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IX

Summary

An ongoing discussion within the field of recognition memory concerns the nature of in-

formation retrieved for recognition decisions. Recognition describes the ability to iden-

tify previous encountered events as such. And models describing recognition decisions

argue either that recognition decisions are mediated via discrete states (threshold mod-

els) or that a continuous amount of evidence drives recognition decisions (continuous

models). Generally, there exist two different ways to distinguish between proposed can-

didate models: 1) Investigation of model fit and model validity and 2) test of distinct

predictions retrieved from model’s structure.

With my dissertation I contribute to the above mentioned discussion, presenting three

manuscripts that cover both techniques of model discrimination. My first manuscript

sheds light upon a quite unrecognized recognition task, paired-word recognition,

through examination of quantitative model fit. We extended two models, one from the

threshold model class and one from the continuous model class. Next to observing that

single-word and paired-word recognition differ in mnemonic processes, we found ev-

idence that the assumption of discrete states underlying paired-word recognition deci-

sions can best account for participants’ behavior. As both models considered in my first

manuscript were newly introduced for this specific task, I validated those via selective-

influence studies assessing qualitative model fit in my second manuscript. Because, only

if experimental manipulations, as strength and base-rate manipulations, map onto mean-

ingful parameter(s) considered in the model, models can validly capture the decision

mechanisms. And finally, in my third manuscript, I took the approach of testing dis-

tinct predictions by validating the existence of the error speed effect. While continuous

models can naturally account for the error speed effect, only some threshold models are

capable of explaining it. Thus, through our verification of its existence we were able to

narrow the candidate models which have to be considered for the description of recog-

nition decisions.

Based on these results I argue, in line with previous accounts, that the nature of infor-

mation retrieved for recognition decisions might depend on task and stimulus features.

Furthermore, I suggest a shift of the discussion for future research away from the na-

ture of underlying information and towards an inspection of the processes underlying

recognition decisions, as for example considering the necessity of evidence free guessing.
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Zusammenfassung

Die Beschaffenheit der Informationen, die Wiedererkennungsentscheidungen zugrunde

liegen, wird in der Rekognitionsforschung ausgiebig diskutiert. Rekognition beschreibt

dabei die Fähigkeit von Personen, zuvor erlebte Ereignisse wiederzuerkennen. Model-

le zur Beschreibung von Rekognitionsentscheidungen argumentieren, dass entweder

diskrete Zustände (Schwellenwertmodelle) oder kontinuierliche Evidenz (kontinuierli-

che Modelle) die Grundlage für Rekognitionsentscheidungen bilden. Um zwischen die-

sen beiden Ansätzen zu diskriminiren, können zwei verschiedene Techniken verwendet

werden: 1) ein Vergleich der Höhe der Modellpassung sowie die Inspektion der Modell-

validität und 2) die Untersuchung distinkter Vorhersagen, abgeleitet aus der jeweiligen

Modellarchitektur.

Mit meiner Dissertation trage ich zu der oben genannten Debatte durch drei Manu-

skripte bei, die beide Techniken des Modellvergleichs abdecken. In meinem ersten Ma-

nuskript haben wir jeweils ein Modell aus der Klasse der Schwellenwertmodelle und ein

Modell aus der Klasse der kontinuierlichen Modelle erweitert, um mithilfe von quantita-

tiven Modellvergleichen eine eher unbekannte Rekognitionsaufgabe, das Wiedererken-

nen gepaarter Stimuli, genauer zu untersuchen. Neben Unterschieden zwischen einer

klassischen Rekognitionsaufgabe und dem Wiedererkennen gepaarter Stimuli, die wir

auf mnemonische Unterschiede zurückführen konnten, fanden wir, dass ein Modell mit

der Annahme von zugrundeliegenden diskreten Zuständen das beobachtete Verhalten

in dieser Aufgabe am besten erklären konnte. Da beide Modelle meines ersten Manu-

skriptes neu eingeführt wurden, widme ich mich in meinem zweiten Manuskript mithil-

fe von Tests zur selektiven Beeinflussbarkeit von Parametern deren Validierung. Denn

nur, wenn experimentelle Manipulationen, wie eine Stärkenmanipulation oder eine Ba-

sisraten Manipulation, durch inhaltlich sinnvolle Parameter erfasst werden, können Mo-

delle den zugrundeliegenden Entscheidungsprozess valide beschreiben. Abschließend

befasse ich mich in meinem dritten Manuskript anhand eines Beispiels mit distinkten

Vorhersagen der beiden Modellklassen, abgeleitet aus deren jeweiliger Modellarchitek-

tur. Während kontinuierliche Modelle den error speed Effekt durch ihre Beschaffenheit

vorhersagen, können nur spezifische Schwellenwertmodelle, solche die fälschliches Er-

innern zulassen, diesen erklären. Durch die Verifizierung der Existenz des error speed

Effektes, konnten wir die Modelle zur Beschreibung der Rekognition eingrenzen.

Ausgehend von den Ergebnissen meiner drei Manuskripte argumentiere ich, dass,
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wie bereits andere Wissenschaftler nahelegten, die Beschaffenheit der Informationen, die

Wiedererkennungsentscheidungen zugrunde liegen, von der Aufgabe, dem Stimulus-

material und dem Kontext abhängig sind. Darüber hinaus plädiere ich für eine Verschie-

bung des Fokusses der Diskussion in zukünftigen Untersuchungen: weg von der reinen

Beschaffenheit der Informationen und stärker zu den Entscheidungen zugrundeliegen-

den (Meta-)Prozessen, wie der Notwendigkeit von Raten.



Einmal kündigte der Physiker Leo Szilard seinem Freund Hans Bethe an, er wolle

eventuell ein Tagebuch führen: “Ich habe nicht vor, etwas zu veröffentlichen. Ich

möchte die Tatsachen nur festhalten, damit Gott Bescheind weiß.”

Daraufhin fragte Bethe: “Glauben Sie nicht, dass Gott die Tatsachen schon kennt?” –

“Ja,”, erwiderte Szilard, “die Tatsachen kennt er. Aber diese Version der Tatsachen

kennt er noch nicht.”

from Das Atom in der Falle

by Hans Christian Baeyer

[Once the physicist Leo Szilard announced to his friend Hans Bethe, he would possibly

start writing a diary: “I do not aim in publishing anything. I just want to record the facts

so that god is aware of them.”

Thereupon Bethe asked: “Don’t you belief that god already knows about the facts?” –

“Yes,” Szilard responded, “he is aware of the facts. But he doesn’t know this particular

version of them.”]
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1 Introduction

The ability to recognize situations we have encountered previously as such is a fascinat-

ing and fundamental cognitive mechanism that is essential to nearly all aspects of every-

day lives. It is fascinating, because people differ substantially in their individual ability

to recognize situations, and fundamental, as it allows us to find one’s way in social and

natural environments. Situations refer to, for example, a voice previously heard and now

recognized as being familiar or to a nature spot identified as already seen. Thus, it is not

surprising that ongoing debates exist about the processes and mechanisms involved in

recognition in general and about the type of information being available during response

selection.

In the case of recognition memory, there are two major categories of cognitive models

which capture processes involved in recognition decisions: process models and mea-

surement models. While process models focus on the concrete structures and processes

underlying recognition – including encoding and retrieval –, measurement models offer a

framework to measure the conceptual processes involved in memory retrieval within cer-

tain situations and tasks (Brandt, 2007). Thus, process models aim to describe recogni-

tion on a more fine grained level compared to measurement models which focus more

strongly on higher level mechanisms. Nevertheless, measurement and process models

do not contradict one another. Rather, investigating the basic mechanisms of retrieval

using measurement models helps to specify the retrieval processes within process mod-

els (Malmberg, 2008).

One open and often discussed question in the framework of memory retrieval ad-

dresses the quality of information being available during recognition decisions. This de-

bate takes mostly place on the level of measurement models, as they offer an easy sta-

tistical framework to determine the differences between processes across different tasks

and conditions. On the one hand, some models assume people to have access to a graded

familiarity signal driving recognition responses. Within those theories, elicited familiar-

ity is compared to a criterion determining the recognition response (continuous models;

e.g., Banks, 1970; Pazzaglia, Dubé, & Rotello, 2013; Ratcliff, 1978). Whereas, other theo-

ries assume recognition decisions to be mediated by discrete states. In such a case, people

only have access to the concrete decision state (e.g., detection or uncertainty) driving the

response but no information about the processing path leading to the respective state

(threshold models; e.g., Batchelder & Alexander, 2013; Batchelder & Riefer, 1999).
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In the present dissertation I aimed to investigate the qualitative nature of informa-

tion underlying recognition decisions using different tasks and methods. In the first

manuscript (Voormann, Spektor, & Klauer, in press), we evaluated absolute model fit in

the case of paired-word recognition. Therefore, we extended models from both theoret-

ical positions and evaluated which model could numerically account best for this task.

In the second manuscript (Voormann, Spektor, & Klauer, unsubmitted manuscript), a

comparison of those two models is achieved through an assessment of both model’s

general ability to capture manipulations in a psychological meaningful way. More pre-

cisely, departing from well investigated manipulations of a traditional recognition task,

we assessed whether both models reflect those manipulations in the expected manner

(known as selective-influence studies). Finally, the third manuscript (Voormann, Rothe-

Wulf, Starns, & Klauer, 2021) examines the question about the type of retrieval infor-

mation is addressed by distinct behavioral predictions deduced from the two model

frameworks, continuous and threshold models. Specifically, we investigated whether the

speed of recognition errors represents the (continuous) amount of misleading memory

evidence.

1.1 Processes involved in recognition memory

Recognition describes the ability to identify previously encountered situations as such.

Consequently, in a typical recognition experiment participants first have to learn stim-

uli in a study phase and are later asked to categorize learned (targets) and new stimuli

(lures) as previously studied, thus as being “old”, or not studied, thus being “new”.

Given the two possible types of stimuli, targets and lures, and the two possible re-

sponses, “old” and “new”, four types of responses can be distinguished: hits, misses,

false alarms and correct rejections (Green & Swets, 1966). A correct “old” response to a

target is called a hit while an incorrect “new” response to a target is called miss. Sim-

ilarly, a correct “new” response to a lure is called correct rejection while an incorrect

“old” response to a lure is called false alarm. As the probability of misses can be de-

fined as P(miss) = 1 − P(hit) and correspondingly the probability of correct rejections

can be defined as P(correct rejection) = 1 − P(false alarm), most models for recognition

memory use only the pattern of hits and false alarms to discuss processes involved in

recognition decisions (e.g., Batchelder & Riefer, 1999; Wickens, 2002; Yonelinas, 1994).

A fundamental process underlying recognition decisions that is often considered in

process models is the match of a probe (presented stimulus) to the information stored in

memory. The degree of similarity between the probe and memory is then compared to

a criterion to determine the response (Humphreys, Pike, Bain, & Tehan, 1989). However,

process models differ in their types of information stored in memory as well as their
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computation of the global activation during retrieval.

For example in the case of MINVERVA 2 (Hintzman, 1988), it is assumed that each

situation during study is coded and stored in a separate memory trace. If the same stim-

ulus appears twice during study, two traces are stored. The precision with which a trace

is stored in memory is determined by the learning rate. A learning rate of 1 means a per-

fect match between the stimulus presented and its trace stored in memory. During test,

memory (all traces stored) is probed with a presented stimulus. To evaluate the over-

all familiarity (called intensity within MINERVA 2) that the respective probe evokes,

the probe is matched to each trace separately and the resulting activations are summed

across all traces. Thus, the learning rate already determines to a certain extend how well

a stimulus will match the corresponding trace during test. Final responses are selected

by a comparison of the elicited overall familiarity to a global criterion. Each time famil-

iarity is higher than the criterion the probe is categorized as “old” otherwise the probe

is categorized as being “new”. As retrieval is often not simply based on a single probe

but on additional conditional information, an extension, MINERVA-dm (MINERVA for

decision making), allows to evaluate the familiarity on subsets of traces matching certain

conditions (Dougherty, Gettys, & Ogden, 1999).

In comparison, the model SAM (search of associative memory; Gillund & Shiffrin,

1984) assumes that each image (comparable to MINERVA 2’s traces) stored in memory

contains three different types of information: context information, inter-item relations,

and a self-coding part containing the item information. Within SAM, the strength and

correctness of encoding depends on the amount of and time spent for rehearsal as well

as on the coding of the information itself. With regard to the retrieval process, SAM

is similar to MINERVA 2. Again, familiarity is computed as the sum of all activations

resulting from the match between the probe and each image and a categorization as “old”

is performed when the familiarity is higher than the subject’s criterion. Moreover, SAM

allows to weigh the information used during retrieval and thus captures the possibility

of attending and considering certain probe information with differing strength during

recognition decisions.

As can be seen from the two examples mentioned above, process models aim to de-

scribe the processes involved during encoding and retrieval quite precisely for a number

of different tasks and phenomena (Gillund & Shiffrin, 1984; Hintzman, 1988). By simu-

lating the processes involved using meaningful parameter constellations, they model the

behavioral patterns of different memory phenomena and offer therewith an explanation

of the mechanisms involved.

In the light of their high explanatory potential, process models, however, have two

major limitations: On the one hand, process models are often only implemented to sim-

ulate behavior within certain tasks and contexts. Thus, although it is possible to esti-
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mate relevant parameters in some cases applying maximum likelihood estimation, such

a procedure has rarely been investigated (Brandt, 2007). In most cases, parameter con-

stellations are chosen to replicate a certain data pattern, but they are seldom tested based

on observed data patterns. On the other hand, process models make no explicit assump-

tions about the information being available to the individual during retrieval. Thus, al-

though the parameters depict the involved processes very detailed, process models do

not indicate which of these processes and information can be accessed and controlled

intentionally.

Measurement models try to fill those gaps. On the one hand, they are explicitly de-

signed to capture the processes involved during retrieval through parameter estimation

that is based on the observed data (see, for example, Banks, 1970; Batchelder & Riefer,

1999; Van Zandt, 2000). On the other hand, measurement models are embedded in an on-

going debate about which type of information is available to individuals during response

selection (see, for example, Batchelder & Alexander, 2013; McAdoo, Key, & Gronlund,

2018; Pazzaglia et al., 2013).

1.2 Measurement models for recognition decisions

The aim of measurement models is to describe the underlying processes based on the ob-

served data. Thus, although measurement models do not make any assumptions about

the exact processes leading to the amount of evoked memory evidence, they try to quan-

tify the processes involved during retrieval. Based on their parameter estimates, they

allow to compare the different mechanisms involved across different tasks and condi-

tions.

There exist two major classes of measurement models, continuous and threshold mod-

els. Both make different assumptions about the quality of information being available to

the individual during recognition decisions. While continuous models assume access to a

graded familiarity signal that guides recognition decisions (Pazzaglia et al., 2013), thresh-

old models assume that recognition decisions are mediated by discrete states (Batchelder

& Alexander, 2013).

In the following, I will elaborate on the core ideas of continuous and threshold models

in general. Additionally, I selected two models of each class to explain their core assump-

tions in more detail. The selected models form either the basis for modeling the simul-

taneous recognition of paired stimuli investigated in Manuscript 1 and 2 or are used as

candidates within model comparison conducted in Manuscript 3.
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1.2.1 Continuous evidence accumulation

A multitude of models assume continuous evidence accumulation as the basis for recog-

nition decisions. These include, for example, signal detection theory (SDT; Banks, 1970),

the diffusion model (Ratcliff, 1978), or the race model of recognition memory (Van Zandt,

2000). All models share the assumption that evidence is accumulated (over time) and

that individuals have access to the exact amount of this accumulated evidence during

response selection. However, continuous models implement two different mechanisms

for the response selection itself. The first type of models, like SDT, maps the familiarity

signal retrieved from the stimulus information directly to a certain response by com-

paring it to a response criterion (Wickens, 2002). The second type of models assumes

that stimulus information only inform a decision process which finally determines the

response, like the diffusion model (Ratcliff, 2014).

Signal detection theory

A very popular model, to capture decision processes based solely on the hits and false

alarms in various fields is SDT (e.g., Banks, 2000; Tanner & Swets, 1954). SDT was origi-

nally implemented to describe decision processes in perception (Tanner & Swets, 1954).

The fundamental idea is that each stimulus elicits a certain amount of (neural) activa-

tion and that it is categorized based on this amount of activation relative to a criterion,

c, either as noise or as signal (Swets, Tanner, & Birdsall, 1961). If the perceived activa-

tion exceeds the criterion, the stimulus is categorized as signal otherwise as noise. As the

information obtained from noise differs randomly on a trial-by-trial basis, this informa-

tion can be represented as a random variable, whose distribution is commonly assumed

to be normal. Correspondingly, signal activation also follows a normal distribution be-

cause information obtained from signals combines the elicited random noise with the

activation by the signal. Thus, the mean activation difference between signal and noise

distributions represents signal sensitivity, d′ (Green & Swets, 1966).

SDT can easily be adapted to recognition memory when assuming that noise trials

represent lures and signal trials represent targets. The amount of activation elicited cor-

responds to the familiarity perceived by a certain stimulus while signal sensitivity can

be understood as memory sensitivity capturing individuals’ general ability to differen-

tiate between targets and lures. Moreover in the case of recognition memory, additional

encoding variance exists for targets due to, e.g., attention fluctuation during study. Thus,

the variance for familiarity elicited by targets, σold, should exceed the variance of lures

(e.g., Kellen & Klauer, 2018). As the response criterion determines the categorization of

a stimulus as “old” or “new”, all lures eliciting familiarity values lower than the crite-

rion will be classified as correct rejections while lures activating familiarity higher than

the criterion will be classified as false alarms. Correspondingly, targets with a familiarity
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Figure 1.1: Illustration of signal detection theory for a recognition task. Dashed lines
represent distribution means for new and old words with d′ describing the memory sen-
sitivity for targets. The response criterion c represents the critical familiarity value to
categorize stimuli as “old” or “new”.

higher than the criterion will be classified as hits and targets with familiarities lower than

the criterion as misses (see Figure 1.1; Wickens, 2002).

For recognition memory in the SDT framework, two main mechanisms affect the com-

ponents of the decision process: On the one hand, encoding and retrieval strength can be

manipulated by, e.g., the number of presentations, presentation time, or the depth of pro-

cessing which impacts the memory sensitivity, d′ (see, for example, Gillund & Shiffrin,

1984; Morrell, Gaitan, & Wixted, 2002; Snodgrass & Corwin, 1988). As mentioned above,

the retrieval process is solely based on perceptual information. Adapting a multidimen-

sional version of the SDT to the simultaneous recognition of paired stimuli in Manuscript

1, we assumed that the perceptual information of paired stimuli presented simultane-

ously interact with each other leading to mnemonic dependencies.

On the other hand, strategic decision adaptations manipulated, for example, by vary-

ing pay-off or base-rates influence the height of the criterion, c (Bröder & Schütz, 2009;

Snodgrass & Corwin, 1988). As strategic adaptations can also occur on a trial-by-trial

basis depending on the context in which the stimuli appear (Rhodes & Jacoby, 2007), we

assumed in Manuscript 1 and 2 that this response criterion can also be adapted according

to the cognitive context, more precisely to the amount of familiarity elicited by the pair

member.
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Diffusion model

In the diffusion model, the evidence elicited by the stimulus also plays an important

role, but unlike in SDT where it is mapped directly to a response, evidence first accu-

mulates over time and therewith only informs the decision process (Ratcliff, 2014). The

diffusion model is based on the theory of memory retrieval (Ratcliff, 1978) but was suc-

cessfully adapted to decision processes across a broad range of two-choice decision tasks

including perception, recognition memory, interference tasks, and social categorization

(e.g., Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007; Ratcliff, 1978; Ratcliff & McKoon,

2008). The model owes its popularity to the fact that it uses not only response accuracies

for the description of the underlying decision process, like SDT, but that it additionally

allows to make predictions about mean response times (RTs) and RT distributions.

Within the diffusion model, evidence from the presented stimuli is sampled over time

in a noisy accumulation process until one of two response boundaries is reached (see Fig-

ure 1.2; Ratcliff, 1978). The mean increase in evidence in favor of the one decision com-

pared to the other, is captured by the drift rate, v, which is comparable to the amount

of familiarity in SDT (Ratcliff, 2014). The drift rate thus captures the difficulty to dis-

criminate between the two response options (Ratcliff & McKoon, 2008) and in the case

of recognition, it captures the memory evidence for the stimulus. The better a stimulus

is remembered the higher its drift rate towards the “old” response boundary. The better

the stimulus is detected as a lure the lower (more negative) its drift rate and the accu-

mulation process tends towards the “new” boundary. The zero point of the drift rate, the

point in which the amount of evidence is indecisive regarding the two response options,

is called drift criterion and corresponds to the point of the criterion, c, within SDT. As the

accrual of information is a noisy process, within-trial variability exists during the accu-

mulation process, leading to different RTs of stimuli with the same amount of memory

evidence and leading from time to time to erroneous responses (Ratcliff, Smith, & McK-

oon, 2015). Additionally, between-trial variability, η, captures the possibility that targets

(and lures) can differ in the specific amount of evidence they elicit for the respective

response boundaries. This variability allows that targets are not only responded to in-

correctly by accident, but can be misremembered. In addition, the amount of misleading

evidence determines the speed of errors with a higher misleading evidence resulting into

faster errors than low misleading evidence (Starns, Dubé, & Frelinger, 2018; Voormann

et al., 2021). This reasoning is fundamental to the argumentation in my third manuscript.

Next to those processes accounting for the nature of stimulus information, there are

processes capturing more task specific decision adaptation. The response boundary sep-

aration, a, describes, for example, the speed-accuracy settings during a task, with narrow

boundaries representing a focus on response speed and wider boundaries depicting a fo-

cus on response accuracy. Additionally, the starting point for the accumulation process, z,
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Figure 1.2: Schematic illustration of the diffusion model for a target trial with v represent-
ing the drift rate towards the “old” boundary, z the starting point, and a the boundary
separation. The distribution on the “old” boundary represents the RT distribution of cor-
rect responses and the distribution on the “new” boundary represents the RT distribution
of error responses.

can vary on a trial-by-trial basis within the uniform range, sz. The position of the starting

point indicates the bias towards a certain response. It can be manipulated, for example,

by the proportion of specific responses during the experiment, a base-rate manipulation

(Ratcliff & McKoon, 2008). For completeness, the non-decision time, Ter, captures the

time needed for stimulus encoding and response execution. Its mean hight depends on

the respective task but it can also vary uniformly on a trial-by-trial basis within range

st. Thus, strictly speaking this parameter is no parameter describing the decision process

itself but expresses the time of additional processes contributing to the RT.

1.2.2 Recognition via discrete states

Just as continuous models, threshold models or multinomial processing trees in gen-

eral, assume that there exists an underlying continuous memory evidence signal leading

into certain discrete cognitive states (Bröder & Schütz, 2009). However, once a discrete

decision state is entered, for example a detection state for targets, the underlying infor-

mation is lost and participants responses are finally mediated via those discrete states

(Batchelder & Riefer, 1999). This information loss assumption is crucial for all thresholds

models while in the concrete conception of cognitive states the models differ (Province &

Rouder, 2012). Examples for threshold models are the one-high threshold model (Black-

well, 1963), the two-high threshold model (2HTM; Snodgrass & Corwin, 1988), the one-

low threshold model (Luce, 1963; but see also Kellen, Erdfelder, Malmberg, Dubé, &
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Criss, 2016), and the two-low threshold model (2LTM; Starns et al., 2018). The number

of thresholds indicates the existence of a detection state for lures with one threshold

models allowing for no such state. The hight of the threshold (high vs. low) indicates the

existence of an exclusiveness criterion for detection states. With low threshold models al-

lowing erroneous responses to result from mistaken detection and guessing while high

threshold models only allow errors to result from incorrect guesses.

Two-high threshold model

The 2HTM is arguably the most famous threshold model to describe recognition de-

cisions (Bröder & Schütz, 2009; Kellen, Singmann, Vogt, & Klauer, 2015; Province &

Rouder, 2012). It considers three discrete cognitive states: a detection state for targets,

a detection state for lures, and an uncertainty state out of which responses arise from

guessing (see Figure 1.3; Snodgrass & Corwin, 1988). As for each threshold model, pa-

rameter estimates represent the conditional probabilities for certain stimulus types to

result in the respective states. Thus, with probability do a target results in the detect old

state out of which the participants provide an “old” response. With probability 1 − do

detection of a target fails and participants enter a state of uncertainty out of which they

guess with probability g the stimulus to be “old” and with probability 1− g to be “new”.

Correspondingly, lures are correctly detected with probability dn to be new and therefore

categorized as “new” and with probability 1− dn participants again enter the exact same

uncertainty state as for targets.

As also depicted in Figure 1.3, targets and lures share the same uncertainty state. In a

state of uncertainty, not enough evidence exists for the stimuli to be detected, however,

contextual information can be used to strategically guess the response. Thus, g represents

the bias towards a certain response category and can be manipulated by pay-offs or base-

“old”

“old”

“new”

“new”

Response

Category

guess
“old”

guess
“new”

uncertainty

detect
“old”

detect
“new”

target

lure

do

dn

1− do

1− dn

g

1− g

Figure 1.3: Illustration of the two-high threshold model.
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rates just as the criterion, c, in SDT (Bröder & Schütz, 2009; Snodgrass & Corwin, 1988).

Importantly, contextual information include the mental context as basis for guessing.

This allowed us to consider dependencies in guessing for the simultaneous recognition

of paired stimuli in our extended version of the 2HTM presented in Manuscript 1 and 2.

The probability to detect targets, do, captures the memory strength and the successful

retrieval of targets. Larger values of do indicate a higher memory evidence across all tar-

gets which is the case for, e.g., a higher number of presentations during study or high

imaginable vs. low imaginable words (Snodgrass & Corwin, 1988). As the underlying

mechanism to reach certain states is still based on memory evidence, it is just as natural

as for the SDT to assume that the two detection processes describing two simultaneous

recognition decisions interact. We considered these interactions as mnemonic dependen-

cies within the extended version of the 2HTM in Manuscripts 1 and 2.

Refined versions of multinomial processing trees, the RT-MPT, include additionally a

description of the respective process times of the underlying cognitive processes (Klauer

& Kellen, 2018). As particular process time distributions are tied to certain decisional

states and in the case of the 2HTM recognition errors can only result from the same un-

derlying uncertainty state, the speed of recognition errors is, in contrast to the diffusion

model, not representative of the amount of misleading evidence (Starns et al., 2018). We

challenged the assertion about error speed being informative of misleading evidence in

Manuscript 3.

Two-low threshold model

The 2LTM extends the 2HTM by allowing for mistaken detection for targets and lures.

In addition to the processes considered in the 2HTM, it includes a path (and parame-

ter) that links targets to the detect new state with probability dnt and lures to the detect

old state with probability dol (see Figure 1.4; Starns et al., 2018). Due to its additional

paths, RTs from recognition decisions hold information about the underlying decision

path for a specific item in the framework of RT-MPTs because errors no longer result

exclusively from the uncertainty state. Nevertheless, as only two discrete states underly

error decisions (mistaken detection and uncertainty), information about the specific path

are limited as discussed within the third manuscript.

The 2LTM is the youngest and least tested model of the presented measurement mod-

els for recognition decisions. Until now, this model has only been developed on a con-

ceptual level by Starns et al. (2018) and is discussed in Manuscript 3, but its parameters

have never been estimated so far. In fact, because of its flexibility and the amount of

parameters needed, the 2LTM is not identified for standard recognition tasks even with

reasonable restrictions. Thus, future studies should investigate whether the parameter

manipulations described above also hold for the 2LTM.
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“old”

“old”

“new”

“new”

Response

Category

guess
“old”

guess
“new”

uncertainty

detect
“old”

detect
“new”

target

lure

dot

dnl

1−

(dot + dnt)

1 − (dol +

dnl)

g

1− g

dnt

dol

Figure 1.4: Illustration of the two-low threshold model. Dashed lines indicate the paths
characterizing the low threshold assumption.

1.3 Discriminating retrieval mechanisms for recognition

decisions

Attached to the question about which model describes recognition decisions best is a

long and ongoing debate whether recognition decisions are based on a continuous famil-

iarity signal or are mediated via discrete states. Whereas, some authors even argue that

the quality of the decision process might depend on instructions or task and stimulus

features (Kellen & Klauer, 2015; McAdoo et al., 2018, 2019). A third model class, dual-

process models (Yonelinas, 1994), which assumes two independent processes of which

one is continuous and the other one discrete, contributes to the debate as well. However,

as dual-process models only have a minor role within my dissertation, I will not explain

them in detail.

Generally, there exist two disparate techniques to compare models’ adequacy to ac-

count for observed data. One possibility is to assess the absolute model fit via fit indices

as information criteria like AIC (Akaike, 1974) or BIC (Raftery, 1986) or Bayes factor (Jef-

freys, 1961). The absolute model fit captures the quantitative misfit between predicted

data, based on the estimated parameters, and the observed data while most indices pe-

nalize additionally for model complexity (e.g., as the number of free parameters consid-

ered). By comparing the absolute fit of all models analyzed, that model will be extracted

that describes the data numerically best. The other way to distinguish between mod-

els is via distinct behavioral predictions based on the respective model structures. As

each model has its own structure, it predicts some behavioral patterns that other models

would not predict. Thus, testing those predictions experimentally helps to discriminate

different models and additionally to validate certain model assumptions.
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A procedure frequently used to distinguish underlying recognition processes is the

analysis of the shape of and the model fit to receiver operating characteristic (ROC)

curves. ROCs relate the false alarm rate to the hit rate. Based on their varying model

assumptions, models predict different shapes of the ROC curve. For example, while SDT

predicts an inversed U-shaped ROC curve for rates and for z-transformed rates a linear

shape, the 2HTM on the other hand predicts a linear ROC curve for rates and a U-shape

for z-standardized rates. And finally, dual-process models predict an inverted U-shaped

ROC curve for rates and a U-shaped ROC curve for z-transformed rates (Yonelinas, Dob-

bins, Szymanski, Dhaliwal, & King, 1996). Yonelinas et al. (1996) capitalized on those di-

verting predictions and evaluated the shape of confidence based ROC curves in two ex-

periments. The shape of the resulting ROCs seemed to be in concert with the predictions

of dual-process models and contradicted the 2HTM and SDT. Additionally, a second

task, a remember-know paradigm, was used to generate predicted ROC curves based

on parameter estimates. Those predicted curves matched the observed confidence based

ROC curves very well, fostering the result that a dual-process model underlies recogni-

tion decisions. The remember-know paradigm aims to distinguish responses based on

event recollection from those based on familiarity and thus maps the assumptions of the

dual-process model. However, Erdfelder and Buchner (1998) argued that the considered

models were not adapted to confidence ratings. Adapting the evaluated threshold model

to confidence ratings, it is well able to account for curved ROCs and even outperformed

the dual-process model regarding model fit.

Bröder and Schütz (2009, 2011) tied up on that argument and therefore included in

their meta-analysis only studies considering ROCs from binary-response recognition

tasks. Within their meta-analysis and three additional experiments, they found no sup-

port for neither the 2HTM nor SDT. However, Dubé and Rotello (2012) criticized their

meta-analysis as it contained a number of studies involving only two point ROCs which

cannot be used to discriminate between curved or linear shapes. Elimination of those

studies from the meta-analysis let to a better fit of SDT compared to the 2HTM. This

result was even supported by two additional studies conducted by Dubé and Rotello

(2012). Both studies considered an instructed base-rate manipulation (in contrast to an

implemented base-rate manipulation) and the ROC curves from SDT fitted the observed

data better than the ROCs generated by the 2HTM for both the aggregated data (Exper-

iment 1 and 2) and the individual data (Experiment 2). To conclude, the shape of ROC

curves do not allow to distinguish between the discrete or continuous processes under-

lying recognition decisions very well.

With a series of studies, Klauer and Kellen (Kellen & Klauer, 2011; Kellen, Klauer, &

Bröder, 2013; Klauer & Kellen, 2015) contributed to the discussion using different tasks

and a more sophisticated method to evaluate model fit, the minimal description length
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(NML). Next to model flexibility based on the number of considered parameters, NML

additionally accounts for the functional flexibility of models, penalizing them for the

space of possible observations the respective model can account for (Kellen & Klauer,

2011). The results were again mixed. While dual-process models were favored evaluat-

ing first and second choice responses in a four-alternative forced-choice task (Kellen &

Klauer, 2011) and ROC curves based on confidence ratings (Klauer & Kellen, 2015), the

2HTM on the other hand described binary-response ROCs best (Kellen et al., 2013).

Next to those studies assessing primarily model fit, there are a number of studies in-

vestigating distinct behavioral predictions. For example, Kellen and Klauer (2014) tested

the conditional probabilities for strong and weak targets in a ranking task. While SDT

assumes the conditional probability for targets being assigned rank 2 given that it was

not ranked first (c2) to be larger for strong than that for weak targets, the 2HTM assumes

c2 to be of the same size as the underlying guessing probability should not be affected

by target strength. Nevertheless, in two experiments c2 turned out to be larger for strong

items than for weak items. Thus, the results matched the predictions of SDT and hint to

the necessity of participants having access to a continuous memory signal.

Additionally, Starns et al. (2018) found evidence for the error speed effect. The error

speed effect terms the finding that previously made errors of a single-recognition task

predicts the probability of those errors to be correctly categorized in a subsequent two-

alternative forced-choice task, in which participants have to select the target among two

presented stimuli, a target and lure. As mentioned earlier, this effect is predicted by the

diffusion-model. However, the 2HTM cannot account for it’s occurrence because the

same uncertainty state underlies all memory errors. Taken together, the occurrence of

the error speed effect requires, just as the findings from ranking tasks, participants to

have access to continuous memory evidence information while responding.

However, three studies assessing the conditional independence (Kellen & Klauer, 2015;

Kellen et al., 2015; Province & Rouder, 2012) found exactly the opposite result namely

discrete mediation of recognition decisions. Conditional independence describes the as-

sumption of threshold models, that the conditional response probability and response

distribution of a state should be invariant across different experimental conditions once

that state was entered. Thus, this condition should hold for guessing responses out of a

state of uncertainty for different strength manipulations. Regardless of the mean memory

strength for items, guessing probabilities and response distributions should be constant.

Province and Rouder (2012) tested the assumptions for confidence responses, Kellen et al.

(2015) replicated those results and further evaluated them for response times, and finally

Kellen and Klauer (2015) used a similar approach, addressing the confidence distribu-

tion of misses. In all studies, the assumption of conditional independence held which

supports threshold models and the assumption os discrete states mediating recognition
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decisions but contradicts SDT which is not compatible with the finding of conditional

independence. As can be seen from the literature reviewed above, the debate about the

nature of information underlying recognition decisions is far from being solved.

1.3.1 Contribution of the present dissertation

Based on the variety of experimental and analytical approaches, my dissertation con-

tributes to the still intense discussion on the continuous and discrete nature of memory

information underlying recognition decisions by taking two distinct approaches. Within

Manuscript 1 and 2, I assessed the model fit and validity within a currently neglected

recognition paradigm. More precisely, in my first manuscript (Voormann et al., in press)

we extended two models to paired-word recognition: general recognition theory (Ashby &

Perrin, 1988), a multidimensional SDT, and the 2HTM. In a paired-word recognition task

(Greene & Klein, 2004), participants study single words sequentially. However, during

test two words are randomly paired and participants are asked to categorize these pairs

as being either of type NN, two new words paired, NO, a new word on the left side

paired with an old word on the right side, ON, an old word on the left side bing paired

with a new word on the right side, or OO, two old words paired. In our studies, we

selected the model describing paired-word recognition decisions best within and across

the two model classes. Additionally, as the paradigm is quite new, we investigated the

differences of paired-word recognition to single-word recognition to get a broader un-

derstanding of processes involved in paired-word recognition decisions.

As the models we developed for the paired-word recognition paradigm seemed to

capture the fundamental mechanisms quite well, in my second manuscript (Voormann

et al., unsubmitted manuscript) my co-authors and I went one step further and assessed

the validity of those models testing for selective influence. Selective-influence studies

implement a manipulation that is believed to affect only one or a few of the involved

processes and test whether the effect of the manipulation is captured in the parameters

describing exactly these cognitive processes (convergent validity) while leaving other pa-

rameters unaffected (discriminant validity; see, e.g., Erdfelder & Buchner, 1998; Jacoby,

1991; Jacoby, Lindsay, & Hessels, 2003; Snodgrass & Corwin, 1988). Thus, implementing a

strength manipulation and a base-rate manipulation, we assessed whether both models

developed for paired-word recognition covered the manipulation in a psychologically

meaningful way.

My third manuscript (Voormann et al., 2021) employs distinct behavioral predic-

tions to differentiate between threshold and continuous recognition models. In a pre-

registered adversarial collaboration, I investigated the mechanisms behind the error

speed effect. Because the original study by Starns et al. (2018) contained some potentially

confounding experimental procedures, we assessed whether the error speed effect was
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truly driven by misleading evidence or by an error-correction strategy that uses response

times as a heuristic cue. Through a direct replication paired with an extension condition

eliminating possible confoundings, this study helped to validate the conclusions drawn

by Starns et al. (2018).
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5 General discussion

Dear Hilde,

if the human brain was simple enough for us to

understand, we would still be so stupid that we couldn’t

understand it.

(from Sophie’s world by Jostein Gaarder)

Resting upon the results and implications of all three manuscripts, my dissertation per-

fectly reflects and extends the shifting discussion on the discrete or continuous nature of

memory information in recognition decisions. To be more precise, the evidence provided

by the reported experiments is mixed with some suggesting the necessity of continuous

information under certain conditions and in specific tasks while others allow for dis-

cretization of the underlying information.

The first and second manuscript show that even in complex situations, as it is the case

for multiple simultaneous recognition decisions, threshold models can account for the

observed behavior in a meaningful and parsimonious way. For the paired-word recog-

nition task, the threshold model was able to identify the differences to a simple recog-

nition task, to capture the interactions between recognition decisions consistently on the

decisional level, and acted as expected, at least to some extend, in selective influence

studies. Overall in the paired-word recognition task, the threshold model outperformed

the continuous model, which attributed interactions less consistently to either mnemonic

or decisional processes and seemed to be less parsimonious compared to the threshold

model.

Conversely, in the case of the error speed effect considered within my third

manuscript, it seems to be the other way around. Although we eliminated strategically

confounds of error correction instructions and feedback in an extended condition, the

error speed effect still occurred. This supports the idea that participants use continuous

information, because models assuming access to a continuously graded memory signal

can naturally account for the occurrence of error speed effects whereas only some thresh-

old models are capable of explaining them without additional assumptions. The occur-

rence of the error speed effect also reflects the necessity of a mechanism that accounts for

misremembering (as a result of either misleading evidence or mistaken detection). All

continuous models incorporate such a mechanism because memory evidence informs a
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decision process or maps directly on response decisions so that memory evidence can

inform the incorrect decision. However, only certain types of threshold models, namely

low threshold models, include a discrete state for misremembering and therefore are able

to account for the error speed effect.

5.1 Discrete and continuous information underlying recognition

decisions

These results are probably not overly surprising as they are perfectly in line with the

mixed results of previous studies summarized in the Introduction. Thus, these and previ-

ous results foster the necessity to put aside the question of whether recognition decisions

base on either discrete or continuous information, but rather to question when and under

which conditions certain types of information are required to enable optimal performance

(Kellen & Klauer, 2015; McAdoo, Key, & Gronlund, 2018, 2019).

Looking at the question of under which conditions, the results of my three manuscripts

allow for two possible sources: 1) the response components and 2) the type of informa-

tion required for an adequate response. While my first and second manuscript analyzed

recognition performance on the level of response frequencies, the third manuscript con-

sidered response latencies as well when investigating the error speed effect. Thus, when

taking into account only these three manuscripts, one might jump to the premature con-

clusion that RTs reflect the continuous amount of memory information while examining

only response categories might favor a discrete mechanism. However, evidence from

ranking tasks, which only ask for a ranking of items and do not consider response laten-

cies, also favor continuous models (Kellen & Klauer, 2014). This contradicts the assump-

tion that the response components reflect different paths of processing, continuous vs.

discrete.

When examining the type of information necessary for participants to solve the task

as accurate as possible, the models that fit the data best perfectly match the type of infor-

mation needed. Consider first the case of paired-word recognition. Here participants are

asked to provide a simple joint categorization judgment. Thus, there seems to be no need

for participants to base their responses on more complex continuous information and

accordingly threshold models have a better fit compared to continuous models. How-

ever, this looks differently for the error speed effect. To evaluate the occurrence of the

effect, only such trials are investigated in the subsequent two-alternative forced-choice

task in which both words are hard to discriminate as they have previously elicited the

same response (either “studied” or “not studied”). Consequently, to solve the task ac-

curately more fine grained information is necessary to discriminate the target from the

lure. Therefore, it seems natural that individuals base their responses on continuous in-
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formation in such situations.

The idea is not new that the type of information required for an adequate response

determines whether threshold or continuous models can account better for the behav-

ioral findings. Based on previous findings in the field of recognition memory, Kellen and

Klauer (2015) already discussed that depending on task characteristics individuals might

act differently upon the available mnemonic information. McAdoo et al. (2019) fostered

this conclusion showing within participants that depending on the task, a confidence rat-

ing task or a ranking task, either threshold models or continuous models account for the

observed data. Additionally, McAdoo et al. (2018) found that even within the same task

memory mechanisms can depend on stimulus composition. Considering related lures,

more fine grained knowledge about memory evidence is necessary to respond accurately

than when words are easily discriminable as in case of unrelated lures. Hence, the results

argue for continuous models in the first case (related lures) but for threshold models in

the second case (unrelated lures).

Building upon those results, McAdoo et al. (2019) proposed a control mechanism

that regulates whether recognition decisions are mediated continuously or discretely

based on internal (participant-specific) and external (task-specific) information in or-

der to maintain efficient responding. They assume that discrete mediation of memory

evidence is preferred over continuous mediation as it is less demanding on cognitive

resources. Consequently, once participants evaluate their responding based on metacog-

nitive judgments to be inadequate, control processes interrupt and shift from a discrete

processing mode to a continuous mediation of memory evidence.

Grouping the literature according to the demands of information needed to solve the

task, the previously mixed evidence seems to resolve itself into a plausible pattern. Bi-

nary response tasks (Bröder & Schütz, 2009, 2011; Kellen, Klauer, & Bröder, 2013) and the

paired-word recognition task (Voormann, Spektor, & Klauer, unsubmitted manuscript,

in press) require on most of their trials only basic information and thus threshold mod-

els are favored. For confidence ratings (Klauer & Kellen, 2015) and the four-alternative

forced-choice task (Kellen & Klauer, 2011) however, more fine grained information is

needed. Possibly even the type of information used, either a discrete recollection or a con-

tinuous familiarity signal, might depend on trial specific information, thus dual-process

models can account for these tasks best. Finally, to solve ranking tasks (Kellen & Klauer,

2014) and the two-alternative forced-choice trials considered for the error speed effect

(Starns, Dubé, & Frelinger, 2018; Voormann, Rothe-Wulf, Starns, & Klauer, 2021), contin-

uous information is necessary and consequently continuous models are favored.
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5.2 The role of guessing

What the accounts mentioned above neglect, however, is a bunch of research hinting

towards a second question that is necessary to raise and crucial to evaluate separately

from the discussion about the nature of memory information. This question addresses

the necessity of evidence free guessing for recognition decisions. While neither contin-

uous models nor process models of recognition memory incorporate a guessing mech-

anism, most threshold models assume an uncertainty state out of which responses are

guessed entirely free of memory evidence and based solely on contextual information.

Evidence in favor of the existence of feature-unrelated guessing exists for example

in the area of working memory. For the demonstration of its existence, Rouder, Thiele,

Province, and Cusumano (unpublished manuscript) used a working memory task in

which participants were asked to remember the position of an arrow angle in a cir-

cle. Thus, the deviance of the response and the actual position was defined continu-

ously. They showed that additionally to finely encoded representations in which memory

matched the actual stimulus well and coarsley encoded representations in which only the

correct side but not angle was memorized there exist trials in which responses are best

characterized by feature-unrelated guessing. In those guessing trials, responses spread

uniformly distributed across all angles of the circle indicating no knowledge about any

stimulus features.

Additionally, the line of research indicating conditional independence within confi-

dence ratings (Kellen & Klauer, 2015; Kellen, Singmann, Vogt, & Klauer, 2015; Province &

Rouder, 2012) basically demonstrates the same: the existence of information free guess-

ing within recognition decisions. As a reminder, conditional independence describes a

central assumption of threshold models asserting that state-response mappings are in-

dependent from the conditional probability to enter a certain state. Kellen and Klauer

(2015) investigated it by inspecting the distribution of incorrect responses on a confi-

dence scale. They proved that SDT predicts fewer errors for strong targets and, more

importantly, less extreme errors compared to weak targets. Whereas, within the 2HTM

response distributions for errors should not depend on a strength manipulation. Assum-

ing however, a general existence of evidence free guessing the assumptions of the two

models become quite similar. Because response distributions from guessing should not

vary for a strength manipulation, as no memory information is available, the predictions

for error distributions only deviate to the amount of misdetection predicted by SDT. As

the same line of reasoning basically holds for the other studies investigating conditional

independence (Kellen et al., 2015; Province & Rouder, 2012), future research should ad-

dress the necessity of guessing without memory evidence in more detail.
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Figure 5.1: Schematic illustration of a diffusion model with a guessing mechanism at a
certain point in time for a trial with drift rate equal to the drift criterion and a point in
time for guessing. Note however, that response distributions still represent those of all
targets.

5.2.1 Guessing within continuous models

The introduction of a guessing mechanism to continuous models of recognition memory

does not necessarily contradict the general structure of those models. Rather it expands

on their structure and specifies behavior in boundary conditions.

Taking for example the diffusion model, it is generally possible that for certain stim-

uli there exists an equal amount of evidence towards both decisions. Mathematically,

this occurs for a drift rate being equal to the drift criterion. However, in such a case

no response criterion can be reached based on the memory evidence and decisions are

simply based on noise.1 There exist some workarounds and model adaptations to en-

force responses with increasing time as, e.g., a model with collapsing boundaries (but

see Voskuilen, Ratcliff, & Smith, 2016; Voss et al., 2019). Collapsing boundaries represent

the assumption that with increasing time, less evidence is required for a decision and

the speed-accuracy trade-off shifts away from accuracy. However, it would also be rea-

sonable to assume that in such a situation at a certain point in time t participants simply

guess their response (see Figure 5.1).

Incorporating a guessing mechanism into SDT differs slightly from the logic of the

diffusion model. Because familiarity maps directly onto a decision dimension and not

just informs a decision process, guessing has to be depended on a certain amount of

1Please note that even for a drift rate equal to zero, evidence will reach at a certain time one of the two
criteria due to the within-trial variability in the accumulation process. For a starting point being located
exactly in the middle between the two criteria, each decision will occur equally often (Voss, Lerche,
Mertens, & Voss, 2019).
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Figure 5.2: Illustration of signal detection theory for a recognition task with an area of
uncertainty in which participants simply guess instead of relying on memory evidence

familiarity. For SDT, an amount of familiarity equal to the criterion represents evidence

to neither decision. Therefore, in such a (although somewhat unlikely) case guessing

would be necessary. In addition, research using confidence criteria suggests that even

an area around the criterion might comprise uncertain responses. Thus, it seems natural

to define a familiarity range in which participants might just simply guess instead of

relying on the familiarity to retrieve a decision. For modeling, this would basically imply

two criteria, familiarity values below the first criterion c1 map to a “new” decision while

familiarity values above the second criterion c2 elicit an “old” response (see Figure 5.2).

However for all stimuli with familiarities between those criteria responses are guessed

with a certain probability.

Please note for all cases that guessing does not mean to discard the information avail-

able, but simply that responses are not driven by the amount of memory evidence. Thus,

guessing can still depend on contextual information as base-rates and response incen-

tives just like the responses out of a state of uncertainty within threshold models. Ad-

ditionally, incorporating guessing still allows for misremembering of items within con-

tinuous models. For example, a target can lead towards the incorrect response by being

smaller than the first criterion in the case of SDT or by having a drift rate leading towards

the incorrect response boundary within the diffusion model. Misremembering has been

shown to be necessary for the error speed effect (Starns et al., 2018; Voormann et al.,

2021), and thus, needs to be accounted for by recognition memory models. However,

evidence free guessing seems to be another essential response mode within recognition

decisions and thus future models should consider it in their model structure as well.
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5.3 Implications for process models

Based on the insights of the Introduction, the previous discussion of the various mea-

surement models provides important implications for the specification of retrieval mech-

anisms in process models. Taken together, four fundamental mechanisms are vital for the

extension of process models in recognition memory:

1) dependencies within recognition decisions

2) a mechanism for misremembering

3) context dependent adaptation of information available for responding

4) incorporation of guessing

First, my first two manuscripts (Voormann et al., unsubmitted manuscript, in press)

indicated that most process models only incorporate mechanisms for basic recogni-

tion paradigms. Although there exist already adaptations for associated word pairs

(Humphreys, Pike, Bain, & Tehan, 1989) and adaptations for conditional hypothesis test-

ing (Dougherty, Gettys, & Ogden, 1999), more complex mechanisms as dependencies

within decisions to paired-word recognition trials are not incorporated so far. However,

based on the extended measurement models selected for the paired-word recognition

paradigm, the specific mechanisms of such dependencies are known and thus can be es-

tablished in process models. For example, mnemonic spill-over effects of activation can

be included as a relative spread of activation from one recognition process to the other

in case of two simultaneous recognition decisions.

Second, a mechanism of misremembering, derived from my third manuscript (Voor-

mann et al., 2021) and recent studies by Starns et al. (2018) and Starns and Ma (2018), is

actually unproblematic as all process models already incorporate the possibility of misre-

membering. Contrarily to the high threshold assumption within some threshold models

but in line with continuous models, process models typically assume that target probes

can lead into an activation which is below the criterion and thus elicits the incorrect re-

sponse based on memory evidence (cf. Gillund & Shiffrin, 1984; Hintzman, 1988). This

occurs for example when context changes between study and test or encoding has not

been successful. Thus, just as continuous models, process models can naturally account

for misremembering due to their structure.

Third, the type of information available for responding depends on the features of the

stimulus material and the selected task. Thus, it seems to be crucial for process models

to adapt their decision mechanisms in such a way that depending on task features either

discrete or continuous information about memory activation are retrieved for respond-

ing. As continuous information can be mapped easily onto discrete states and threshold

theories do not contradict a continuous evidence accumulation that results into certain

states, only a mechanisms controlling the type of information available for responding
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needs to be considered.

And finally, process models currently do not incorporate the possibility of guessing.

However, as most process models resemble SDT in that they map the amount of evidence

directly to a response, the same mechanism suggested for SDT can be applied. Incorpo-

rating two criteria and an area of uncertainty, they can easily be adapted to describe

evidence free guessing.

Thus, as can be seen by those four examples, investigating recognition decisions via

measurement models yields a valuable simplification to assess retrieval mechanisms

within recognition decisions. Nevertheless, it only offers insights into certain mecha-

nisms while adaptations of the process models are still essential to account for the whole

memory process.

5.4 Final Thoughts

The debate about the nature of information underlying recognition decisions and de-

cisions in general has a long tradition. Given its length, it is fascinating that scientists

still find new creative ways of exploring, testing, and challenging it. However, recently

the discussions seems to shift away from the fundamental discussion of the discrete and

continuous nature of cognitive information towards both a more context driven account

and a more process oriented way of thinking. This development starts with questioning

under which conditions certain information is gathered and acquired for responses (Kellen

& Klauer, 2015; McAdoo et al., 2018, 2019) and it continues with the query of the neces-

sity of misremembering (Starns et al., 2018; Starns & Ma, 2018; Voormann et al., 2021) or,

as I argued above, evidence free guessing. To open up the discussion about the nature of

recognition decisions towards, on the one hand, context depended properties and, on the

other hand, more global processes involved in recognition decisions will bear interesting

new insights about recognition memory in future research.
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