155]), which
is a variant of probabilistic calibration [58] specifically tailored for generative Bayesian models.
SBC can be used to validate the inferential correctness of a Bayesian sampling method without
knowing the true posterior distribution, which makes it a very powerful diagnostic tool.

However, SBC is extremely time-intensive with standard Bayesian methods, since the compu-
tational model needs to be estimated repeatedly, potentially hundreds of times, on different simu-
lateddata sets. In addition, the obtainedposterior samples shouldbe independent for SBCtoyield
reliable results, which further increases the required computing time to eliminate auto-correlation
via thinning while still retaining enough posterior samples afterwards [155]. These requirements
often render SBC practically infeasible for non-amortized Bayesian methods.

Within the BayesFlow framework, SBC can be performed with extreme efficiency once the
training phase is over. It simply requires running Algorithm 6 repeatedly with simulated data
sets instead of actual observations. Amortized inference ensures that these runs are very efficient.
In addition, a perfectly converged BayesFlow configuration yields independent samples from the
posterior. Using GPU acceleration, SBC with BayesFlow typically takes a couple of seconds, as-
suming that the synthetic observations have already been simulated. Thus, we advise the routine
and automated use of SBC when doing amortized Bayesian inference.
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5.7.3 Model Sensitivity

Model sensitivity, or model adequacy, refers to the feasibility of inverse inference. In other word,
it asks about the amount of information gained through Bayesian updating, assuming compu-
tational faithfulness of the inferential method and self-consistency of the Bayesian simulator. A
straightforward way to obtain a measure of model sensitivity is to compute the expected Bayesian
surprise (see Section 3.2), which can also be used for model comparison in a pre-data stage. How-
ever, since Bayesian surprise could be hard to interpret in practical terms and without reference
to information-theoretic notions, one can resort to other proxies of information gain, such as
posterior contraction or posterior z-score [144].

Posterior contraction is ameasure of sharpness achieved by Bayesian updating and can be com-
puted for both marginal as well as joint distributions (see Section 3.2). Higher values indicate a
highdegree of uncertainty reduction and, equivalently, a noticeable posterior sharpness. Likewise,
the posterior z-score is a measure of accuracy computed as the difference between the posterior
mean (expected value) and the true parameter configuration of a simulated data set, standard-
ized by the posterior variance. Accordingly, smaller values suggest that the posterior concentrates
strongly around the true parameter (i.e., the posterior mean is a reasonable representation of the
full posterior) while larger values suggest a posterior that concentrates in other parts of the prior
domain.
In order to avail themselves of posterior contraction and posterior z-score as useful measures

of model sensitivity, modelers need to simulate multiple data sets from the generative model,
perform inverse inference on all of them, and compute the corresponding metrics. Similarly to
SBC, the feasibility of this procedure depends heavily on the efficiency of the Bayesian estimation
method. Thus, evaluating model sensitivity with non-amortized methods might turn out to be
prohibitively slow, whereas it becomes trivial when doing amortized inference with a pre-trained
BayesFlow configuration. The same would be true for anymeasure of model sensitivity requiring
repeated inverse inference on multiple simulated data sets, so model sensitivity is another step of
a principled Bayesian workflow which can massively profit from amortized inference.

5.7.4 Posterior Predictive Checks

Posterior predictive checks are vital for evaluating a computational model on actually observed
data with respect to the model’s generative and predictive performance. Moreover, posterior pre-
dictive metrics, such as cross-validation or Bayesian information criteria, can be used for subse-
quent model comparison and selection in a multi-model setting. As already discussed in Sec-
tion 3.5, posterior predictive checks comprise a serious computational bottleneck in Bayesian
pipelines, even more so when dealing with intractable models.
For instance, k-fold or leave-one-out (LOO) cross-validation (CV) require re-estimating the

same model on multiple sub-sets of the original data set in order to approximate out-of-sample
predictive performance. When multiple data sets are to be modeled, the computational load in-
creases in amultiplicativemannerwith the number of data setsB, so extensive posterior predictive
checkswith standard Bayesianmethods quickly become too costly to perform. Once again, amor-
tized inference with BayesFlow offers considerable efficiency gains, since repeated applications of
the same model simply involve running the pre-trained networks in a feed-forward mode with
different (sub)-sets of the full data.
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Figure 5.6: The left panel depicts parameter recovery of the four drift rate parameters as a function of trial
numbersN using theR2 metric between true and estimated values. The right panel depicts re-
covery of the other four parameters. Posteriormeans are used as summaries of the full posteriors
and shaded regions represent bootstrap 95% confidence intervals.

5.8 A Quick Demonstration

As an illustrative example, we present an application of BayesFlow to a recent intractable evidence
accumulationmodel (EAM). Further applications tomodels from different research domains are
described in Chapter 8 or in applied works [10, 31, 135, 147]. EAMs are a popular class of mech-
anistic models in psychology and cognitive science, since they enable a principled model-based
analysis of human response time (RT) data obtainable in controlled experimental environments.

For this example, we focus on a Lévy flight model (LFM) with a non-Gaussian noise assump-
tion [169, 172]. The Lévy flight process is driven by the following stochastic ordinary differential
equation (ODE):

dxc = vdtc + ξdt1/α (5.42)

ξ ∼ AlphaStable(α, 0, 1, 0) (5.43)

where dxc denotes accumulated cognitive evidence in condition c ∈ {1, 2, 3, 4}, vc denotes the
average speed of information processing (drift) in condition c, andα controls the heaviness of the
noise distribution’s tails (i.e., smaller values increase the probability of outliers in the accumula-
tion process).

Consider first a simple question of optimal experimental design. A behavioral researcher wants
to conduct a response times (RT) experimentwith four conditions andmodel performance via the
Lévy flight model. Howmany trials are needed for accurate parameter recovery? To answer these
questions, we can simulate multiple experiments with varying number of trialsN per synthetic
participant and then compute some practically relevant discrepancy between ground-truth pa-
rameters and their estimates. Afterwards, we can quantify computational faithfulness andmodel
sensitivity with the particular number of trials N collected in the experiment. Note, that the
mandatory prior predictive and posterior predictive checks are left out for conciseness of exposi-
tion.
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5 Amortized Parameter Estimation with BayesFlow

Figure 5.7: Parameter recovery (true vs. estimated) values forN = 800 simulated trials. Normalized root-
mean-square error (NRMSE) and the coefficient of determination (R2) are used to quantify
discrepancy between posterior means and true parameter values.

Since the Lévy flight model is analytically intractable, such a simulation scenario is not feasible
with non-amortized methods, which would need weeks on standard machines [169]. However,
using a BayesFlow architecture, we can obtain an amortized neural sampler capable of working
with variable number of trials (i.e., by using a permutation invariant summary network). The on-
line training phase with Algorithm 3 took approximately one day on a standard laptop equipped
with an NVIDIA® GTX1060 graphics card. Subsequent inference is then extremely efficient, as
amortized Bayesian estimation on 500 simulated participants takes less than two seconds [137].
We visualize the results by plotting the average R2 metric obtained from estimating the Lévy

flight model on 300 simulated participants withN varying between 50 and 1000 (cf. Figure 5.6.
Notably, recovery of the ground-truth parameters via posterior means is nearly perfect at higher
trial numbers, and resembles a logarithmic function of N 3. A similar plot can be created for
posterior contraction as a function ofN (see Ricker example in [133]).

Further, we can now apply the same network from the previous simulation example for execut-
ing fully Bayesian inference on real data. For this illustrative example, we estimate the Lévy flight
model from eleven participants performing a long lexical decision task withN = 800 trials per
condition [137]. Since the task had a 2× 2 design, with a factor for difficulty (hard vs. easy), and
a factor for stimulus type (word vs. non-word), we assume a different drift rate vc for each design
cell c ∈ {1, 2, 3, 4}.
Before performing inference on actually observed data, we compute SBC and evaluate parame-

ter recovery using simulations withN = 800 trials per condition (aligned to the particular exper-
imental design) in order to become a rough sense of computational faithfulness and model sen-
sitivity. Importantly, these checks were performed within seconds with amortized inference and

3Strictly speaking, one should also ensure that inference is calibrated for eachN , a step which is no more computa-
tionally expensive with BayesFlow and which we omit here for brevity.
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Figure 5.8: Individual bivariate posteriors obtained from data of one example participant in the lexical de-
cision task.
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would have been intractable with standard methods. Accordingly, marginal SBC and parameter
recovery plots are depicted in Figures Figure 5.5 and Figure 5.7, respectively. The SBChistograms
suggest no systematic biases across the approximate marginal posteriors for each parameters (e.g.,
no under- or overdispersion of the true posterior). Likewise, the recovery plots indicate excellent
parameter recovery using posteriormeans as summaries of the full posteriors, a result which is also
evident from the earlier Figure 5.6.
Thus, we can interpret the results from these pre-data checks as hints of intact self-consistency

and proceed to applying BayesFlow to real data. A typical output from applying BayesFlow to
a single data set is depicted in Figure 5.8, which presents marginal and bivariate posteriors. The
latter allows us to visually inspect posterior correlations as indicators of disentanglement (linear
independence) between the individual model parameters [137].

5.9 Concluding Remarks

This chapter introduced the building blocks of our BayesFlow framework and discussed itsmath-
ematical and algorithmic formulation at a relatively high level. More details regarding perfect con-
vergence, training, andhyperparameter choice (e.g., learning rate, optimizer settings) canbe found
in our methodological work [133] as well as in the applied works [10, 31, 135, 147]. Details regard-
ing implementation as well as templates for parameter estimation are also available at the corre-
sponding code repository (https://github.com/stefanradev93/BayesFlow). Whereas a multitude
of features and potential improvements remain to be explored in future research, our results from
initial simulations and applications appear highly promising. Thus, we hope that our framework
will accelerate model-based inference in a variety of scientific fields and prove its utility beyond
the current applications.
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When you have eliminated the impossible, whatever remains, however im-

probable, must be the truth.

—Arthur Conan Doyle

Researchers from various scientific fields face the task of selecting themost plausible theory for an
empirical phenomenon amongmultiple competing theories. Theories in the cognitive and behav-
ioral sciences are also not exempt from being subject to a relentless selection process. As already
discussed, rigorous theories are often instantiated as formal models which describe how observ-
able quantities arise from unobservable parameters in the language of mathematics. Focusing on
the level of mathematical models, the problem of theory selection then becomes one of model
selection.

For instance, neuroscientists might be interested in comparing different models describing the
spiking patterns revealed by in vivo recordings of neural activity [76]. Epidemiologists, on the
other hand,might consider different dynamicmodels for predicting the transmission rate or other
characteristics of an unfolding infectious disease [167]. Crucially, the preference for one model
over alternative models in these examples can have important consequences for research projects
or social policies.

Accounting for complex natural phenomena often requires specifying complex models which
entail some degree of randomness. Inherent stochasticity, incomplete description, or epistemic
ignorance all call for some form of uncertainty awareness. As a further complication, empirical
data on which models are fit are necessarily finite and can only be acquired with finite precision.
Finally, the plausibility of many non-trivial models throughout various branches of science can
be assessed only approximately, through rather costly simulation-based methods [26, 35, 76, 104,
139, 161].

Our evidential method aims to amortize Bayesianmodel comparison by combining latest ideas
fromsimulation-based inference anduncertaintyquantification forbuilding efficient anduncertainty-
aware neural classifiers. As such, it is intended to complement the toolbox of simulation-based
methods for parameter estimation with crucial model comparison capabilities. Moreover, it in-
corporates a unique feature for estimation of higher-order uncertainty, which goes beyond the
scope of standard ABCmethods.

6.1 Desiderata

In theprevious chapter,we introduced thenuts andbolts of ourBayesFlowmethod for simulation-
based Bayesian parameter estimation. This chapter will present our complementary framework
for simulation-based Bayesianmodel comparison. The next chapter will discuss the potential and
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challenges inherent in combining both frameworks into a single meta-framework. As with pa-
rameter estimation, we begin by stating our desiderata for building a useful model comparison
method:

1. Estimated model probabilities should be, at least in theory, calibrated to the true model
probabilities induced by an empirical problem

2. Estimated model probabilities should be accurate even for finite or small sample sizes

3. Preference for simpler models (i.e., the probabilistic Occam’s razor) should be encoded by
the estimated model probabilities

4. The method should be applicable to complex models with implicit likelihoods within rea-
sonable time limits

5. The method should enable full amortization over arbitrarily many models, data sets, and
varying data set sizes

6. The method should automatically extract maximal information from the raw data and
avoid information loss through insufficient summary statistics of the data

Evidently, the desiderata formodel comparison are somewhat overlappingwith those stated earlier
for parameter estimation. Indeed, in this chapter, we will reuse many of the previous concepts for
building algorithmically aligned summary networks in the BayesFlow framework.

6.2 Background

The following section will briefly rehearse some of the core concepts related to Bayesian model
comparison (see also Chapter 3), thereby setting the stage for the derivation of our evidential
framework.

6.2.1 BayesianModel Comparison

In Bayesian modeling, we typically start with a collection of J competing generative models,
which we denoted as M = {M1,M2, . . . ,MJ}. Each abstract model index Mj is associ-
ated with a generative mechanism gj , typically realized as a Monte Carlo simulation program,
and a corresponding parameter spaceΘj equipped with a prior distribution p(θj |Mj). Ideally,
each gj represents a theoretically plausible stochastic mechanism by which observable behaviorx
arises from hidden time-invariant parameters θj and independent noise ξ:

xn = gj(θj , ξn)with θj ∈ Θj (6.1)

where Θj is the corresponding parameter space of model gj and the subscript j explicates that
eachmodelmight be specified over a different parameter space1. We assume that the functional or
algorithmic form of each gj is known and that we have a sample (data set) {xi}

N
i=1 := x1:N ofN

1Also the noise distribution p(ξ) and noise space Ξ might differ for each model, but we will keep this possibility
implicit.
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(multivariate) observations generated from an unknown process p∗. The task of Bayesianmodel
comparison is to assign a plausibility score (e.g., a posterior probability) to each of the models in
M. The task of Bayesianmodel selection is then to choose the model inM that best describes the
observed data by balancing simplicity (sparsity) and predictive performance.
As already discussed in Chapter 3, Bayesianmethods for model comparison can be categorized

as either posterior predictive or prior predictive approaches [52],with ourmethod falling into the
latter category. Posterior predictive approaches are concernedwith predicting upcoming observa-
tions using models extracted from the available data. In prior predictive approaches, models are
conditioned only on prior information but not on the available data. Accordingly, all available
data counts as new data for the purpose of prior predictive methods.
To recapitulate, the canonical measure of prior predictive performance is themarginal likeli-

hood:

p(x1:N |Mj) =

∫

Θj

p(x1:N |θj ,Mj) p(θj |Mj) dθj (6.2)

which forms the basis for the computation of Bayes factors and posterior odds between pairs of
competing models. If two models are equally likely a priori, the posterior odds equal the Bayes
factor. Furthermore, if the Bayes factor, or, equivalently, the posterior odds equal one, the ob-
served data provide no decisive evidence for one of the models over the other. However, a relative
evidence of one does not distinguish whether the data are equally likely or equally unlikely under
both models, as this is a question of absolute evidence. Needless to say, the distinction between
relative and absolute evidence is of paramount importance for model comparison, so we address
it in the next section on model comparison frameworks.

6.2.2 M-Frameworks

Closely related to the distinctionbetween relative and absolute evidence is the distinctionbetween
M-closed andM-complete frameworks [176]. Under anM-closed framework, the true model
is assumed to be in the predefined set of competing modelsM, so relative evidence is identical to
absolute evidence. Under anM-complete framework, a true model is assumed to exist but is not
necessarily assumed to be a member ofM. However, one still focuses on the models inM due
to computational or conceptual limitations2.
Deciding on the particularM-framework underwhich amodel comparison problem is tackled

is often a matter of prior theoretical considerations. However, since in most non-trivial research
scenariosM is a finite set and candidate models inM are often simpler approximations to the
true model, there will be uncertainty as to whether the observed data could have been generated
by one of these models. In the following, we will refer to this uncertainty as epistemic uncertainty.
Our method utilizes a data-driven way to calibrate its epistemic uncertainty in addition to the
model probabilities through simulations under anM-closed framework.
Consequently, given real observed data, a researcher can obtain a measure of uncertainty with

regard to whether the generative model of the data is likely to be inM or not. From this perspec-
tive, our method lies somewhere in the middle ground betweenM-closed and anM-complete
framework as it provides information from both viewpoints.

2See also [176] for discussion of anM-open framework, in which no true model is assumed to exist.
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6.2.3 Model Selection as Classification

In line with previous simulation-based approaches to model comparison (e.g., ABC), we will uti-
lize the fact thatwe can simulate arbitrary amounts of data fromeach simulator gj (to be described
shortly). Following previous machine learning approaches to model selection [104, 132], we re-
interpret the problem of model comparison as a probabilistic classification task. In other words,
we seek to learn a mapping f : XN → ∆J from an arbitrary data space XN to a probability
simplex ∆J containing the multinomial posterior model probability p(M|x1:N ). Previously,
different learning algorithms, such as random forests have been employed to tackle model com-
parison as classification [104]. Reusing the ideas from algorithmic alignment and probabilistic
symmetry incorporated into the BayesFlow framework, our method parameterizes fη via a spe-
cialized neural networkwith trainable parametersηwhich is aligned to the probabilistic structure
of the generative models (i.e., a permutation invariant network for memoryless models or a recur-
rent network for stateful models).

In addition, our method differs from previous classification approaches to model comparison
in the following aspects. First, it requires no hand-crafted summary statistics, since the most in-
formative summary statistics are learned directly from data. Second, it can make use of online
learning (i.e., on-the-fly simulations) which requires no storage of large reference tables or data
grids. Third, the addition of new competing models does not require changing the architecture
or re-training the network from scratch, since the underlying data domain remains the same. In
line with the transfer learning literature, only the last layer of a pre-trained network needs to be
changed and training can be resumed fromwhere it had stopped. Last, ourmethod is uncertainty-
aware, as it returns a higher-order distribution over posterior model probabilities. From this dis-
tribution, one can extract both absolute and relative evidences, as well as quantify the model se-
lection uncertainty implied by the observed data (more on this distinction later).

Intuitively, a converged evidential network encodes the probabilistic relationship between data
and models through the network’s weights. Thus, once trained, the evidential network can be
reused to perform instant model comparison onmultiple real observations. Asmentioned above,
the addition of new models requires simply adjusting the pre-trained network, which requires
much less time than re-training the network from scratch.

6.2.4 Multi-Model Forward Inference

Our evidentialmethods requires the ability to implement each candidatemodel as a simulator and
efficiently generate synthetic observations from eachmodel. This process amounts to performing
forward inference in a multi-model context and is described in detail in Algorithm 7. Since we
only need the simulated data sets and the corresponding model indices, we can run Algorithm 7

repeatedly to construct training batches of the formD
(B)
N := {(m(b),x

(b)
1:N )}Bb=1 withB simu-

lated data sets of sizeN andB corresponding one-hot encoded model indices. We can then feed
each batch to a specialized neural network which takes as input simulated data with variable sizes
and returns a distribution over posterior model probabilities. Note, that similar considerations
regarding computational efficiency and parallelism apply as previously discussed in the context of
parameter estimation with BayesFlow.
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Algorithm 7Monte Carlo generation of synthetic data sets for model comparison

Require: p(M) - prior over models, {p(θ |Mj)} - list of priors over model parameters, {gj} -
list of stochastic simulators, p(ξ) - noise distribution, p(N) - distribution over data set sizes,
B - number of data sets to generate per iteration (batch size).

1: Draw data set size:N ∼ p(N).
2: for b = 1, ..., B do

3: Drawmodel index frommodel prior:M(b)
j ∼ p(M).

4: Drawmodel parameters from prior: θ(b)j ∼ p(θj |M
(b)
j ).

5: for n = 1, ..., N do
6: Sample noise instance: ξn ∼ p(ξ).

7: Run simulator j to obtain n-th synthetic observation: xn = gj(θ
(b)
j , ξn).

8: end for
9: Encode model index as a one-hot-encoded vector:m(b) = OneHotEncode(M(b)

j ).

10: Store pair (m(b),x
(b)
1:N ) in data structureD(B)

N .
11: end for
12: Returnmini-batchD(B)

N := {m(b),x
(b)
1:N )}Bb=1.

6.3 Training Amortized Evidence Approximators

In ourmodel comparison framework, evidential neural networks learn a higher-order uncertainty
representation over the model posterior p(M|x1:N ) in a simulation-based manner. As we did
in the BayesFlow framework, we split model comparison into two phases: an expensive train-
ing/simulation phase, in which neural network parameters are optimized via standard backprop-
agation; and a cheap inference phase, in which a pre-trained evidential network is applied to an

arbitrary amount of real data sets x(obs)
1:N . The output of an evidential network is a higher-order

distribution, from which we can obtain a vector of probabilities pη(m |x
(obs)
1:N ) which approx-

imates the true model posterior p(M|x
(obs)
1:N ) for any observable x(obs)

1:N . In addition, we can
obtain local uncertainty information which serves as a proxy for absolute evidence.

6.3.1 Evidence Representation

How can we obtain a measure of absolute evidence by considering only a finite number of com-
peting models? Indeed, such an undertaking has the appearance of an ill-posed problem from
the very offset. Our approach will be to re-frame the problem as teaching a neural network to
respond with I don’t know when faced with data which could not have been generated by one of
themodels (i.e., has not been experienced during the simulation-based training phase). In general,
however, a purely probabilistic approach is not well-suited for representing a lack of knowledge
[74], since even the uniform distribution encodes the belief in equally likely events. In contrast,
meta-probabilistic approaches propose to use second-order probabilities [80, 146] for representing
the absence of any definite knowledge. In a Bayesian setting, we typically lack knowledge regard-
ing the misspecification degree of the candidate models. Thus, our framework can also be viewed
as an approach to quantifying model misspecificatin via higher-order uncertainty. In this way,
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6 AmortizedModel Comparison

Figure 6.1: Both phases of our evidential model comparison framework. Left panel: During the training
phase, an algorithmically aligned evidential network is trained jointly with random draws from
the joint prior p(M,θ) and synthetic data from the simulator; Right panel: During the in-
ference phase, no training or optimization happens in this phase. The upfront training effort
amortizes over an arbitrary number of models, observations and data sets from a research do-
main working on the same model class.

our approach differs from likelihood-tempering methods, which require an explicit evaluation of
a tilted likelihood (raised to a power 0 < t < 1) in order to prevent overconfident Bayesian
updating [63].

In terms of the theory of subjective logic (SL, [80]), we can model second-order probabilities
by placing a Dirichlet distribution over the estimated posterior model probabilities [145]. These
second-order probabilities represent an uncertaintymeasure over quantities which are themselves
probabilities. Weuse the second-orderprobabilities to capture epistemicuncertainty aboutwhether
the observed data has been generated by one of the candidate models considered during training.
The probability density function (PDF) of a Dirichlet distribution is given by:

Dir(π |α) =
1

B(α)

J∏

j=J

π
αj−1
j (6.3)

where π belongs to the unit J − 1 simplex (i.e., π ∈ ∆J := {π |
∑J

j=1 πj = 1} and B(α)
is the multivariate beta function [131]. The Dirichlet density is parameterized by a vector of con-
centration parametersα ∈ R

J
+ which can be interpreted as evidences in the ST framework [80].

The sum of the individual evidence components α0 =
∑J

j=1 αj is referred to as the Dirichlet
strength, and it affects the precision of the higher-order distribution in terms of its variance. Intu-
itively, theDirichlet strength governs the peakedness of the distribution, with larger values leading
to more peaked densities (i.e., most of the density being concentrated in a smaller region of the
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6.3 Training Amortized Evidence Approximators

Figure 6.2: Three different hypothetical model comparison scenarios with different observations. The first
column depicts observing a data set which is equally probable under all models. The second
column depicts a data set which is beyond the generative scope of all models. The third column
illustrates an observed data set which is most probable under model 2.

simplex). We can use the mean of the Dirichlet distribution, which is a vector of probabilities
given by:

Eπ∼Dir(α)[π] =
α

α0
(6.4)

to approximate the posterior model probabilities p(m |x1:N ), as will become clearer later in this
section. A crucial advantage of such a Dirichlet representation is that it allows to look beyond
model probabilities by inspecting the vector of computed evidences. For instance, imagine a sce-
nario with three possible models. Ifα = (5, 5, 5), the data provides equally strong evidence for
all models (Figure 6.2, first column) – all models explain the data well. If, on the other hand,
α = (1, 1, 1), then the Dirichlet distribution reduces to a uniform on the simplex indicating no
evidence for any of the models (Figure 6.2, second column) – nomodel explains the observations
well. Note that in either case one cannot select a model on the basis of the data, because posterior
model probabilities are equal, yet the interpretation of the two outcomes is very different: The
second-order Dirichlet distribution allows one to distinguish between equally likely (first case)
and equally unlikely (second case) models. The last column of Figure 6.2 illustrates a scenario
with α = (2, 7, 3) in which case one can distinguish between all models. Later, we will also
demonstrate a scenario with data simulated from an actual model.
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We can further quantify this distinction by computing an uncertainty score given by:

u =
J

α0
(6.5)

where J is the number of candidate models. This uncertainty score ranges between 0 (total cer-
tainty) and 1 (total uncertainty) and has a straightforward interpretation. Accordingly, total un-
certainty is given when α0 = J , which would mean that the data provide no evidence for any of
theJ candidatemodels. On the other hand, u << 1 implies a largeDirichlet strengthα0 >> J ,
which would read that the data provide plenty of evidence for one or more models in question.
The uncertainty score corresponds to the concept of vacuity (i.e., epistemic uncertainty) in the
terminology of SL [80]. We argue that epistemic uncertainty should be a crucial aspect in model
selection, as it quantifies the strength of evidence, and, consequently, the strength of the theoret-
ical conclusions we can draw given the observed data.

Consequently, model comparison in our framework consists in inferring the concentration
parameters of a Dirichlet distribution given an observed or simulated data set. The problem of
inferring posterior model probabilities can thus be reparameterized as:

p(M|x1:N ) ≈ qη(m |x1:N ) = Eπ∼Dir(fη(x1:N ))[π] (6.6)

where fη is a neural networkwith positive outputs greater than one, that is, fη : XN → [1,∞]J .
Additionally, we can also obtain a measure of absolute model evidence by considering the uncer-
tainty encoded by the full Dirichlet distribution (Eq.6.5). Before elaborating on the latter point,
we discuss the main concepts for learning relative evidence, since they form the backbone for fur-
ther developments.

6.3.2 Learning Evidence in anM-Closed Framework

How do we ensure that the outputs of the neural network match the true unknown model pos-
terior probabilities? As per Algorithm 7, we have unlimited access to samples (simulations) from
the joint model p(M,x) =

∫
p(M,θ,x)dθ. Consider, for ease of exposition, a data set with a

single observation, that isN = 1 such thatx1:N = x. We use themean of theDirichlet distribu-
tion qη(m |x) parameterized by an evidential neural network with parametersη to approximate
p(M|x). To optimize the parameters of the neural network, we can minimize some loss L in
expectation over all possible data sets:

η∗ = argmin
η

Ep(M,x)[L(qη(m |x),m)] (6.7)

= argmin
η

Ep(x)

[
Ep(M|x)[L(qη(m |x),m)]

]
(6.8)

wherem is a one-hot encoded vector of the true model indexMj . We also require that L be a
strictly proper loss [59]. According to [59], a loss function in the context of simulation-basedmodel
comparison is strictly proper if and only if it attains its minimumwhen qη(m |x) = p(M|x).
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6.3 Training Amortized Evidence Approximators

When we choose the Shannon entropy H(qη(m |x)) = −
∑

j qη(m |x)j log qη(m |x)j
forL, we obtain the strictly proper logarithmic loss:

L(qη(m |x),m) = −
J∑

j=1

mj log qη(m |x)j (6.9)

= −
J∑

j=1

mj log

(
fη(x)j∑J

j′=1 fη(x)j′

)
(6.10)

wheremj = 1when j is the true model index and 0 otherwise (i.e., standard one-hot encoding).
Thus, in order to estimateφ, we canminimize the expected logarithmic loss over all simulated data
sets where fη(x)j denotes the j-th component of the Dirichlet density given by the evidential
neural network. Since we use a strictly proper loss, the evidential network yields the true model
posterior probabilities over all possible data sets when perfectly converged.
Intuitively, the logarithmic loss encourages high evidence for the truemodel and low evidences

for the alternative models. Correspondingly, if a data set with certain characteristics can be gener-
ated by different models, evidence for these models will jointly increase. Additionally, the model
which generates these characteristics most frequently will accumulate themost evidence and thus
be preferred. However, we also require low evidence, or, equivalently, high epistemic uncertainty,
for data sets which are implausible under all models. We address this problem in the next section.

6.3.3 Learning Absolute Evidence through Regularization

We now propose a way to address the scenario in which nomodel explains the observed data well.
In this case, we want the evidential network to estimate low evidence for all models in the can-
didate set. In order to attenuate evidence for data sets which are implausible under all models
considered, we incorporate a Kullback-Leibler (KL) divergence into the criterion in Eq.6.9. We
compute the KL divergence between the Dirichlet density generated by the neural network and a
uniform Dirichlet density implying total uncertainty. Thus, the KL shrinks evidences which do
not contribute to correct model assignments during training, so an implausible data set encoun-
tered in the inference phase will lead to low evidence under all models. This type of regularization
has been used for capturing out-of-distribution (OOD) uncertainty in image classification tasks
[145]. Curiously, the task of OOD detection closely resembles that of diagnosing model misspec-
ification, so future developments in one of the areas would most likely benefit the other and vice
versa.
Adding the KL regularization penalty, our modified optimization criterion becomes:

η∗ = argmin
η

Ep(M,x)[L(qη(m |x),m) + λΩ(α̃)] (6.11)

withΩ(α̃) = KL[Dir(α̃) ||Dir(1)]. The term α̃ =m+(1−m)⊙α represents the estimated
evidence vector after removing the evidence for the truemodel. This is possible, because we know
the true model index sampled from the model prior p(M) during the simulation-based training
phase. During the inference phase, knowing the ground truth is not required anymore, since η̂
has already been obtained at this point.
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6 AmortizedModel Comparison

The KL regularizer penalizes evidences for the false models and drives these evidences towards
unity. Equivalently, it acts as a ground-truth preserving prior on the higher-order Dirichlet distri-
bution which preserves evidence for the true model and attenuates misleading evidences for the
false models. The hyperparameter λ controls the regularization weight and encodes the tolerance
of the algorithm to accept implausible (out-of-distribution) data sets during inference. With large
values of λ, it becomes possible to detect cases where all models are deficient (i.e., misspecified);
with λ = 0, only relative evidence can be generated. Note, that in the latter case, we recover
our original proper criterion without penalization. The KL weight λ should be selected through
prior empirical considerations on how well the simulations cover the plausible set of real-world
data sets.
Importantly, the introduction of the KL regularizer renders the loss no longer strictly proper.

Therefore, a large regularization weight λ would lead to poorer calibration of the approximate
model posteriors, as the regularized loss is no longerminimized by the truemodel posterior. How-
ever, since the KL prior is ground-truth preserving, the accuracy of recovering the true model
should not be affected. Indeed, we observe this behavior across a number of simulated experi-
ments. More analytical research is needed on the rate of miscalibration induced by a particular
choice of λ.
To make optimization of Equation 6.11 tractable in practice, we utilize the fact that we can

easily simulate batches of the formD
(B)
N = {(m(b),x

(b)
1:N )}Bb=1 viaAlgorithm7and approximate

Eq.6.11 via standard backpropagation by minimizing the following loss:

L(η) =
1

B

B∑

b=1


−

J∑

j=1

m
(b)
j log

(
fη(x

(b)
1:N )j

∑J
j′=1 fη(x

(b)
1:N )j′

)
+ λΩ(α̃(b))


 (6.12)

over multiple batches to converge at a Monte Carlo estimator η̂ of the optimal neural network
parameters η∗. In practice, convergence can be determined as the point at which the loss stops
decreasing, a criterion similar to early stopping. Alternatively, the network can be trained for a
pre-defined number of epochs. Note, that, at least in principle, we can train the network arbi-
trarily long, since we assume that we can access the full joint Bayesian distribution p(M,x, N)
through simulation (cf. Figure 6.1, left panel). In practice, early stopping seems to work reason-
ably well, since it requires no prior considerations on the (most likely unknown) optimal number
of simulations or interventions during training.

6.3.4 Implicit Preference for SimplerModels

Perfect convergence of the evidential network for a given model comparison problem implies
qη(m |x1:N ) ∝ p(x1:N |M)p(M). Thus, a perfectly converged evidential network automati-
cally encodes a preference for simplermodels (BayesianOccam’s razor). This is due to the fact that
we are approximating an expectation over all possible data sets, parameters, and models (i.e., the
full Bayesian distribution). Accordingly, a simplemodel has a narrowgenerative scope, so data sets
generated by a simpler model will tend to be more similar compared to those from a more com-
plex competitor. Therefore, during training, certain data sets which are plausible under multiple
models will be generatedmost often by the simplestmodel. Thus, a perfectly converged evidential
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6.3 Training Amortized Evidence Approximators

networkwill capture this behavior by assigning higher posterior probability to the simplestmodel
(assuming equal prior probabilities). Therefore, at least in theory, our method captures complex-
ity differences arising purely from the generative behavior of themodels and does not presuppose
an ad hocmeasure of complexity (e.g., number of parameters).

6.3.5 Training and Inference

Algorithm 8 (Online) Training phase and inference phase for amortized Bayesian model com-
parison with regularization-based uncertainty estimation.

Require: fη - evidential neural network, {x
(obs)
1:Ni

}Ii=1 - list of observed data sets for inference, λ
- regularization weight,B - number of simulations at each iteration (batch size).

1: Simulation-based training phase:
2: repeat

3: Generate a training batchD(B)
N = {(m(b),x

(b)
1:N )}Bb=1 via Algorithm 7.

4: Compute evidences for each simulated data set inD(B)
N : α(b) = fη(x

(b)
1:N ).

5: Compute loss according to Equation 6.12.
6: Update neural network parameters η via backpropagation.
7: until convergence to η̂
8: Amortized inference phase:
9: for i = 1, ..., I do

10: Compute model evidencesα(obs)
i = fη̂(x

(obs)
1:Ni

).

11: Compute uncertainty ui = J/
∑J

j=1 α
(obs)
i,j .

12: Approximate true model posterior probabilities p(M|x
(obs)
1:Ni

) via qη(m |x1:Ni
) =

α
(obs)
i /

∑J
j=1 α

(obs)
i,j .

13: end for
14: Choose further actions.

The training phase in our evidential framework can be carried out using the same ideas and
considerations explored in the context of BayesFlow. Accordingly, one can choose between on-
line, offline, or a hybrid learning regime, depending on the computational resources available, the
complexity of the candidate models and the simulation budget allocated for performing model
comparison. Thus, in order to avoid repetition, Algorithm 8 summarizes both the training and
inference phasewith our evidentialmethodusing online learningduring training. Note, that steps
2-7 and 9-13 can be executed in parallel and with GPU support in order to dramatically accelerate
convergence and inference. Importantly, if the priors overmodel parameters change or additional
models need to be considered, the parameters η of a pre-trained network can be augmented to
η′ by adding additional output nodes for the new models. Training can then be resumed from
where it had previously stopped without optimizing η′ from scratch.
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6.3.6 Sources of Error

Since our evidential framework embodies some of the principles implemented in the BayesFlow
framework (simulation-based training, amortized inference), it also inherits some of the error
sources described in Section 5.6, namely, simulation gap, amortization gap, and approximation
error. Most notably, our regularization approach to model misspecification is precisely designed
to detect the presence of simulation gaps. Since our evidential networks distils global knowledge
about the models’ generative scopes, it is supposed to assign low evidences to models which en-
counter a simulation gap during inference. However, whenever an evidential network is trained
to minimize Equation 6.12 with λ = 0 (i.e., no regularization is applied), simulations gaps re-
main an undetectable issue, at least until posterior predictive checks are performed. In any case,
errors due to an amortization gap (i.e., learning a global neural estimator) and Monte Carlo ap-
proximation (i.e., estimating an expectation) remain something to be aware of when performing
amortized neural model comparison.

Another source of error is an underexpressive evidential network which is unable to properly
encode the probabilistic relationship between data and models. In this case, the evidential net-
work will be poorly calibrated, that is, its outputs would not represent the true posterior distribu-
tion p(M|x). Fortunately, due to amortized inference, we can easily estimate and visualize the
expected calibration error (ECE, [64]) of an evidential network over multiple simulations from
p(M,θ,x). Accordingly, ECEvalues close to0 indicate proper calibration of the network. Some
model comparison scenarios may prioritize different metrics, such as accuracy or precision/recall
ratios, common to classification tasks in machine learning applications.

6.4 A Simulated Experiment

As a brief illustrative example (described in detail in [134]), we applied our evidential method to
distinguishbetween complex nested spikingneuronmodels describing the properties of biological
cells in the nervous system. The purpose of this experiment was twofold. On the one hand, we
wanted to assess the ability of ourmethod to classifymodels deploying a variety of neural patterns
accounting for different cortical and sub-cortical neuronal activity. On the other hand, wewanted
to investigate the network’s ability to detect biologically implausible data patterns, as indexed by
our measure of epistemic uncertainty. To this aim, we rely on a renowned computational model
of biological neural dynamics.

6.4.1 Model Comparison Setting

In computational neuroscience, mathematical models of neuronal electrical dynamics serve as a
basis to explain the functional organization of the brain from both single neuron and large-scale
neuronal networks processing perspectives [1, 16, 70, 75]. A multitude of different neuron mod-
els have been proposed during the last decades, ranging from completely abstract to biologically
plausiblemodels. The former offer a simplifiedmathematical representationwhich takes themain
functional properties of spiking neurons into account. The latter provide a detailed analogy be-
tween models’ state variables and ion channels in biological neurons [129]. Importantly, these
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6.4 A Simulated Experiment

Figure 6.3: Three simulated firing patterns, corresponding estimated Dirichlet densities and model poste-
riors [134]. Each row represents a different value of the parameter ḡK , ḡK = 0.1, ḡK = 0.5,
and ḡK = 0.75, respectively. An increase in the parameter ḡK is accompanied by a decrease in
epistemic uncertainty (as measured via Eq.6.5). An implausible value of ḡk (first row) results
in a flat Dirichlet density as an index of total epistemic uncertainty (uniform green areas). As
the parameter value surpasses the plausibility boundary (second and third rows), the Dirichlet
simplex becomes peaked towards the lower left edge encodingM1.

computational models differ in their capability to reproduce firing patterns observed in real cor-
tical neurons [76].

For this simulated experiment, we consider a Hodgkin-Huxley stateful model of cortical and
thalamic neurons [70, 130]. The forward model is formulated as a set of five ordinary differential
equations (ODEs) describing how the neuron membrane potential V (t) changes over time as a
function of the injected current Iinj(t) and of various ion channels properties (see [134] for more
details regarding the forward model).

To set up themodel comparisonproblem,we treat different types of conductance, gL, ḡNa, ḡK
and ḡM , as free parameters, and define different neural models based on different parameter spec-
ifications. In particular, we formulate three modelsM = {M1,M2,M3} defined by the pa-
rameter setsθ1 = (ḡNa, ḡK), θ2 = (ḡNa, ḡK , ḡM ), andθ1 = (ḡNa, ḡK , ḡM , gL), respectively.

In order to evaluate performance, we train an unregularized recurrent evidential network for
60 epochs resulting in 60000 backpropagation updates. At each iteration, we draw a random
input current duration T ∼ UD(100, 400) (in units of milliseconds), keeping a constant input
current, Iinj . T reflects the physical time window in which biological spiking patterns can occur.
Since the sampling rate of membrane potential is fixed (dt = 0.2), T affects both the span of
observable spiking behavior and the number of simulated data points.
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6.4.2 Validation Results

The entire training phase using online learning (Algorithm 8) took approximately 2.5 hours of
wall-clock time. On the other hand, model comparison on 5000 neural time-series simulated for
validation took approximately 0.7 seconds, which is a remarkable efficiency gain.
Regardingmodel selection performance, the network exhibited accuracies above 0.92 across all

T s, with no gains in accuracy for increasing T . This result highlights the fact that even short in-
put currents are sufficient for reliably distinguishing between these complex models. Further, we
observed good calibration for all three models, with all ECEs less than 0.1. Notably, we observed
no overconfidence for all three models.
In order to assess howwell we can detect biologically implausible patterns, we train an identical

recurrent evidential network with a gradually increasing regularization weight up toλ = 1.0. We
then fix the parameter ḡNa = 4.0 of modelM1 and gradually increase its second parameter ḡK
from 0.1 to 2.0. Since spiking patterns observed with low values of ḡK are quite implausible and
have not been encountered during training, we expect uncertainty to gradually decrease. Indeed,
Figure 6.3 shows this pattern. On the other hand, changing the sign of the output membrane
potential, which also results in biologically implausible patterns, leads to a trivial selection ofM3.
This is contrary to expectations, and shows that absolute evidence is also relative to the model
knowledge the evidential network has learned during training. Future research should therefore
focus on making the latent space of the evidential network interpretable, in order to make the
conceptual visualization from Figure 6.2 tractable.

6.5 Concluding Remarks

This chapter introduced the building blocks of our evidential framework forBayesianmodel com-
parison and discussed its mathematical and algorithmic formulation. In contrast to BayesFlow,
applications of our amortization approach to real-world model comparison/selection problems
are still underway. One reason for this is that recent developments in the field of simulation-based
statistical inference have focused predominantly on parameter estimation and model compari-
son has often played a secondary role (or has been too costly to perform). Thus, we hope that
our framework (or underlying ideas) can enhance and enrich model-based analysis and inference
in many fields dealing with competing computational models of complex natural processes. We
leave it to future research to investigate whether there are more elegant ways to quantify absolute
evidence or detect model misspecification from a simulation-based perspective. Details regarding
training, hyperparameter choice, and validation metrics can be found in our methodological pa-
per [134]. Further details regarding implementation as well as templates formodel comparison are
also available at the code repository (https://github.com/stefanradev93/BayesFlow).
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What is now proved was once only imagined.

—William Blake

In this chapter, we explore the idea of a universal neural Bayesian inference architecture for per-
forming simultaneous parameter estimation and model comparison in a purely simulation-based
way. We build on our previous methods by using ideas frommulti-task learning [20] and meta-
amortized variational inference [25]. In this way, we propose to enable and amortize all steps of
a Bayesian workflow within a unified framework involving a single training/optimization phase.
Instead of presenting a ready-made solution, this chapter merely intends to point out towards a
speculative future development aimed at scaling up an entire Bayesianworkflow to complexmod-
els.

7.1 The BayesianHardships

A Bayesian analysis consists of more than just parameter estimation and model comparison. The
big picture ofBayesian inference involves a rather significant allocationof creative, computational,
financial, anddecisionmaking resources (cf. Figure 7.1 for an illustrative overview). Most recently,
attempts have beenmade to systematize Bayesian analysis into a principled, step-by-stepworkflow
reminiscent of a cooking recipe [49, 56, 144]. Naturally, it is beyond the scope of this chapter to
review these comprehensive works. Thus, we will attempt to extract the most basic elements of a
Bayesian workflow which can directly benefit from the notion of amortized inference.

The starting point of our Bayesian workflow of interest is a collection of observed data sets

D(obs) = {x
(obs)
1:Ni

}Ii=1, with I = 1 in the case of a single data set andN = 1 in the case of a single

observation, and a collection of J competing modelsM = {Mj}
J
j=1. Most Bayesian pipelines

would go through multiple steps involving, among other things, a considerable computational
burden. These steps are represented by the red-shaded boxes in Figure 7.1 and summarized as
follows:

1. Parameter estimation

2. Evaluation of computational faithfulness

3. Evaluation of model adequacy/sensitivity

4. Posterior predictive checks

5. Model comparison/model aggregation
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Figure 7.1: The basic conceptual steps of a Bayesian analysis pipeline (workflow) associated with allocation
of different types of resources. White indicates allocation of decisional resources. Blue indicates
allocation of financial resources. Green indicates allocation of creative resources. Red indicates
allocation of computational resources. Especially the latter can profit to a great extent from
amortization.

As we saw in the previous two chapters, we can tackle parameter estimation as well as checks
of computational faithfulness, model sensitivity, and posterior predictions with our BayesFlow
framework. Furthermore, we can circumvent fitting allmodels explicitly to each data set inD(obs)

and perform efficientmodel comparison with our evidential framework. However, as it currently
stands, these frameworks seem rather disconnected and conceptualized to work on their own.
For instance, in order to performparameter estimation for allmodels inM, one has to train and

storeJ neural density estimators. When using BayesFlow for parameter estimation, onemight re-
use the same (pre-trained) summary network over all models, thus effectively pooling some of the
resources. However, separate inference networks would be still be needed for each of the models.
Needless to say, such an approach does not scale well when J is large and needs the resources of a
computational cluster to be feasible in practice.
In addition, in order to perform (prior predictive) model comparison, a disjoint training phase

for an evidential network needs to be introduced. Researchers then need to ensure that simula-
tions are shared between the parameter estimation steps and the model comparison step, other-
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wise a considerable portion of the simulation budget would be wasted by discarding simulations.
Thus, the need for a framework which amortizes all of the above steps in a Bayesian workflow
becomes immediately obvious. For such a framework to be useful in practice, it needs to enable,
at least in theory, amortization over an arbitrary number of models, data sets, and observations
(data set sizes).

7.2 Amortized Inference Revisited

In the following, we continue our discussion on different levels of amortization. In Chapter 5, we
introduced three different types of amortized Bayesian inference bootstrapped by neural density
estimation: case-wise, model-wise, and meta-amortized. We further assume, for the sake of our
discussion, that the neural networks employed in these approaches are all capable of fully Bayesian
inference (i.e., return a full posterior distribution) and use the raw simulated or observed data di-
rectly (i.e., do not rely on manual selection of summary statistics). Note, that the different types
of amortization have not been explicitly distinguished in the literature on simulation-based infer-
ence, so our nomenclature is rather non-standard.
Case-wise amortized methods require a separate optimization loop for each observed data set

and model. When case-wise methods incorporate a training phase (e.g., APT in a sequential
regime [60]), itmust be repeated for each newdata set andmodel, since the observed data is part of
the optimization criterion. The general form of the case-wise optimization criterion for obtaining
optimal neural network parameters is given by:

ϕ∗
i,j = argmin

ϕ
E
p(θj |x

(obs)
1:Ni

,Mj)
[− log qϕ(θj |x1:N ,Mj)] (7.1)

where we have a separate set of neural network parameters ϕi,j for each data set i and model j.
The case-wise approach to amortizing Bayesian inference is illustrated in Figure 7.2.
Model-wise amortizedmethods require a global upfront training phase before any real data are

collected via simulations from each joint Bayesian model p(θj ,x, N |Mj). During inference,
model-wisemethods operate entirely in a feed-forwardmanner, that is, they involve no training or
optimization in this phase. Thus, the upfront training effort amortizes over all observed data sets
from the generative scope of modelMj defined by its corresponding prior p(θj) and simulator
gj(θj , ξ). However, in the frequent case ofmultiple candidatemodels, one still needs to perform
separate optimization loops for each of the models in M. The general form of the model-wise
optimization criterion for obtaining optimal neural network parameters is given by:

ϕ∗
j = argmin

ϕ
Ep(θj ,x,N |Mj)[− log qϕ(θj |x1:N ,Mj)] (7.2)

where we only have a separate set of neural network parameters for each model j. This is due to
the fact that the expectation runs over themodel-implied joint distributionp(θj ,x, N |Mj) and
the observed data does not enter the optimization phase. Themodel-wise approach to amortizing
Bayesian inference is illustrated in Figure 7.3.

Finally, a meta-amortized approach requires an even costlier upfront training phase involving
simulations from multiple models (i.e., multi-model forward inference). The resulting benefit
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Figure 7.2: Case-wise amortized Bayesian inference with a generative neural architecture capable of fully
Bayesian inference. The gray-shaded plane indicates the scope of amortization.

Figure 7.3: Model-wise amortized Bayesian inference with a generative neural architecture capable of fully
Bayesian inference. The gray-shaded plane indicates the scope of amortization and, in contrast
to case-wise approaches, includes the entire generative scope of the model.
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manifests itself in the outcome that a single (composite) network is able to account for all models
and all possible data sets arising from the models. Accordingly, the general form of the meta-
amortized optimization criterion is given by:

ϕ∗ = argmin
ϕ

Ep(M,θ,x,N)[− log qϕ(θ,M|x1:N )] (7.3)

where the expectation runs over the full joint model p(θ,x, N,M). The meta-amortized crite-
rion not only opens new possibilities but also brings new challenges to which we turn next.

7.3 Learning aMulti-Model Posterior

In order to approximate the multi-model posterior p(θ,M|x1:N ), we seek neural network pa-
rametersϕwhichminimize our meta-amortized criterion from Equation 7.3. We can expand the
latter as follows:

ϕ∗ = argmin
ϕ

Ep(M)

[
Ep(x,N |M)

[
Ep(θ |x1:N ,M)[− log qϕ(θ,M|x1:N )]

]]
(7.4)

= argmin
ϕ

−
J∑

j=1

∫

X

∫

Θj

p(Mj ,θj ,x1:N ) log qϕ(θj ,Mj |x1:N ) dθj dx (7.5)

which we can approximate via Monte Carlo simulations from p(M,θ,x1:N ) (i.e., multi-model
forward inference):

ϕ̂ = argmin
ϕ

−
1

B

B∑

b=1

log qϕ(θ
(b)
j ,M

(b)
j |x

(b)
1:N ) (7.6)

Correspondingly, we can treat Equation 7.6 as a loss function andminimize it with any stochastic
gradient descentmethod. Toderive a tractable criterion, we can further expandEquation 7.6 into:

ϕ̂ = argmin
ϕ

1

B

B∑

b=1

− log qϕ(θ
(b)
j |x

(b)
1:N ,M

(b)
j )− log qϕ(M

(b)
j |x

(b)
1:N ) (7.7)

The above formulation has two important components: the (amortized) approximate parameter
posterior qϕ(θ |x1:N ,M) and the (amortized) approximatemodel posterior qϕ(M|x1:N ). We
will explore an architecture formeta-amortized inference consisting of three neural network com-
ponents: an inference network (parameterized byφ), a summary network (parameterized byψ),
and an evidence network (paramaterized byη). Thus,ϕ represents the collection of all neural net-
work parameters,ϕ = (φ,ψ,η). The inference network is responsible for approximating each
parameter posterior p(θj |x1:N ,Mj). The summary network is responsible for extracting max-
imally informative summary vectors from raw data. Last, the evidence network is responsible for
approximating the model posterior p(M,x1:N ). We now describe how to render optimization
of Equation 7.7 tractable.
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Figure 7.4: Meta-amortized Bayesian inference with a generative neural architecture capable of fully
Bayesian inference. The gray-shaded plane indicates the scope of amortization. In contrast to
case-wise and model-wise approaches, the latter includes the generative scopes of all models in
the model listM.

First, we can represent the (multi-model) parameter posterior via a doubly conditional INN
implementing a normalizing flow between θj and zj for all j

qφ(θj |x1:N ,Mj) = p(zj = fφ(θj ;hψ(x1:N ),m))

∣∣∣∣det
(
∂fφ(θj ;hψ(x1:N ),m)

∂θj

)∣∣∣∣
(7.8)

where hψ is any (alogrithmically aligned) summary network with trainable parameters ψ and
m is a one-hot encoded vector representation of the abstract model indexMj . Writing Jfφ as
a shorthand for the Jacobian of the learnable transformation, we can derive the following loss
function for a batch ofB simulated model indices, parameters, and data sets:

LKL(φ,ψ) =
1

B

B∑

b=1




∥∥∥fφ
(
θ
(b)
j ;hψ(x

(b)
1:N ),m(b)

)∥∥∥
2

2

2
− log

∣∣∣detJ (b)
fφ

∣∣∣


, (7.9)

which is a modified version of the BayesFlow criterion (Equation 5.40) with a model index in-
cluded as a further conditioning input for the cINN.

Second, we can represent the model posterior using our evidential formulation

qη(M|x1:N ) = EDir(fη(x1:N ))[π], (7.10)
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Figure 7.5: A possible framework for meta-amortized Bayesian inference connecting together an inference
network (φ), a summary network (ψ), and an evidence network (η). All three networks are
optimized together and trainedwith an arbitrary number of simulations from the jointBayesian
model p(M)p(θ |M)p(x |θ,M).

where Dir(fη(x1:N )) denotes a Dirichlet density with concentration parameters provided by an
evidential network fη(x1:N )with parametersη. Note also, that the evidential networkmight di-
rectlyuse the representationprovidedby the summarynetworkh as a single input,fη(hψ(x1:N )),
or as an additional input concatenated with the raw data, fη(x1:N , hψ(x1:N )). Moreover, our
evidential formulation allows us to re-use the concepts for learning absolute evidence introduced
in Chapter 6. However, if model misspecification is not considered an issue, one could use any
probabilistically calibrated classifier for qη(M|x1:N ). Accordingly, we canminimize the follow-
ing (unregularized cross-entropy) loss function:

LCE(η,ψ) =
1

B

B∑

b=1


−

J∑

j=1

m
(b)
j log

(
fη(x

(b)
1:N , hψ(x

(b)
1:N ))j

∑J
j′=1 fη(x

(b)
1:N , hψ(x

(b)
1:N ))j′

)
, (7.11)

which assumes that the evidential network processes the output of the summary network, in ad-
dition to the raw simulated data.

Finally, putting the two together, our composite loss for meta-amortized inference becomes

L(φ,ψ,η) = LKL(φ,ψ) + LCE(η,ψ) (7.12)

In this way, multi-model Bayesian inference is amortized through a single set of network parame-

ters ϕ̂ = (φ̂, ψ̂, η̂) obtained via backpropagation through the entire composite architecture. An
example implementation of such an architecture is illustrated in Figure 7.5. The practical utility
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and advantages of such a framework are yet to be demonstrated in simulated experiments and on
observed data in a research context.

7.4 Use Cases and Challenges forMeta-Amortized

Inference

Arealizationof the imaginable architecture depicted inFigure 7.5would ensure that the computa-
tional burden of many Bayesian tasks (see red-shaded boxes in Figure 7.1) is attenuated via amor-

tization. During inference, posterior draws from each parameter posterior p(θj |x
(obs)
1:N ,Mj)

can be efficiently obtained by feeding the observed data and the desired model index through
the summary and inference networks. Amortized evaluation of computational faithfulness and
model adequacy as well as posterior predictive checks are all consequences of amortizing multi-
model posterior inference. The model posterior p(M|x1:N ) can be estimated by feeding the
output of the summary network from the previous step together with the observed data to the
evidence network. Thus, model comparison via Bayes factors or model aggregation via Bayesian
model averaging can also be performed efficiently upon convergence.
However, the actual implementation of the neural architecture depicted in Figure 7.5 is not

as straightforward as its conceptualization. When it comes to the architecture of the network re-
sponsible for parameter inference, it appears necessary to distinguishbetween threemain scenarios
encountered in multi-model inference.
The first corresponds to prior sensitivity analysis in which the consequences of different prior

configurations for subsequent Bayesian updating are systematically investigated. In this case, the
simulator for each Mj is the same and only the corresponding p(θ |Mj) differ in their distri-
butional form. Prior sensitivity analysis is perhaps also the easiest case to tackle, since it requires
no essential structural changes to the cINN, which is augmented to accept the one-hot encoded
model index as an additional conditioning variable.
The second corresponds to a setting in which, once again, the simulator remains conceptually

and functionally the same, but some components of θ are treated as fixed and some as varying.
In this case, some parts of the latent space z are shared among all models, whereas others are
missing whenever a subset of the model parameters is treated as fixed. In other words, a complete
parameter vector is reduced from θ ∈ R

D to θj ∈ R
Dj withDj ≤ D for each model j. Two

potential approaches for performing meta-amortized Bayesian inference in such a setting appear
viable. In the first, each reduced parameter spaceΘj is augmented toΘ′

j , with additional dummy
parameters following a simple distribution (e.g., Gaussian), such that each augmented θ′j has the
same dimensionality. A disadvantage of this approach is, that the inference network needs to
learn an identity transformation between the dummy parameters and the corresponding latent
variables, which seems inelegant. In the second approach, missing parameters are encoded with
zeros and the loss function is masked, such that each zj is optimized only from the remaining
parameters. A disadvantage of this approach is that it is less straightforward to implement and
might lead to training instabilities.
The third scenario corresponds to the task of comparing essentially different generative mech-

anisms assumed to account for the same data. In this case, eachMj is implemented as a different
simulator gj and the number of parameters might or might not differ between the simulators.
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Such a scenario would require learning disjoint latent spaces zj for each simulator. It might even
necessitate separate inference networks (with a shared summary network) for each model inM
or a completely different neural architecture altogether.
As could be gathered from this short exposition, many problems lurking on the path towards

a universal framework formeta-amortized simulation-based inference remain unsolved andmany
unsuspected challenges are yet to reveal themselves. However, since meta-amortized inference
appears to be a desirable goal for many scientific domains, future research should explore various
promising avenues for actually attaining it.
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8 Applications

This chapter briefly reviews four concrete applications of our ideas for amortized Bayesian infer-
ence to real-world modeling problems. The details of these modeling scenarios have already been
described in the corresponding papers [31, 94, 135, 172], so the purpose of this chapter is merely to
convey the gist of each particular application and describe how our developed frameworks con-
tributed to solving the problem of inference.

8.1 A Bayesian BrainModel of Adaptive Behavior

In this work1, we proposed and validated a new computational Bayesianmodel accounting for in-
dividual performance in theWisconsinCard SortingTest (WCST), an established clinical tool for
measuring set-shifting and deficient inhibitory processes on the basis of environmental feedback
[6, 67].

Performance in WCST is usually measured via a rough summary metric such as the number
of correct/incorrect responses or pre-defined psychological scoring criteria (see for instance [67]).
Thesemetrics form the basis for inferring the underlying cognitive processes recruited by the task.
However, a major shortcoming of this approach is that it merely assumes the cognitive processes
to be inferred without specifying an explicit process model. Moreover, summary measures do
not utilize the full information present in the data, such as trial-by-trial fluctuations or relevant
agent-environment interactions. For this reason, crude scoring measures are often insufficient to
disentangle the dynamics of the relevant cognitive components.

To address this shortcoming, we formalized the interaction between the task’s structure, the
received feedback, and the participant’s behavior by building a model of the underlying informa-
tion processingmechanisms used to infer the hidden rules of the task environment. Furthermore,
we embedded the new model within the mathematical framework of the Bayesian Brain Theory
(BBT), according to which beliefs about hidden environmental states are dynamically updated
following the logic of Bayesian inference [48, 91].

The simple controlled setting (environment) realized by theWCST consists of a target and a set
of stimulus cards with geometric figures which vary according to three perceptual features: color
(red, green, blue, yellow), shape (triangle, star, cross, circle), and number of objects (1, 2, 3, 4).
Participants in the test have to infer the correct classification principle by trial and error using the
examiner’s or computer’s feedback. The feedback carries a positive or a negative signal informing
the participantwhether her choice of actionwas appropriate or not. Moreover,modeling adaptive
behavior in the WCST from a Bayesian perspective is straightforward, since observable actions

1M.D’Alessandro, S. T. Radev, A. Voss, and L. Lombardi. “ABayesian brainmodel of adaptive behavior:
an application to theWisconsin Card Sorting Task”. PeerJ 8, 2020, e10316
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Figure 8.1: Estimated information processing dynamics of two exemplary individuals [31]. (A) Trial-by-
trial information-theoreticmeasures of an individual with SD characterized by very low flexibil-
ity and very high information loss; (B) Trial-by-trial information-theoreticmeasures of a healthy
control individual characterized by relatively high flexibility and low information loss. Labels C
and E on the y-axis indicate correct and error responses.
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emerge from the interaction between the internal probabilistic model of the agent and a set of
discrete environmental states.
The main contributions of our modeling work were thus threefold. First, we developed a two-

levelmodel of adaptive agent-environment interaction, consistingof a cognitive and an information-
theoretic component. The cognitive component decomposes performance in theWCST into two
interpretable parameters: flexibility and information loss. The information-theoretic component
transforms the parameters into dynamicmeasures of belief updating, surprise, and internalmodel
uncertainty. Second, we performed extensive simulation studies for ensuring reasonable compu-
tational faithfulness andmodel sensitivity. Third, we applied themodel to a sample of individuals
with substance dependence (SD) and a sample of healthy controls to account for (mal)adaptive
task performance in a principled way. For the latter two tasks, we had to resort to amortized infer-
ence with BayesFlow, since the likelihood function of our custom dynamic model is unknown.
Overcoming this intractability with BayesFlow (using a recurrent summary network), we could
perform both simulation-based calibration, parameter recovery, and inference on real data in a
matter of seconds, once training had converged. The entire training phase took approximate 12
hours wall-clock time on a laptop with a graphics card.
Our initial application showed promising results in explaining adaptive behavior in theWCST.

Figure 8.1 depicts the model-derived information processing dynamics of an individual with SD
(upper panel) and a healthy control (lower panel). Indeed, patterns of belief updating (Bayesian
surprise), surprisal (Shannon surprise), and model uncertainty (Entropy) are very different for the
two individuals, highlighting the ability of the model to discriminate between sub-optimal and
nearly-optimal performance via multiple sources of information (see [31] for a detailed interpre-
tation).

8.2 Jumping to Conclusion? A Lévy-FlightModel of

DecisionMaking

In this work2, we formally tested whether a Lévy flight model, assuming an α-stable noise distri-
bution with a free parameterα can provide a more accurate description of performance in simple
binary decisionmaking tasks than a classical diffusionmodel, assuming aGaussian noise distribu-
tion.
Distributions with fat tails, such as the Cauchy distribution or the Lévy distribution, are char-

acterized by an increased probability for extreme events, compared to aGaussian distribution [95].
Moreover, fat-tailed models incorporating so-called Lévy flights have been applied in a variety of
research contexts. For instance, such models have proven useful to account for animal foraging
behavior. The Lévy flight foraging hypothesis states that in certain natural environments, (trun-
cated) Lévy flights optimize random searches. Accordingly, the hypothesis implies that biological
organisms have evolved to exploit occasional large divergences in their wanderingmovements dur-
ing foraging, which are best accounted for by Lévy flights [168].
In our study on human decision making [172], we compared the relative fit of four evidence

accumulation models applied to a color discrimination and a lexical decision task. In the color

2E.M.Wieschen,A.Voss, andS.Radev. “Jumping to conclusion? a lévyflightmodel of decisionmaking”.
TQMP 16:2, 2020, pp. 120–132
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discrimination task, participants were tasked to indicate whether there were more orange or more
blue pixels in a set of specifically designed stimuli. In the lexical decision task, participants were
tasked to indicate whether a presented string of letters was an existing German word or a mean-
ingless sequence. The candidate models included: M1 - a parsimonious version of the diffusion
model with Gaussian noise;M2 - a model with anα-stable distribution for the noise of evidence
accumulation;M3 a full version of the diffusion model with inter-trial variability for drift, start-
ing point and non-decision time; andM4 a model with alpha as a free parameter and all previous
inter-trial variability parameters. Note, that the all-time favorite Gaussian distribution is a special
case of the stable family with a stability value ofα = 2.0. Lower values ofα imply a higher prob-
ability of extreme events and thus occasional large jumps in the evidence accumulation process.
The inclusion of stable noise in the accumulation process renders numerical evaluation of the

likelihood intractable. Thus, we train a separate BayesFlow network for each of the candidate
models, in order to ensure that all models are comparably estimated within the same Bayesian
framework. The training phase for each model took less than 12 hours on a laptop with GPU
acceleration. In contrast, subsequent parameter recovery, calibration checks, and inference on the
experimental data took a couple of seconds.
Our initial results suggest, in accordancewith previous results [169], that the simple Lévymodel

(M1) yields a superior fit than the simple diffusion model (M2) for both experimental tasks. In
addition, the complex Lévy model (M4) had a superior fit than the complex diffusion model
(M3). Finally, each of the complex models (including inter-trial variability parameters) exhibited
a superior fit than each of the simpler models. We speculate, that such a result might be explained
by a particular property of the experiments: The longer duration possibly induces larger fluctua-
tions in performance which is best captured by the inter-trial variability parameters (see [172] for
a more in-depth interpretation).

8.3 Insights from BayesianModeling in a OneMillion

Sample

In this work, we applied BayesFlow to elucidate cross-sectional age differences in cognitive param-
eters as indexed by the main diffusion model parameters. A large number of studies from the last
decades have reported that processing speed, typically measured as mean response time (RT) in
simple cognitive tasks, significantly slows down in old age and starts to decline in young andmid-
dle adulthood [78, 143].We challenged this notion by carrying out a comprehensive model-based
analysis on a massive, publicly available data set (M > 1 000 000) collected during the course of
Project Implicit [173].Notably, this sample wasmultiple orders of magnitude larger than the data
sets used in all previous diffusionmodel studies combined. Accordingly, our approachwas able to
provide unique and robust findings on age-related patterns regarding processing speed, decision
caution, and non-decision components of RTs.

Furthermore, applying Bayesian diffusion modeling to a sample of such magnitude appears
to be a task insurmountable by standard Bayesian (or non-Bayesian, for that matter) methods.
Thus, we resorted to BayesFlow with a deep invariant summary network for efficient amortized
inference. In this way, fully Bayesian inference with BayesFlow (training and inference phase)
on the entire sample took less than two days on a standard computer. We also estimated, that
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Figure 8.2: Mean correct response times (RTs) and main diffusion model parameters as a function of age.
Blackpoints indicate parametermeans computed separately for each age (in years). Bars indicate
standard deviations (only shown for every second year). Red lines denote the Bayesian piece-
wise ridge regression model’s mean predictions, which describe the observed means fairly well.
The shaded red region denotes the uncertainty (standard deviation) of the piece-wise model’s
predictions. The dashed lines indicate the mean change points estimated from the per-age-
group averaged data, with the full posterior distributions (scaled for readability) of the change
points shown at the bottomof each plot. Both the data- andmodel-implied standard deviations
highlight the great variability within each year of age. Nevertheless, the year-specificmeans sug-
gest a clear and consistent pattern for mean correct RT and each parameter. The figure depicts
drift rates and boundary separations for the incongruent condition and non-decision times ob-
tained from correct responses.
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applyingMCMC for the same number of posterior samples per data set (participant) would have
taken more years than are currently available to any human scientist.
Our analysis pipeline followed the steps advocated by a principled Bayesian workflow [144]

which ensure a transparent presentation of computational faithfulness andmodel adequacy. Fol-
lowing parameter estimation, we applied a Bayesian change point regression of each cognitive
estimate (and also mean RT) on age. The results from one of the two experimental conditions
are depicted in Figure 8.2 (parameter estimates in the other condition do not exhibit qualitatively
different age-related patterns).

Importantly, our results suggest a clear non-linear association between drift rate (as an index
of processing speed) and age, which was strikingly different than the one implied by mean RTs
and far more informative than the age differences found in previous diffusion model studies (cf.
Figure 8.2). Thus, our model-based analysis suggests a picture of age differences in cognitive pa-
rameters yielding a radically different implication than the one based on model-free analysis of
raw RT data.

8.4 OutbreakFlow: Model-Based Bayesian Inference of

Disease Outbreak Dynamics

In this work3, we applied a version of BayesFlow for dynamic (stateful) models to infer important
disease characteristics and transmission dynamics of the Covid-19 pandemic in Germany. Infer-
ence of hidden disease-related parameters is of utmost importance in the case of new outbreaks in
order to forecast their progression and guide effective public health measurements. Accordingly,
mathematical models that provide a reliable representation of the processes driving the dynamics
of an epidemic are an essential tool for this task (see for example [81]).
In order to account for the specific nature of the initial Covid-19 outbreak in Germany, we

specified a custom compartmental model consisting of three sub-models: a disease model, an ob-
servation model, and an intervention model.
Thediseasemodel is representedby a systemofnon-linear ordinarydifferential equations (ODEs)

comprising six compartments: susceptible (S), exposed (E - infected individualswhodonot show
symptoms and are not yet infectious), infected (I - symptomatic cases that are infectious), carrier
(C - infectious individuals who recover without being detected), recovered (R), and dead (D).
The intervention model represents the time-varying transmission rate λ(t). Following [34],we

defined three change points encoding an assumed transmission rate reduction in response to pub-
lic health measures (e.g., lockdown, social distancing) imposed by the German authorities. Each
change point is represented by a piece-wise linear function with three degrees of freedom: the
strength of interventions and the time interval (start and end point) for the effect to fully mani-
fest itself.
The observation model represents the deviations between officially reported case counts and

their true values. It comprises three sources of systematic and unsystematic errors: the reporting

3S. T. Radev, F. Graw, S. Chen, N. Mutters, V. Eichel, T. Bärnighausen, and U. Köthe. “Model-
based Bayesian inference of disease outbreak with invertible neural networks”. arXiv preprint
arXiv:2010.00300, 2020
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Figure 8.3: Marginal posteriors of all 34 model parameters inferred from data from entire Germany along-
side median andMAP summary statistics. Gray lines depict prior distributions for comparison
with the posteriors. Vertical dashed lines indicate posterior medians.

delay, the weekly modulation (since testing and reporting activities are considerably reduced on
weekends), and a symmetric t-distributed noise term describing random fluctuations.

Due to the complexity of this composite model and the need to apply the same model repeat-
edly to different federal states, we resort to efficient simulation-based inference with BayesFlow
(see [135] for details regarding network architectures). Furthermore, amortized Bayesian infer-
ence appears especially advantageous in epidemiological contexts, where the same model is esti-
mated in multiple populations (countries, cultures) or at different scales (states, regions). Indeed,
in the current application, wewere able to demonstrate efficient amortized inference and excellent
predictive performance with a single architecture applied simultaneously to epidemiological data
from Germany as a whole and all sixteen German federal states.

Marginal parameter posteriors for Germany as a whole are depicted in Figure 8.3. Posterior
predictions and forecasts for new infections, recoveries, and deaths are further depicted in Fig-
ure 8.4. We observe that median predictions of our model follow very closely the reported cumu-
lative number of cases across all federal states. Furthermore, the officially reported cases are very
well represented by the uncertainty bounds derived from the parameter posteriors, with predic-
tion uncertainty growing as we move towards the future (cf. predictions after the dotted vertical
lines in Figure 8.4). When interpreting these results, the reader should be aware that mechanistic
models like ours only describe the average behavior of entire compartments, in contrast to agent-
based models. Accordingly, the given CIs quantify our uncertainty about the inferred parameter
averages and cannot be interpreted as a measure of the variability between individual cases.

Our estimates suggest that a considerable number of individuals (a fraction of 60-80%of cases)
mighthave goneundetected through the course of theCovid-19outbreak inGermany, confirming
results fromprevious studies in other countries [32, 115, 128].However, our posteriors also suggest
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Figure 8.4: Model-based predictions and forecasts of new cases obtained by inferring model parameters
from epidemiological data available for reported infected, assumed recovered and deaths by
Covid-19 from entire Germany. Cases to the left of the vertical dashed line were used for pos-
terior checking (model training) and cases to the right for posterior forecasts (predictions) on
upcoming data.

that there is non-negligible uncertainty surrounding this estimatewhenderived in a purelymodel-
basedmanner. Moreover, different summary statistics (e.g., means,medians,MAPs) derived from
non-symmetric posteriors offer slightly different conclusions. The latter observation highlights
the need to consider the full posteriors and corresponding credibility intervals when aiming to
draw substantive conclusions and possible forecasts for the progression of the epidemic or the
effect of specific public health interventions.
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Thecurrent thesis presented frameworks and ideas for scalingupmany steps of a completeBayesian
workflow with a focus on cognitive modeling. A cornerstone notion of this thesis was to employ
generative neural networks for amortized Bayesian parameter inference, model comparison and
validation whenworking with intractable simulators whose behavior as a whole is too complex to
be described analytically. We presented various frameworks for tackling different types of mod-
els (e.g., stateless vs. stateful) and Bayesian tasks (e.g., parameter estimation, model comparison,
model calibration). A common themewas splitting Bayesian analysis into two conceptual phases:
i) a trainingphase, inwhich thenetworks gradually becomedomain experts in solving theBayesian
tasks they are optimized for, and ii) a downstream inference phase, in which the networks are ef-
ficiently applied to extract information from real-world observations about quantities of interest
(e.g., model parameters or model plausibility). Further, we explored potential developments to-
wards meta-amortized Bayesian inference and discussed related challenges standing in the way of
such a generalized framework. Finally, we presented some applications of BayesFlow to a number
of complex estimation problems. In the following, we briefly go through some further topics left
for future research beyond those mentioned in previous chapters.

Dynamic parameters In this thesis, we have focused exclusively on models defined by a fixed
number of parameters θ. However, some dynamic models might incorporate parameters which
are a function of time (or another variable), implying that a different set of parameters θ(t) is
available at each time point t. For instance, realistic spatio-temporal models of disease outbreaks
strive to capture relevant disease characteristics θ(t, s) as a function of time t and space s [24],

introducing yet another dimension to the parameter space. While this setting poses no inherent
problems for our evidential framework for model comparison, it presents a challenge for param-
eter estimation with BayesFlow.

One approach to amortized inference with suchmodels would be to re-parameterize the prob-
lem so that we can estimate a fixed-size set of parameters ω of which the time-varying parameter
vector θ(ω, t) is a deterministic function. This approach is then easily amenable to amortized
inference with BayesFlow, and is the one we followed in [31] for recovering trial-by-trial informa-
tion processing dynamics or in [135] for recovering the time-varying transmission rate ofCovid-19
in Germany. However, not all models naturally admit such a re-parameterization, so estimating
the original θ(t)might be inescapable in these cases. Thus, another viable approach is to modify
the summary and inference networks in order to capture the dynamic structure of the problem.
For instance, the inference network can be easily implemented as a generative recurrent network
which outputs a latent embedding z(t) for each θ(t). In this way, it can interact with a recur-
rent summary network in the form of a probabilistic sequence-to-sequence architecture [124, 151]
Transformer networks utilizing neural attention mechanisms [83, 164] appear as another promis-
ing option for tackling dynamic models without recurrent networks.
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Hyperparameter optimizationA commonaspect of our frameworks for amortizedBayesian in-
ference is the potentially large number of hyperparameter settings that might require fine-tuning
by the user for optimal performance on a given Bayesian task. For instance, the most important
hyperparameters for BayesFlow are: optimizer settings (e.g., learning rate, adaptive weights, de-
cay); summary network design (e.g., type of modular architecture, number of layers and neurons
in each module); inference network design (e.g., type of flow, number of layers, structure of each
internal network); training schedule (e.g., online vs. offline learning). This makes general experi-
ence with neural networks highly advantageous when working with our frameworks, to say the
least.

So far, in our simulated experiments and applications, we could empirically ascertain that some
hyperparameters are more important than others. For instance, optimizer settings appear to be
vital for stable training. When working with the Adam optimizer [84], smaller learning rates (i.e.,
α < 0.001) and the inclusion of learning rate decay generally lead to more stable convergence
than larger learning rates and no decay. On the other hand, using larger networks consisting of
3 to 10 coupling layers does not seem to hurt performance or destabilize training, even if the
simulator to be inverted is relatively simple [133]. Based on our results, we expect that a single
architecture should be able to perform well on similar simulators from a given domain (e.g., one
architecture for all EAMs [172] or one architecture for all compartmental models [135]). Future
research should investigate the impact of modern hyperparameter optimizationmethods, such as
Bayesian optimization [41]. Moreover, Bayesian optimization, or other black-box optimization
methods or search algorithms can easily be integrated into our frameworks (e.g., in a pre-training
phase with utilizing a small number of simulations).

Optimal experimental design Optimal experimental design (OED) in a Bayesian context is a
mathematical framework for making efficient use of limited experimental resources when per-
forming Bayesian modeling [21, 46, 110]. A majority of OED approaches revolve around the no-
tion of expected information gain (EIG), which quantifies the expected reduction in entropy (un-
certainty) when replacing the prior with the posterior under themarginal distribution over exper-
imental observations. For instance, in static design optimization (DO), a researcher sets up a sim-
ulation involving different models in different experimental contexts and picks the configuration
which yields the highest EIG. No further optimization happens during the actual experiment.
Differently, in adaptive design optimization (ADO), the EIG is computed (estimated) on each
trial and subsequent trials are chosen in order to maximize the discriminability between candi-
date models or the sharpness of the posterior in a single-model setting.

Unfortunately, obtaining accurate approximations of the EIG even for simpler models is com-
putationally demanding and nearly infeasible with non-amortized methods for Bayesian updat-
ing. Variational OED offers a promising approach for amortizing different aspects of OED [46].

Moreover, utilizing neural networks for efficiently maximizing a lower bound on the EIG (i.e.,
variational autoencoders, VAEs, [87]), variationalmethods are able to yield considerable efficiency
gains. However, vanilla VAEsmaximizing a lower bound on the actual (intractable) criterion, the
so called ELBO criterion, suffer from some rather consequential problems, as aptly demonstrated
by [178]. Further, in contrast to normalizing flows realized via invertible neural networks, vanilla
variational methods offer no theoretical guarantee for learning the correct target posterior when
employed for the task of Bayesian updating.

98



Our proposed frameworks for amortized Bayesian parameter estimation and model compar-
ison appear suitable for amortizing OED. For instance, BayesFlow can be adapted for estimat-
ing the EIG in either static DO or ADO. Further, our evidential framework can be employed in
multi-model DO or ADO contexts. Such an integration is possible, since our networks can be
augmented to process arbitrary contextual information. Moreover, we can emulate Bayesian up-
dating by training the networks with a variable number of observationsN (using algorithmically
aligned networks), such that amortization over increasingN is enabled during inference. Thus,
future research should investigate the utility of our frameworks for amortizingOEDand compare
them to variational approaches.
Model-aware learning Finally, our frameworks currently operate in a model-agnostic manner,
that is, the neural estimators treat the simulator purely as a black-box data generator. For re-
searchers, on the other hand, the neural networks (in addition to reality itself) are uninterpretable
black-boxeswhile the simulator serves, at least in theory, as a human-interpretable, white-box com-
putational model. Thus, it is possible that the networks can profit from some prior “knowledge”
of themodel’s structure (e.g., in the formof gradients or other information) or generative scope in
order to learn evenmore efficiently the resultingprobabilisticmappings. Thenetworks themselves
could guide themodel to producemore realistic artificial observations, for instance, by restricting
the generative scope of the simulator.
Sequential neural posterior estimation (SNPE, [60]) methods offer a neat way to gradually

transform the prior p(θ) into a sharper proposal p̂(θ) (eventually becoming the target poste-
rior) through iterative refinement. In this way, the generative scope of the joint Bayesian model
p(θ,x) also becomes narrower, concentrating around the actually observed data x(obs). Thus,
SNPE methods implement one promising form of network-simulator interaction. One conse-
quence of this approach, however, is that such an interaction necessarily reduces amortization to
a case-wise level, since the neural density estimator needs to be re-trained for each observed data
set. Needless to say, such repetitions become increasingly computationally taxing in data-rich ap-
plications. Future research should therefore explore other forms ofmodel-aware learning, which
enable model-wise or even meta-amortized Bayesian inference.
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10 Conclusion

Reality is noisy and messy, and there is no grand simulator of things in sight. What is more, our
models can only restrict their scope to increasingly smaller empirical nooks, solving, at best, tiny
fractions of an infinite jigsaw puzzle. As we, researchers in need of cognition, go through the
process of building new models and discarding old ones, we require the right tools to foster our
epistemic achievements. At the time of writing, deep learning continues to enjoy a vibrant hype,
refurbishing the methodological equipment of many quantitative sciences. The behavioral sci-
ences, despite being more resistant to change than fellow disciplines, are also enjoying their fair
share of the rapidly expanding trend. When it comes to model-based inference, deep learning
innovations are currently transforming the way models are fit to data and employed for draw-
ing substantive conclusions or deriving reliable forecasts. Moreover, uncertainty (an ancient con-
cept) and its quantification are becoming more and more important in deep learning theory and
practice. Bayesian methods, deeply rooted in probability theory, are currently viewed by many
researchers as the gold-standard for uncertainty-aware inference, but other approaches or gener-
alizations might push through in the not-so-distant future. In a way, this thesis ventured into a
discourse between deep learning and scientific modeling with a focus on cognitive science and
mathematical psychology. It brought together ideas for dramatically accelerating Bayesian infer-
ence by using non-Bayesian neural networks designed to deal with the data types encountered by
researchers working in various areas of knowledge. The general idea of using black-box estimators
to learn white-box scientific models from computer simulations is certainly not new, but is still
largely underutilized in the behavioral and cognitive sciences. Most importantly, future research
should further foster the discourse between deep learning (or artificial intelligence, in marketing
jargon) and the behavioral sciences due to the potential upside of such a creative interaction. In-
deed, human researchers and decision-makers can definitely learn something from deep learning
agents surpassing human performance in various real-world tasks. On the other hand, neural net-
works can also learn something from studying the structure of human behavior and cognition.
Luckily, the global connectedness of the modern world makes such mutual learning a rather ef-
fortless endeavor. Finally, models of human behavior and cognition need to come to terms with
the buzzword of the century: complexity. We have begun to realize, that simple models can only
do so much in aiding our understanding of emergent phenomena. On the other hand, we have
grown suspicious of opaque, overparameterized neural networks capable of solving overly specific
tasks. It is thus very well possible, that futuremodels of cognition and behavior becomemore and
more uninterpretable (i.e., more black-boxy) in the pursuit of complexity. On the other hand,
future neural network might become more and more interpretable (i.e., less black-boxy) due to
our need for cognition. As always, predictions are hard, especially about the future.
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