Foto: Staatliche Schlösser und Gärten Baden-Württemberg

Wirtschafts­mathematik und Wirtschafts­informatik (alle)

Wirtschafts­informatik (Bachelor)

Algorithmen und Datenstrukturen (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
6
Lernziel:
Fach­kompetenz:
Die Studierenden kennen effiziente Algorithmen und effektive Datenstrukturen für grundlegende Probleme der Informatik und können diese  anwenden und in Computer­programme umsetzen. Sie beherrschen weiterhin grundlegende Techniken des Entwurfs von Algorithmen und Datenstrukturen, sowie der Korrektheits- und Laufzeitanalyse von Algorithmen
Methoden­kompetenz:
Die Studierenden können anwendungs­relevanten Berechnungs­problemen effiziente Algorithmen zuzuordnen bzw. diese  entwickeln und
mittels dieser lösen.
Personale Kompetenz:
Die Studierenden können Berechnungs­probleme in Anwendungs­zusammenhängen identifizieren, sie formal spezifizieren und damit einer rechentechnischen Lösung zuführen. Sie können auf höherem Niveau abstrahieren und mit formalen Modellierungs­techniken arbeiten.
Empfohlene Voraussetzungen:
Literatur:
Praktische Informatik I, Analysis für Wirtschafts­informatiker
Prüfungs­leistung:
Praktische Informatik I, Analysis für Wirtschafts­informatiker
Lektor(en):
Matthias Krause
Beschreibung:
  • Grundtechniken des Algorithmenentwurfs sowie der Laufzeitanalyse (Divide and Conquer, Greedyheuristiken, Dynamic Programming,…)
  • Grundtechniken des Beweisens der Korrektheit von Algorithmen
  • Sortieralgorithmen
  • Hashing und hashing­basierte Algorithmen
  • Advanced Data Structures
  • Algorithmen für Suchbäume
  • Graphalgorithmen (Tiefensuche, Breitensuche, Minimum Spanning Trees, Kürzeste-Wege-Algorithmen)
  • Ausgewählte weitere Algorithmen (z.B. Pattern Matching, Automatenminimierung…)
Large - Scale Data Management (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
http://dws.informatik.uni-mannheim.de/en/teaching/courses-for-master-candidates/cs-560-large-scale-data-management/
Lernziel:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Empfohlene Voraussetzungen:
Literatur:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Prüfungs­leistung:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Lektor(en):
Rainer Gemulla
Beschreibung:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
Data Mining (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Foundations of Statistics, Practical Informatics I
Prüfungs­leistung:
Foundations of Statistics, Practical Informatics I
Lektor(en):
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Datenbanksysteme I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
6
Lernziel:
Fach­kompetenz:
Verständnis der Grundlagen der Daten­modellierung bzw. des Datenbankentwurfs und der Funktions­weise von relationalen Datenbank­managementsystemen, insbesondere Anfragebearbeitung und Transaktions­verwaltung
Methoden­kompetenz:
Abstraktion, Modellierung, Aufwandsabschätzung für Anfragen
Personale Kompetenz:
Verständnis der Rolle moderner Datenhaltung in einem Unternehmen
Empfohlene Voraussetzungen:
Literatur:
Analysis, Statistik, Praktische Informatik I, und II, Algorithmen und Datenstrukturen,  Programmier­kenntnisse
Prüfungs­leistung:
Analysis, Statistik, Praktische Informatik I, und II, Algorithmen und Datenstrukturen,  Programmier­kenntnisse
Lektor(en):
Guido Moerkotte
Beschreibung:
Datenbankentwurf, Normalisierung, Anfragebearbeitung, Transaktions­verwaltung
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Formale Grundlagen der Informatik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Die Studierenden beherrschen grundlegende für die Informatik rele-vanten Konzepte, Begriffsbildungen und wissenschaft­lichen Arbeits-techniken aus Mathematik und Logik. Sie kennen weiterhin eine erste Auswahl an wichtigen Datenstrukturen und  effizienten Algorithmen für grundlegende Probleme.
Methoden­kompetenz:
Die Studierenden besitzen die Fähigkeit, informal gegebene Sachver-halte formal zu modellieren und die entstehenden formalen Struktu-ren bzgl. grundlegender Eigenschaften zu klassifizieren. Sie können weiterhin  auf einem für Informatiker adäquaten Niveau gegebene Aussagen mathematisch  beweisen.
Personale Kompetenz:
Die Studierenden besitzen ein Grundverständnis der för die Informa-tik wichtigen formalen Strukturen, Modelle und Arbeits­techniken. Sie können auf höherem Niveau abstrakt denken und formal modellieren.
Empfohlene Voraussetzungen:
Literatur:
keine
Prüfungs­leistung:
keine
Lektor(en):
Matthias Krause
Beschreibung:
  • Grundlagen Aussagenlogik (Folgern, Beweisen)
  • Mengen, Relationen, Abbildungen
  • Grundlagen der Kombinatorik (Abzählen von endlichen Mengen, Abzählbarkeit)
  • Einführung Graphentheorie
  • Algebraische Strukturen (Halbgruppen, Gruppen, Homorphismen, Faktorstrukturen)
  • Grundlegende Berechnungs­modelle/Endliche Automaten
Künstliche Intelligenz (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Such­verfahren als universelle Problemlösungs­verfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unterschiedlichen Such­verfahren.
Methoden­kompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungs­problem. Implementierung unterschiedlicher Such­verfahren und Heuristiken.
Empfohlene Voraussetzungen:
Literatur:
Formale Grundlagen der Informatik (insbes. Komplexität, Graphen und Logik) Algorithmen und Datenstrukturen
Programmieren in JAVA
Prüfungs­leistung:
Formale Grundlagen der Informatik (insbes. Komplexität, Graphen und Logik) Algorithmen und Datenstrukturen
Programmieren in JAVA
Lektor(en):
Beschreibung:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computer­spiele
  • Constraint­probleme und deren Lösung
  • Logische Constraints
Praktische Informatik I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
6
Lernziel:
Fach­kompetenz:
Die Studierenden können selbständig Algorithmen zu vorgegebenen Problemen entwerfen und in Java, das im parallel laufenden Pro-grammierkurs I unterrichtet wird, objekt­orientiert programmieren. Methoden­kompetenz:
Algorithmenentwurf, Bewertung von vorgegeben Algorithmen Personale Kompetenz:
Kreativität beim Entwurf von Algorithmen, Team­fähigkeit
Empfohlene Voraussetzungen:
Literatur:
keine
Prüfungs­leistung:
keine
Lektor(en):
Frederik Armknecht
Beschreibung:
Vom Problem zum Algorithmus, vom Algorithmus zum Programm
 
  • Entwurf von Algorithmen: schrittweise Verfeinerung, Modularität, Objekt­orientierung (Klassen­hierarchien, Vererbung), Rekursion
  • Die objekt­orientierte Programmiersprache Java
  • Einfache Datenstrukturen (verkettete Liste, Binärbaum, B-Baum)
  • Modellierung mit UML: Klassendiagramme, Aktivitätsdiagramme, Zustandsdiagramme
  • Einführung in die Theorie der Algorithmen: Berechenbarkeit, Komplexität (O-Kalkül), Testen und Verifikation von Algorithmen und Programmen
Programmier­praktikum I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
  • Gründliche Kenntnis der Basiskonzepte der Programmiersprache Java
  • Verständnis des Konzepts der Objekt­orientierung
  • Kenntnisse der algorithmischen Prinzipien  Iteration und Rekursion
  • Basiswissen über das Arbeiten unter einem Linux-Betriebs­system

Methoden­kompetenz:

  • Fähigkeit, Algorithmen zu entwerfen
  • Fähigkeit, komplexe Algorithmen in Java ohne Einsatz importierter Methoden zu programmieren
  • Fähigkeit, rekursiv zu programmieren

Personale Kompetenz:

  • Eigen­verantwortliches Arbeiten
  • Team­fähigkeit
Empfohlene Voraussetzungen:
Literatur:
Benutzer­kenntnisse eines modernen Betriebs­systems
Prüfungs­leistung:
Benutzer­kenntnisse eines modernen Betriebs­systems
Lektor(en):
Ursula Rost
Beschreibung:
Im Programmier­praktikum I werden grundlegende Kenntnisse der objekt­orientierten Programmierung auf Basis der Sprache Java vermittelt.
Die Studierenden werden von dieser Sprache vor allem folgende Grundmerkmale und Konzepte kennenlernen:
 
  • Basiskonzepte der Programmierung: einfache Datentypen, Variablen, Operatoren, Anweisungen, Kontrollstrukturen
  • Zusammengesetzte Datentypen (Felder)
  • Das Konzept der objekt­orientierten Programmierung
  • Klassen (Attribute, Methoden, Konstruktoren)
  • Vererbung
  • Pakete, abstrakte Klassen und Interfaces
  • Java API und wichtige Hilfsklassen
  • Ausnahmebehandlung: Exceptions
  • Programmierung Grafischer Oberflächen mit Swing
 
Die Programmierausbildung erfolgt auf der Basis des Betriebs­systems Linux. Hierzu werden ebenfalls Grund­kenntnisse vermittelt, die es ermöglichen, einfache Java-Programme zu entwickeln. Im Laufe des Kurses wird darüber hinaus eine einfache Entwicklungs­umgebung eingeführt.

Wirtschafts­informatik (Master)

Advanced Software Engineering (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
After taking the course, students will be familiar with the latest state-of-the-art techniques for specifying the externally visible properties of a software system/component  – that is, for describing a software system/component as a “black box”, and for verifying them. Methodological competence:
Participants will know how to use the expertise acquired during the course to describe the requirements that a system/component has to satisfy and to define tests to check whether a system/component fulfils these requirements. Personal competence:
With the acquired skills and know-how, students will be able to play a key role in projects involving the development of systems, components and software applications.
Empfohlene Voraussetzungen:
Literatur:
None
Prüfungs­leistung:
None
Lektor(en):
Colin Atkinson
Beschreibung:
The course deals with the model-based specification of software systems and components as well as their verification, validation and quality assurance. The emphasis is on view-based specification methods that use multiple views, expressed in multiple languages, to describe orthogonal aspects of software systems/components. Key examples include structural views represented using class diagrams, operational views expressed using constraint languages and behavioural views expressed using state diagrams. An important focus of the course is the use of these views to define tests and extra-functional properties.
Large - Scale Data Management (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
http://dws.informatik.uni-mannheim.de/en/teaching/courses-for-master-candidates/cs-560-large-scale-data-management/
Lernziel:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Empfohlene Voraussetzungen:
Literatur:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Prüfungs­leistung:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Lektor(en):
Rainer Gemulla
Beschreibung:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
Data Mining (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Foundations of Statistics, Practical Informatics I
Prüfungs­leistung:
Foundations of Statistics, Practical Informatics I
Lektor(en):
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
IS 613 Applied Project in Design Thinking and Lean Software Development (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
It is mandatory that you register via Portal2 after your arrival. You can register anytime between August 28 - September 7, 2017. The time of your registration is not relevant as seats are not assigned on a first-come, first-served basis. Further information will be provided during orientation week.
Lernziel:
By the end of the module students will
•    know how to apply design principles for developing customer oriented applications,
•    understand the difficulties involved in team-based software development,
•    improve software engineering skills,
•    improve the ability to work in teams,
•    use state of the art software engineering methods and tools.
Empfohlene Voraussetzungen:
Literatur:
Formal: IS 615 (parallel attendance possible)
Recommended: This course is designed for master students of management or information systems. A basic understanding of how to program information systems is helpful.
Prüfungs­leistung:
Formal: IS 615 (parallel attendance possible)
Recommended: This course is designed for master students of management or information systems. A basic understanding of how to program information systems is helpful.
Lektor(en):
Nele Lüker
Beschreibung:
The goal of this term project is to collaboratively develop a concept, design or software to solve a real world problem in a student development team environment. We offer a project-based lecture with hands-on experience for lean principles and design thinking. Students will learn innovative product and process design for software development which then can be directly applied in exercise sessions. 
The used technology will depend on students’ skills and experience. Prototypes might be developed with technology for mobile devices or paper-based for non-developers.
IS 614 Corporate Knowledge Management (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
No registration required.
Lernziel:
Course participants will be able to:
•    explain the role and importance of knowledge for organizations
•    Understand and explain the processes of knowledge management (KM)
•    Describe and evaluate the possibilities to support the different knowledge processes through information technology
•    Understand and evaluate different design principles of KM systems
•    Evaluate and apply organizational and technological mechanisms that ensure the use of KM systems
Empfohlene Voraussetzungen:
Literatur:
Formal: -
Recommended: -
Prüfungs­leistung:
Formal: -
Recommended: -
Lektor(en):
Kai Spohrer
Beschreibung:
Companies have realized that the knowledge of their professionals is a decisive factor in competition. Firms are able to differentiate against their competitors through superior knowledge in the long term.
This lecture deals with the question of how the creation acquisition, transfer, storage, retrieval, and use of knowledge can be supported with the information technology and where the limits of such efforts are. It also addresses how to design information technology to support different knowledge processes.
IS 615 Design Thinking and Lean Development in Enterprise Software Development (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
No registration required.
Lernziel:
After completing the class, students will be able to:
  • Understand the issues and challenges involved in enterprise software development
  • Understand and apply large-scale agile development based on lean principles
  • Understand and apply Design Thinking and related innovation practices
  • Understand and evaluate business models for software companies and products
  • Understand and apply how to bring all of this together in enterprise reality
  • Understand and evaluate state of the art software engineering methods
  • Understand and explain particular success strategies recommended by practitioners
  • Understand how to launch a start-up and scale a software company
Empfohlene Voraussetzungen:
Literatur:
Formal: -
Recommended: IS 550. Attendance of IS 613 in the same semester is recommended.
Prüfungs­leistung:
Formal: -
Recommended: IS 550. Attendance of IS 613 in the same semester is recommended.
Lektor(en):
Anna-Maria Seeger
Beschreibung:
Enterprise software development revolves around complex and interdependent software products for different companies, lines of business and industries. Hence, there is an inherent trade-off between standard software and domain-specific software solutions. Software companies thus have to keep track of various heterogeneous and possibly conflicting market requirements that are subject to changes and updates in ever shorter release cycles.
However, it is essential for every enterprise software company to be able to build the right solutions efficiently. To be able to do so in the long run, large software companies elaborated good practices to ensure both, efficient development processes and innovative products.
Among these, lean thinking and agile software development practices combined with Design Thinking and related practices are increasingly adopted and intertwined in the software industry. So, the goal of this module is to convey both, approaches from research and industry experience together with practical application based on concrete enterprise software challenges. The course includes both, lecture and workshop formats.

A combination with IS 613 as related term project is highly recommended.
Kryptographie II (Inverted Lecture) (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Fach­kompetenz:
Die Studierenden können Mithilfe aktueller Techniken und Theorien der modernen Kryptographie die Sicherheit von kryptographischen Verfahren einschätzen bzw. Sicherheitsaussagen entsprechend zu beurteilen. Weiterhin sind sie in der Lage, Sicherheitsziele zu erkennen und entsprechende Techniken einzusetzen, die in Kryptographie I nicht behandelt werden konnten.
Methoden­kompetenz:
Den Studierenden sind in der Lage, geeignete Methoden zu Sicherheitsanalyse von kryptographischen Verfahren auszuwählen und einzusetzen. Dazu gehören bspw. die Wahl der passenden Sicherheits­modelle, das Beweisen der Sicherheit aufgrund klar präzisierter Annahmen und die Analyse gegebener Verfahren. Insbesondere besitzen die Studierenden die Fähigkeit, die Sicherheitsargumente für existierende Verfahren zu verstehen und einzuschätzen und auf neue zu übertragen. Weiterhin können sie Techniken und Protokolle einsetzen, um Sicherheitsziele zu erreichen, die mit den in Kryptographie I besprochenen Verfahren noch nicht möglich waren.
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendungen, z.B. im Rahmen der Übungs­aufgaben, wird ihr Abstraktions­vermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Empfohlene Voraussetzungen:
Literatur:
Es gibt keine formalen Voraussetzungen, aber folgende inhaltliche Vor­kenntnisse werden empfohlen:
Grund­kenntnisse in der Kryptographie, wie sie bspw. in der Vorlesung “Kryptographie I” erworben werden können.
CS 550 Algorithmik
Prüfungs­leistung:
Es gibt keine formalen Voraussetzungen, aber folgende inhaltliche Vor­kenntnisse werden empfohlen:
Grund­kenntnisse in der Kryptographie, wie sie bspw. in der Vorlesung “Kryptographie I” erworben werden können.
CS 550 Algorithmik
Lektor(en):
Frederik Armknecht
Beschreibung:
In der Vorlesung erfolgt eine kurze Zusammenstellung der wichtigsten kryptographischen Grundalgorithmen und der für die Vorlesung relevanten mathematischen, algorithmischen und informations- und komplexitätstheoretischen Grundlagen. Diese werden einerseits vertieft und andererseits erweitert. Behandelte Themen sind beispielsweise
  • moderne Techniken der Kryptanalyse und daraus ableitbare Designkriterien für kryptographische Verfahren
  • kryptographische Protokolle
  • Sicherheitsbeweise
Model Driven Development (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will be familiar with the accepted best practices and technologies used in mainstream model-driven development as well as state-of-the-art modeling technologies emerging from research institutions.
Methodological competence:
Students will know how to apply modeling technologies in real-world projects.
Personal competence:
Students will have the capability to analyse, understand and model complex systems.
Empfohlene Voraussetzungen:
Literatur:
Advanced Software Engineering
Prüfungs­leistung:
Advanced Software Engineering
Lektor(en):
Colin Atkinson
Beschreibung:
The course focuses on the principles, practices and tools involved in advanced model-driven development. This includes established modelling standard languages (e. g. UML, ATL, OCL . . . ) and modelling infrastructures (e. g. MOF, EMF, etc. ) as well as leading edge, state-of-the-art modelling technologies (e. g. LML, PLM . . . ). Key topics addressed include –
  • Multi-level modeling
  • Meta-modeling
  • Ontology engineering versus model engineering
  • Model transformations
  • Domain specific language definition and use
  • Model creation and evolution best practices
  • Model-driven software development
  • Model checking and ontology validation
Anfrageoptimierung (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
  • Verständnis der Grundlegenden Funktions­weisen alternativer Plangeneratoren,
  • detaillierte Kenntnisse physischer Planalternativen,
  • detaillierte Kostenanalysen

Methoden­kompetenz:

  • Algorithmen und Komplexitäten der Plangenerierung,
  • Kostenrechnung anhand gegebener Statistiken

Personale Kompetenz:

  • Fundamentales Verständnis für die Probleme und Lösungen der traditionellen Anfragebearbeitung
Empfohlene Voraussetzungen:
Literatur:
Datenbanksysteme I und deren Voraussetzungen, Kombinatorik, Statistik
Prüfungs­leistung:
Datenbanksysteme I und deren Voraussetzungen, Kombinatorik, Statistik
Lektor(en):
Beschreibung:
Grundlagen der Anfrageoptimierung
Semantic Web Technologies (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
The participants of this course learn about principles and applications of Semantic Web standards. They become familiar with their technical foundations such as representation and query languages, or logical inference. After taking this course, the students will be aware of the problems and benefits of semantic technologies in the context of tasks such as knowledge management, information search and data integration, and they will be capable of judging the applicability of these technologies for addressing practical challenges.
Methodological competence:
The participants learn how to design and implement Semantic Web applications. They are able to use standardized modeling languages for building knowledge representations, and to query these models by means of languages such as SPARQL.
Personal competence:
By jointly building a semantic web application, the students learn how to effectively work in teams. They improve upon their presentation skills by showing the outcomes of their projects to the other participants of the course.
Empfohlene Voraussetzungen:
Literatur:
Java programming skills
Prüfungs­leistung:
Java programming skills
Lektor(en):
Beschreibung:
  • Vision and Principles of the Semantic Web
  • Representation Languages (XML, RDF, RDF Schema, OWL)
  • Knowledge Modeling: Ontologies and Linked Data
  • Logical Reasoning in RDF and OWL
  • Commercial and Open Source Tools and Systems
Text Analytics (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire knowledge of state-of-the-art principles and methods of Natural Language Processing, with a specific focus on the application of statistical methods to human language technologies.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Natural Language Processing, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different practical and application-oriented scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Empfohlene Voraussetzungen:
Literatur:
Programming skills (Java or C++ preferred). Fundamental notions of linear algebra and probability theory.
Prüfungs­leistung:
Programming skills (Java or C++ preferred). Fundamental notions of linear algebra and probability theory.
Lektor(en):
Simone Paolo Ponzetto
Beschreibung:
In the digital age, techniques to automatically process textual content have become ubiquitous. Given the breakneck speed at which people produce and consume textual content online – e.g., on micro-blogging and other collaborative Web platforms like wikis, forums, etc. – there is an ever-increasing need for systems that automatically understand human language, answer natural language questions, translate text, and so on. This class will provide a complete introduction to state-of-the-art principles and methods of Natural Language Processing (NLP). The main focus will be on statistical techniques, and their application to a wide variety of problems. This is because statistics and NLP are nowadays highly intertwined, since many NLP problems can be formulated as problems of statistical inference, and statistical methods, in turn, represent de-facto the standard way  to solve many, if not the majority, of NLP problems. Covered topics will include:
 
  • Words
    • Language Modeling
    • Part-Of-Speech Tagging
  • Syntax
    • Statistical Parsing
  • Semantics and pragmatics
    • Computational Lexical Semantics
    • Computational Discourse
  • Applications
    • Topic Modeling
    • Information Extraction
    • Question Answering and Summarization
    • Statistical Alignment and Machine Translation
Coursework will include homework assignments and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course.
Web Data Integration (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Empfohlene Voraussetzungen:
Literatur:
Programming skills in Java
Prüfungs­leistung:
Programming skills in Java
Lektor(en):
Christian Bizer
Beschreibung:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
 
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
Web Data Integration (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Empfohlene Voraussetzungen:
Literatur:
Programming skills in Java
Prüfungs­leistung:
Programming skills in Java
Lektor(en):
Christian Bizer
Beschreibung:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
 
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion

Wirtschafts­mathematik (Bachelor)

Algorithmen und Datenstrukturen (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
6
Lernziel:
Fach­kompetenz:
Die Studierenden kennen effiziente Algorithmen und effektive Datenstrukturen für grundlegende Probleme der Informatik und können diese  anwenden und in Computer­programme umsetzen. Sie beherrschen weiterhin grundlegende Techniken des Entwurfs von Algorithmen und Datenstrukturen, sowie der Korrektheits- und Laufzeitanalyse von Algorithmen
Methoden­kompetenz:
Die Studierenden können anwendungs­relevanten Berechnungs­problemen effiziente Algorithmen zuzuordnen bzw. diese  entwickeln und
mittels dieser lösen.
Personale Kompetenz:
Die Studierenden können Berechnungs­probleme in Anwendungs­zusammenhängen identifizieren, sie formal spezifizieren und damit einer rechentechnischen Lösung zuführen. Sie können auf höherem Niveau abstrahieren und mit formalen Modellierungs­techniken arbeiten.
Empfohlene Voraussetzungen:
Literatur:
Praktische Informatik I, Analysis für Wirtschafts­informatiker
Prüfungs­leistung:
Praktische Informatik I, Analysis für Wirtschafts­informatiker
Lektor(en):
Matthias Krause
Beschreibung:
  • Grundtechniken des Algorithmenentwurfs sowie der Laufzeitanalyse (Divide and Conquer, Greedyheuristiken, Dynamic Programming,…)
  • Grundtechniken des Beweisens der Korrektheit von Algorithmen
  • Sortieralgorithmen
  • Hashing und hashing­basierte Algorithmen
  • Advanced Data Structures
  • Algorithmen für Suchbäume
  • Graphalgorithmen (Tiefensuche, Breitensuche, Minimum Spanning Trees, Kürzeste-Wege-Algorithmen)
  • Ausgewählte weitere Algorithmen (z.B. Pattern Matching, Automatenminimierung…)
Large - Scale Data Management (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
http://dws.informatik.uni-mannheim.de/en/teaching/courses-for-master-candidates/cs-560-large-scale-data-management/
Lernziel:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Empfohlene Voraussetzungen:
Literatur:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Prüfungs­leistung:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Lektor(en):
Rainer Gemulla
Beschreibung:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
Data Mining (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Foundations of Statistics, Practical Informatics I
Prüfungs­leistung:
Foundations of Statistics, Practical Informatics I
Lektor(en):
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Datenbanksysteme I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
6
Lernziel:
Fach­kompetenz:
Verständnis der Grundlagen der Daten­modellierung bzw. des Datenbankentwurfs und der Funktions­weise von relationalen Datenbank­managementsystemen, insbesondere Anfragebearbeitung und Transaktions­verwaltung
Methoden­kompetenz:
Abstraktion, Modellierung, Aufwandsabschätzung für Anfragen
Personale Kompetenz:
Verständnis der Rolle moderner Datenhaltung in einem Unternehmen
Empfohlene Voraussetzungen:
Literatur:
Analysis, Statistik, Praktische Informatik I, und II, Algorithmen und Datenstrukturen,  Programmier­kenntnisse
Prüfungs­leistung:
Analysis, Statistik, Praktische Informatik I, und II, Algorithmen und Datenstrukturen,  Programmier­kenntnisse
Lektor(en):
Guido Moerkotte
Beschreibung:
Datenbankentwurf, Normalisierung, Anfragebearbeitung, Transaktions­verwaltung
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Finanzmathematik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Grundbegriffe der Modellierung in der Finanzmathematik  (BK2, BK4)
• Grundlagen der Martingaltheorie und des Itô-Kalküls (BK1, BK4)
• Bewertung und Absicherung riskanter Positionen in allgemeinen zeitdiskreten Markt­modellen, im  Binomial­modell sowie in einfachen vollständigen Markt­modellen in stetiger Zeit wie etwa dem Bachelier oder dem Black-Scholes-Modell (BK1, BK2, BK3)
Methoden­kompetenz:
• Grundprinzipien des dynamischen Risiko­management (BF2, BF3, BO1, BO3)
• Beherrschung der Terminologie der Finanzmathematik wie z.B. den „Greeks“ (BF4, BF5, BO1)
• Erkennen, in welchen Situationen welche Bewertungs­methoden für Risiken sinnvoll sein können (BF2, BF3, BF4, BF5)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Literatur:
Einführung in die Wahrscheinlichkeits­theorie
Prüfungs­leistung:
Einführung in die Wahrscheinlichkeits­theorie
Lektor(en):
Beschreibung:
• Mathematische Grundlagen der zeitlich diskreten Finanzmathematik wie bedingte Erwartungen, Martingale und elementare Funktionalanalysis
• Modellierung von Finanzmärkten in diskreter Zeit
• Arbitragetheorie in diskreter Zeit; insb. Fundamentalsatz der arbitragefreien Bewertung (FTAP), sowie Bewertung und Absicherung von europäischen und Optionen in vollständigen und unvollständigen Markt­modellen
• Binomial­modell von Cox, Ross und Rubinstein
• Amerikanische Optionen und optimales Stoppen in diskreter Zeit
• Mathematische Grundlagen der Finanzmathematik in stetiger Zeit wie Stieltjes-Integration, pfadweiser Itô-Kalkül, elementare partielle Differentialgleichungen
• Modellierung von Finanzmärkten in stetiger Zeit
• Absicherung von Optionen im Bachelier-Modell
• Black-Scholes-Formel
• Variance-swaps, VIX, CPPI
Finanzmathematik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Grundbegriffe der Modellierung in der Finanzmathematik  (BK2, BK4)
• Grundlagen der Martingaltheorie und des Itô-Kalküls (BK1, BK4)
• Bewertung und Absicherung riskanter Positionen in allgemeinen zeitdiskreten Markt­modellen, im  Binomial­modell sowie in einfachen vollständigen Markt­modellen in stetiger Zeit wie etwa dem Bachelier oder dem Black-Scholes-Modell (BK1, BK2, BK3)
Methoden­kompetenz:
• Grundprinzipien des dynamischen Risiko­management (BF2, BF3, BO1, BO3)
• Beherrschung der Terminologie der Finanzmathematik wie z.B. den „Greeks“ (BF4, BF5, BO1)
• Erkennen, in welchen Situationen welche Bewertungs­methoden für Risiken sinnvoll sein können (BF2, BF3, BF4, BF5)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Literatur:
Einführung in die Wahrscheinlichkeits­theorie
Prüfungs­leistung:
Einführung in die Wahrscheinlichkeits­theorie
Lektor(en):
Beschreibung:
• Mathematische Grundlagen der zeitlich diskreten Finanzmathematik wie bedingte Erwartungen, Martingale und elementare Funktionalanalysis
• Modellierung von Finanzmärkten in diskreter Zeit
• Arbitragetheorie in diskreter Zeit; insb. Fundamentalsatz der arbitragefreien Bewertung (FTAP), sowie Bewertung und Absicherung von europäischen und Optionen in vollständigen und unvollständigen Markt­modellen
• Binomial­modell von Cox, Ross und Rubinstein
• Amerikanische Optionen und optimales Stoppen in diskreter Zeit
• Mathematische Grundlagen der Finanzmathematik in stetiger Zeit wie Stieltjes-Integration, pfadweiser Itô-Kalkül, elementare partielle Differentialgleichungen
• Modellierung von Finanzmärkten in stetiger Zeit
• Absicherung von Optionen im Bachelier-Modell
• Black-Scholes-Formel
• Variance-swaps, VIX, CPPI
Formale Grundlagen der Informatik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Die Studierenden beherrschen grundlegende für die Informatik rele-vanten Konzepte, Begriffsbildungen und wissenschaft­lichen Arbeits-techniken aus Mathematik und Logik. Sie kennen weiterhin eine erste Auswahl an wichtigen Datenstrukturen und  effizienten Algorithmen für grundlegende Probleme.
Methoden­kompetenz:
Die Studierenden besitzen die Fähigkeit, informal gegebene Sachver-halte formal zu modellieren und die entstehenden formalen Struktu-ren bzgl. grundlegender Eigenschaften zu klassifizieren. Sie können weiterhin  auf einem für Informatiker adäquaten Niveau gegebene Aussagen mathematisch  beweisen.
Personale Kompetenz:
Die Studierenden besitzen ein Grundverständnis der för die Informa-tik wichtigen formalen Strukturen, Modelle und Arbeits­techniken. Sie können auf höherem Niveau abstrakt denken und formal modellieren.
Empfohlene Voraussetzungen:
Literatur:
keine
Prüfungs­leistung:
keine
Lektor(en):
Matthias Krause
Beschreibung:
  • Grundlagen Aussagenlogik (Folgern, Beweisen)
  • Mengen, Relationen, Abbildungen
  • Grundlagen der Kombinatorik (Abzählen von endlichen Mengen, Abzählbarkeit)
  • Einführung Graphentheorie
  • Algebraische Strukturen (Halbgruppen, Gruppen, Homorphismen, Faktorstrukturen)
  • Grundlegende Berechnungs­modelle/Endliche Automaten
Funktionalanalysis (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Wegintegrale im Komplexen (BK1)
• Potenzreihenkalkül (BK1)
• Fundamentalsatz der Algebra (BK1)
• Cauchyscher Integralsatz und Integralformel (BF1, BK1)
• Residuensatz (BK1, BO3)
Methoden­kompetenz:
• Zusammenhang zwischen reeller und komplexer Differenzierbarkeit (BF1, BO2)
• Berechnen von Residuen (BO3)
• Berechnen von reellen Integralen mit dem Residuensatz (BF1, BO3)
• Verständnis von lokalen und globalen Eigenschaften holomorpher Funktionen (BF1, BO2)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Literatur:
Analysis I, Analysis II, Lineare Algebra I
Prüfungs­leistung:
Analysis I, Analysis II, Lineare Algebra I
Lektor(en):
Leif Döring
Beschreibung:
• Komplexe Differenzierbarkeit
• holomorphe und meromorphe Funktionen
• Analytische Fortseztung
• Singularitäten holomorpher Funktionen
• Residuenkalkül
• spezielle Funktionen
Künstliche Intelligenz (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Such­verfahren als universelle Problemlösungs­verfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unterschiedlichen Such­verfahren.
Methoden­kompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungs­problem. Implementierung unterschiedlicher Such­verfahren und Heuristiken.
Empfohlene Voraussetzungen:
Literatur:
Formale Grundlagen der Informatik (insbes. Komplexität, Graphen und Logik) Algorithmen und Datenstrukturen
Programmieren in JAVA
Prüfungs­leistung:
Formale Grundlagen der Informatik (insbes. Komplexität, Graphen und Logik) Algorithmen und Datenstrukturen
Programmieren in JAVA
Lektor(en):
Beschreibung:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computer­spiele
  • Constraint­probleme und deren Lösung
  • Logische Constraints
MAA 403 Dynamische Systeme (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Grundbegriffe gewöhnlicher und partieller Differenzialgleichungen (BF1, BK1)
• Trennung der Variablen, exakte Differenzialgleichungen (BK1, BO3)
• maximale Lösungen (BK1)
• lineare Flüsse (BK1)
• Prinzip der linearisierten Stabilität (BK1, BF1)
Methoden­kompetenz:
• Erkennen verschiedener Differenzialgleichungen (BF2)
• Berechnen von Lösungen von Differenzialgleichungen (BF2, BO3)
• Erstellung von Phasendiagrammen (BF2)
• Diskussion der Stabilität von Gleichgewichten (BF2, BO3)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Literatur:
Analysis I, Analysis II, Grund­kenntnisse Lineare Algebra I
Prüfungs­leistung:
Analysis I, Analysis II, Grund­kenntnisse Lineare Algebra I
Lektor(en):
Beschreibung:
• gewöhnliche Differenzialgleichungen
• Existenz und Eindeutigkeit
• hyperbolische Flüsse
• Stabilitätsanalyse
MAA 510 Introduction of partial differential equations (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Li Chen , Georgios Psaradakis
MAB 403 Computer­algebra (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Kenntnis der jeweiligen Vor- und Nachteile von numerischem gegenüber symbolischem Rechnen (BF1, BF3, BO3)
• Einsatz­möglichkeiten modularer und p-adischer Methoden (BK1, BK3, BO3)
• Grundlegende Sätze über Polynomringe und ihre Ideale (BF1, BK1)
• Anwendung von Gröbnerbasen auf  die Reduktion nach einem Ideal (BF1, BK1)
Methoden­kompetenz:
• Grund­kenntnisse im Umgang mit einem Computer­algebrasystem  (BK3)
• Effiziente Anwendung des (erweiterten) Euklidischen Algorithmus auf algebraische Probleme (BK1, BK3, BO3)
• Faktorisierung von Polynomen (BK1, BK3, BO3)
• Lösungs­verfahren für nichtlineare Gleichungs­systeme (BK1, BK3, BO3)
• Berechnung von Gröbnerbasen nach Buchberger (BK1, BK3, BO3)
Personale Kompetenz:
• Fähigkeit zur Lösung mathematischer Probleme durch symbolisches Rechnen (BK3, BO3)
• Verständnis der Mathematik hinter den wichtigsten Algorithmen der Computer­algebra (BF1, BO3)
Empfohlene Voraussetzungen:
Literatur:
Lineare Algebra I und IIa
Prüfungs­leistung:
Lineare Algebra I und IIa
Lektor(en):
Wolfgang Seiler
Beschreibung:
• Exaktes, numerisches und symbolisches Rechnen
• Euklidischer Algorithmus für Zahlen und Polynome
• Resultanten und ihre Berechnung
• Modulare Berechnung des größten gemeinsamen Teilers zweier Polynome, Schranken für Teiler
• Faktorialität von Polynomringen
• Quadratfreie Zerlegung über Körpern beliebiger Charakteristik
• Faktorisierung von Polynomen einer oder mehrerer Veränderlicher nach Zassenhaus, Henselsches Lemma, LLL-Algorithmus
• Lösung nichtlinearer Gleichungs­systeme mit Resultanten und mit Gröbnerbasen
MAC 404 Optimierung (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Verständnis der wesentlichen Konzepte und Lösungs­verfahren der Linearen Optimierung  (BF1, BK1)
• Computer­unterstütze Umsetzung anwendungs­bezogener Fragestellungen  (BK2, BK3, BO1)
• Querverbindungen zu anderen mathematischen Gebieten identifizierten Klassifikation und Interpretation numerischer Probleme (BK1, BO2)
Methoden­kompetenz:
• Mathematische Modellierung eines Problems (BF3, BO3)
• Konkrete Problemlösungs­strategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1, BF4, BF5)
Empfohlene Voraussetzungen:
Literatur:
Analysis I, Analysis II, Lineare Algebra I
Prüfungs­leistung:
Analysis I, Analysis II, Lineare Algebra I
Lektor(en):
Claudia Schillings
Beschreibung:
• Lineare Programmierung: Simplex Verfahren, Dualität, innere Punkte Verfahren
• Graphentheorie: minimal spannende Bäume, kürzeste Wege, maximale Flüsse
• Ganzzahlige Programmierung: Branch and Bound Verfahren, Schnittebenen­verfahren, Heuristiken
MAT 301 Analysis I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
10.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Grundbegriffe der reellen Analysis (BF1, BK1)
• Konvergenz von Folgen und Reihen (BK1)
• Stetigkeit von Funktionen in einer Variablen (BK1)
• Differenzierbarkeit von Funktionen in einer Variablen  (BK1)
• Riemanintegral von Funktionen in einer Variablen (BK1)
Methoden­kompetenz:
• mathematische Beweisführung (BF1, BO2)
• Hantieren mit Gleichungen und Ungleichungen (BF1, BO2)
• Berechnen von Grenzwerten (BF1,BO3)
• Kurvendiskussion (BF2, BO3)
• Berechnen von unbestimmten und bestimmten Integralen (BO2,BO3)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Literatur:
Keine
Prüfungs­leistung:
Keine
Lektor(en):
Li Chen
Beschreibung:
• Mengen und Abbildungen
• reelle Zahlen
• Zahlenfolgen und Reihen
• Funktionen in einer reellen Variablen
MAT 303 Lineare Algebra I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
9.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Kenntnis der wesentlichen Ideen und Methoden der Linearen Algebra, Kenntnis der wesentlichen mathematischen Beweismethoden (BK1).
Methoden­kompetenz:
• Grundstrukturen der Linearen Algebra als Grundstrukturen der Mathematik würdigen und sicher mit ihnen umgehen (BK1).
• Lineare Gleichungs­systeme in Anwendungen erkennen und professionell lösen (BF2).
Personale Kompetenz:
• Strukturiertes Denken (BO2).
• Teamarbeit (BF4).
• Kommunikations­fähigkeit (BO1).
Empfohlene Voraussetzungen:
Literatur:
Keine
Prüfungs­leistung:
Keine
Lektor(en):
Siegfried Böcherer
Beschreibung:
• Gruppen, Ringe, Körper, Vektorräume, Lineare Abbildungen, Matrizen, Lineare Gleichungs­systeme, Determinanten,  Eigenwerte und Diagonalisierung,  Euklidische Vektorräume.
MAT 305 Einführung in die Wahrscheinlichkeits­theorie (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
9.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Grundbegriffe der Wahrscheinlichkeits­theorie, grundlegende konkrete Modelle und Verteilungen (BF1, BK1)
• Einfache Formen des Gesetz der großen Zahlen und des zentralen Grenzwertsatzes einschließlich der zugehörigen Konvergenzbegriffe (BK1)
• Wahrscheinlichkeiten und Erwartungs­werte unter Zusatz­information: bedingte Erwartung  (BK1)
• Grundzüge der Theorie der stochastischen Prozesse (BK1)
Methoden­kompetenz:
• einfaches Modellieren mit Verteilungen und Zufallsvariablen, Rechnen mit verschiedenen Verteilungen (BF3, BO3)
• stochastisches Denken (BF1)
• Erkennen, in welchen Situationen Gesetze der großen Zahlen und zentraler Grenzwertsatz Anwendung finden und welche Konsequenzen sie haben (BF2, BF3)
• Erkennen, welche Typen von stochastischen Prozessen eine Situation angemessen beschreiben können, einfache Modellierungen mit Markovketten (BF2, BF3)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Literatur:
Analysis I, II, Lineare Algebra I, II
Prüfungs­leistung:
Analysis I, II, Lineare Algebra I, II
Lektor(en):
Beschreibung:
• Grundbegriffe: Wahrscheinlichkeits­raum, Zufallsvariablen, Verteilungen, Verteilungs­funktionen, Laplaceexperimente, Kombinatorik
• Bedingte Wahrscheinlichkeit, Bayessche Formeln, Unabhängigkeit
• Erwartungs­wert, Momente, momenterzeugende Funktionen, charakteristische Funktionen, Kovarianz, Korrelation, Summen unabhängiger Zufallsvariablen
• Konvergenzbegriffe, Gesetze der großen Zahlen, zentraler Grenzwertsatz
• Bedingte Erwartung, Methode der kleinsten Fehlerquadrate
• Einführung in die stochastischen Prozesse, Markovketten
MAT 307 Einführung in die Mathematische Statistik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz: (BK1):
• Prinzipien der deskriptiven Statistik
• Grund­kenntnisse der multivariaten Statistik
• Prinzipien von Punktschätz­verfahren
• Prinzipien zur Schätzung von Varianz und Bias
• Prinzipien der Bereichs­schätzer und der Tests
Methoden­kompetenz (BF2):
• Erstellung deskriptiver Darstellungen
• Durchführung einfacher Verfahren der multivariaten Statistik
• Anwendung der Schätz­verfahren auf reale Datensätze
• mathematische und praktische Durchführung von Test­verfahren
Personale Kompetenz:
• Interpretation graphischer Darstellungen (BO1, BO4)
• Problembewusstsein für und qualifizierter Umgang mit unterschiedlichen Schätz­verfahren; Abwägung der Vor- und Nachteile  (BO2)
• Reflektierte Anwendung von Test­verfahren (BO3)
Empfohlene Voraussetzungen:
Literatur:
Analysis I, Analysis II, Lineare Algebra I, Lineare Algebra
Prüfungs­leistung:
Analysis I, Analysis II, Lineare Algebra I, Lineare Algebra
Lektor(en):
Martin Schlather
Beschreibung:
• Mathematische Grundlagen der Statistik
• Deskriptive Statistik; Darstellungs­formen
• Multivariate Statistik (Hauptkomponentenanalyse; Faktorenanalyse; Clusteranalyse; Diskriminanzanalyse)
• Zentraler Grenzwertsatz bei nicht identisch verteilten Zufallsvariablen (elementarer Beweis)
• Schätz­verfahren für den Erwartungs­wert (BLUE/BLUP, MLE, Bayes-Risiko, Momentenschätzer, robuste Verfahren; M-Schätzer)
• Schätz­verfahren für Varianz und Bias (Jackknife; Bootstrap)
• Bereichs­schätzer und Tests (Neyman-Pearson;  spezielle Tests)
Praktische Informatik I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
6
Lernziel:
Fach­kompetenz:
Die Studierenden können selbständig Algorithmen zu vorgegebenen Problemen entwerfen und in Java, das im parallel laufenden Pro-grammierkurs I unterrichtet wird, objekt­orientiert programmieren. Methoden­kompetenz:
Algorithmenentwurf, Bewertung von vorgegeben Algorithmen Personale Kompetenz:
Kreativität beim Entwurf von Algorithmen, Team­fähigkeit
Empfohlene Voraussetzungen:
Literatur:
keine
Prüfungs­leistung:
keine
Lektor(en):
Frederik Armknecht
Beschreibung:
Vom Problem zum Algorithmus, vom Algorithmus zum Programm
 
  • Entwurf von Algorithmen: schrittweise Verfeinerung, Modularität, Objekt­orientierung (Klassen­hierarchien, Vererbung), Rekursion
  • Die objekt­orientierte Programmiersprache Java
  • Einfache Datenstrukturen (verkettete Liste, Binärbaum, B-Baum)
  • Modellierung mit UML: Klassendiagramme, Aktivitätsdiagramme, Zustandsdiagramme
  • Einführung in die Theorie der Algorithmen: Berechenbarkeit, Komplexität (O-Kalkül), Testen und Verifikation von Algorithmen und Programmen
Programmier­praktikum I (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
  • Gründliche Kenntnis der Basiskonzepte der Programmiersprache Java
  • Verständnis des Konzepts der Objekt­orientierung
  • Kenntnisse der algorithmischen Prinzipien  Iteration und Rekursion
  • Basiswissen über das Arbeiten unter einem Linux-Betriebs­system

Methoden­kompetenz:

  • Fähigkeit, Algorithmen zu entwerfen
  • Fähigkeit, komplexe Algorithmen in Java ohne Einsatz importierter Methoden zu programmieren
  • Fähigkeit, rekursiv zu programmieren

Personale Kompetenz:

  • Eigen­verantwortliches Arbeiten
  • Team­fähigkeit
Empfohlene Voraussetzungen:
Literatur:
Benutzer­kenntnisse eines modernen Betriebs­systems
Prüfungs­leistung:
Benutzer­kenntnisse eines modernen Betriebs­systems
Lektor(en):
Ursula Rost
Beschreibung:
Im Programmier­praktikum I werden grundlegende Kenntnisse der objekt­orientierten Programmierung auf Basis der Sprache Java vermittelt.
Die Studierenden werden von dieser Sprache vor allem folgende Grundmerkmale und Konzepte kennenlernen:
 
  • Basiskonzepte der Programmierung: einfache Datentypen, Variablen, Operatoren, Anweisungen, Kontrollstrukturen
  • Zusammengesetzte Datentypen (Felder)
  • Das Konzept der objekt­orientierten Programmierung
  • Klassen (Attribute, Methoden, Konstruktoren)
  • Vererbung
  • Pakete, abstrakte Klassen und Interfaces
  • Java API und wichtige Hilfsklassen
  • Ausnahmebehandlung: Exceptions
  • Programmierung Grafischer Oberflächen mit Swing
 
Die Programmierausbildung erfolgt auf der Basis des Betriebs­systems Linux. Hierzu werden ebenfalls Grund­kenntnisse vermittelt, die es ermöglichen, einfache Java-Programme zu entwickeln. Im Laufe des Kurses wird darüber hinaus eine einfache Entwicklungs­umgebung eingeführt.
Seminar Optimierung (Seminar, deutsch)
Vorlesungs­typ:
Seminar
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
Lektor(en):
Claudia Schillings

Wirtschafts­mathematik (Master)

Advanced Software Engineering (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
After taking the course, students will be familiar with the latest state-of-the-art techniques for specifying the externally visible properties of a software system/component  – that is, for describing a software system/component as a “black box”, and for verifying them. Methodological competence:
Participants will know how to use the expertise acquired during the course to describe the requirements that a system/component has to satisfy and to define tests to check whether a system/component fulfils these requirements. Personal competence:
With the acquired skills and know-how, students will be able to play a key role in projects involving the development of systems, components and software applications.
Empfohlene Voraussetzungen:
Literatur:
None
Prüfungs­leistung:
None
Lektor(en):
Colin Atkinson
Beschreibung:
The course deals with the model-based specification of software systems and components as well as their verification, validation and quality assurance. The emphasis is on view-based specification methods that use multiple views, expressed in multiple languages, to describe orthogonal aspects of software systems/components. Key examples include structural views represented using class diagrams, operational views expressed using constraint languages and behavioural views expressed using state diagrams. An important focus of the course is the use of these views to define tests and extra-functional properties.
Applied Topology (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Daniel Roggenkamp
Large - Scale Data Management (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
http://dws.informatik.uni-mannheim.de/en/teaching/courses-for-master-candidates/cs-560-large-scale-data-management/
Lernziel:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Empfohlene Voraussetzungen:
Literatur:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Prüfungs­leistung:
Very good knowledge of database systems, good knowledge of algorithms and data structures as well as Java programming
Lektor(en):
Rainer Gemulla
Beschreibung:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
Data Mining (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Foundations of Statistics, Practical Informatics I
Prüfungs­leistung:
Foundations of Statistics, Practical Informatics I
Lektor(en):
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Decision Support (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Literatur:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Prüfungs­leistung:
Basic Probability Theory, Basic Knowledge of Propositional and First-Order Logic
Lektor(en):
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
IS 613 Applied Project in Design Thinking and Lean Software Development (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
It is mandatory that you register via Portal2 after your arrival. You can register anytime between August 28 - September 7, 2017. The time of your registration is not relevant as seats are not assigned on a first-come, first-served basis. Further information will be provided during orientation week.
Lernziel:
By the end of the module students will
•    know how to apply design principles for developing customer oriented applications,
•    understand the difficulties involved in team-based software development,
•    improve software engineering skills,
•    improve the ability to work in teams,
•    use state of the art software engineering methods and tools.
Empfohlene Voraussetzungen:
Literatur:
Formal: IS 615 (parallel attendance possible)
Recommended: This course is designed for master students of management or information systems. A basic understanding of how to program information systems is helpful.
Prüfungs­leistung:
Formal: IS 615 (parallel attendance possible)
Recommended: This course is designed for master students of management or information systems. A basic understanding of how to program information systems is helpful.
Lektor(en):
Nele Lüker
Beschreibung:
The goal of this term project is to collaboratively develop a concept, design or software to solve a real world problem in a student development team environment. We offer a project-based lecture with hands-on experience for lean principles and design thinking. Students will learn innovative product and process design for software development which then can be directly applied in exercise sessions. 
The used technology will depend on students’ skills and experience. Prototypes might be developed with technology for mobile devices or paper-based for non-developers.
IS 614 Corporate Knowledge Management (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
No registration required.
Lernziel:
Course participants will be able to:
•    explain the role and importance of knowledge for organizations
•    Understand and explain the processes of knowledge management (KM)
•    Describe and evaluate the possibilities to support the different knowledge processes through information technology
•    Understand and evaluate different design principles of KM systems
•    Evaluate and apply organizational and technological mechanisms that ensure the use of KM systems
Empfohlene Voraussetzungen:
Literatur:
Formal: -
Recommended: -
Prüfungs­leistung:
Formal: -
Recommended: -
Lektor(en):
Kai Spohrer
Beschreibung:
Companies have realized that the knowledge of their professionals is a decisive factor in competition. Firms are able to differentiate against their competitors through superior knowledge in the long term.
This lecture deals with the question of how the creation acquisition, transfer, storage, retrieval, and use of knowledge can be supported with the information technology and where the limits of such efforts are. It also addresses how to design information technology to support different knowledge processes.
IS 615 Design Thinking and Lean Development in Enterprise Software Development (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Registrierungs­informationen:
No registration required.
Lernziel:
After completing the class, students will be able to:
  • Understand the issues and challenges involved in enterprise software development
  • Understand and apply large-scale agile development based on lean principles
  • Understand and apply Design Thinking and related innovation practices
  • Understand and evaluate business models for software companies and products
  • Understand and apply how to bring all of this together in enterprise reality
  • Understand and evaluate state of the art software engineering methods
  • Understand and explain particular success strategies recommended by practitioners
  • Understand how to launch a start-up and scale a software company
Empfohlene Voraussetzungen:
Literatur:
Formal: -
Recommended: IS 550. Attendance of IS 613 in the same semester is recommended.
Prüfungs­leistung:
Formal: -
Recommended: IS 550. Attendance of IS 613 in the same semester is recommended.
Lektor(en):
Anna-Maria Seeger
Beschreibung:
Enterprise software development revolves around complex and interdependent software products for different companies, lines of business and industries. Hence, there is an inherent trade-off between standard software and domain-specific software solutions. Software companies thus have to keep track of various heterogeneous and possibly conflicting market requirements that are subject to changes and updates in ever shorter release cycles.
However, it is essential for every enterprise software company to be able to build the right solutions efficiently. To be able to do so in the long run, large software companies elaborated good practices to ensure both, efficient development processes and innovative products.
Among these, lean thinking and agile software development practices combined with Design Thinking and related practices are increasingly adopted and intertwined in the software industry. So, the goal of this module is to convey both, approaches from research and industry experience together with practical application based on concrete enterprise software challenges. The course includes both, lecture and workshop formats.

A combination with IS 613 as related term project is highly recommended.
Kryptographie II (Inverted Lecture) (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Fach­kompetenz:
Die Studierenden können Mithilfe aktueller Techniken und Theorien der modernen Kryptographie die Sicherheit von kryptographischen Verfahren einschätzen bzw. Sicherheitsaussagen entsprechend zu beurteilen. Weiterhin sind sie in der Lage, Sicherheitsziele zu erkennen und entsprechende Techniken einzusetzen, die in Kryptographie I nicht behandelt werden konnten.
Methoden­kompetenz:
Den Studierenden sind in der Lage, geeignete Methoden zu Sicherheitsanalyse von kryptographischen Verfahren auszuwählen und einzusetzen. Dazu gehören bspw. die Wahl der passenden Sicherheits­modelle, das Beweisen der Sicherheit aufgrund klar präzisierter Annahmen und die Analyse gegebener Verfahren. Insbesondere besitzen die Studierenden die Fähigkeit, die Sicherheitsargumente für existierende Verfahren zu verstehen und einzuschätzen und auf neue zu übertragen. Weiterhin können sie Techniken und Protokolle einsetzen, um Sicherheitsziele zu erreichen, die mit den in Kryptographie I besprochenen Verfahren noch nicht möglich waren.
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendungen, z.B. im Rahmen der Übungs­aufgaben, wird ihr Abstraktions­vermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Empfohlene Voraussetzungen:
Literatur:
Es gibt keine formalen Voraussetzungen, aber folgende inhaltliche Vor­kenntnisse werden empfohlen:
Grund­kenntnisse in der Kryptographie, wie sie bspw. in der Vorlesung “Kryptographie I” erworben werden können.
CS 550 Algorithmik
Prüfungs­leistung:
Es gibt keine formalen Voraussetzungen, aber folgende inhaltliche Vor­kenntnisse werden empfohlen:
Grund­kenntnisse in der Kryptographie, wie sie bspw. in der Vorlesung “Kryptographie I” erworben werden können.
CS 550 Algorithmik
Lektor(en):
Frederik Armknecht
Beschreibung:
In der Vorlesung erfolgt eine kurze Zusammenstellung der wichtigsten kryptographischen Grundalgorithmen und der für die Vorlesung relevanten mathematischen, algorithmischen und informations- und komplexitätstheoretischen Grundlagen. Diese werden einerseits vertieft und andererseits erweitert. Behandelte Themen sind beispielsweise
  • moderne Techniken der Kryptanalyse und daraus ableitbare Designkriterien für kryptographische Verfahren
  • kryptographische Protokolle
  • Sicherheitsbeweise
Lévy Prozesse I (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Leif Döring
Lévy Prozesse II (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Leif Döring
MAA 510 Introduction of partial differential equations (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Li Chen , Georgios Psaradakis
MAB 506 Game Theory (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
4
Lernziel:
Fach­kompetenz:
Fundierte Kenntnisse der Spieltheorie (MK1).
Bekanntschaft mit einigen Anwendungen in den Wirtschafts­wissenschaften (MK2).
Methoden­kompetenz:
Alle wissenschaft­lichen Arbeiten zur Spieltheorie lesen können (MF1, MO3).
Bei konkreten Situationen vor allem in den Wirtschafts­wissenschaften diese in Modellen der Spieltheorie fassen und analysieren können (MF2).
Personale Kompetenz:
Strategisches Denken mit Bedacht einsetzen können (MO4).
Empfohlene Voraussetzungen:
Literatur:
Lineare Algebra I und IIa, Analysis I und II
Prüfungs­leistung:
Lineare Algebra I und IIa, Analysis I und II
Lektor(en):
Claus Hertling
Beschreibung:
Grundlagen der Spieltheorie. Spiele in Normalform, Nash-Gleichgewichte, Nullsummenspiele, extensive Spiele (mit oder ohne Zufall und mit oder ohne perfekte Information), teilspielperfekte Gleichgewichte, kooperative Spiele, Shapley-Wert, in Form von Beispielen Anwendungen auf die Wirtschafts­wissenschaften.
MAB 403 Computer­algebra (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Kenntnis der jeweiligen Vor- und Nachteile von numerischem gegenüber symbolischem Rechnen (BF1, BF3, BO3)
• Einsatz­möglichkeiten modularer und p-adischer Methoden (BK1, BK3, BO3)
• Grundlegende Sätze über Polynomringe und ihre Ideale (BF1, BK1)
• Anwendung von Gröbnerbasen auf  die Reduktion nach einem Ideal (BF1, BK1)
Methoden­kompetenz:
• Grund­kenntnisse im Umgang mit einem Computer­algebrasystem  (BK3)
• Effiziente Anwendung des (erweiterten) Euklidischen Algorithmus auf algebraische Probleme (BK1, BK3, BO3)
• Faktorisierung von Polynomen (BK1, BK3, BO3)
• Lösungs­verfahren für nichtlineare Gleichungs­systeme (BK1, BK3, BO3)
• Berechnung von Gröbnerbasen nach Buchberger (BK1, BK3, BO3)
Personale Kompetenz:
• Fähigkeit zur Lösung mathematischer Probleme durch symbolisches Rechnen (BK3, BO3)
• Verständnis der Mathematik hinter den wichtigsten Algorithmen der Computer­algebra (BF1, BO3)
Empfohlene Voraussetzungen:
Literatur:
Lineare Algebra I und IIa
Prüfungs­leistung:
Lineare Algebra I und IIa
Lektor(en):
Wolfgang Seiler
Beschreibung:
• Exaktes, numerisches und symbolisches Rechnen
• Euklidischer Algorithmus für Zahlen und Polynome
• Resultanten und ihre Berechnung
• Modulare Berechnung des größten gemeinsamen Teilers zweier Polynome, Schranken für Teiler
• Faktorialität von Polynomringen
• Quadratfreie Zerlegung über Körpern beliebiger Charakteristik
• Faktorisierung von Polynomen einer oder mehrerer Veränderlicher nach Zassenhaus, Henselsches Lemma, LLL-Algorithmus
• Lösung nichtlinearer Gleichungs­systeme mit Resultanten und mit Gröbnerbasen
MAC 506 Zeitreihenanalyse und Räumliche Statistik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
Lektor(en):
Martin Schlather
MAC 509 Numerik gewöhnlicher Differentialgleichungen (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
Lektor(en):
MAC 510 Numerik partieller Differentialgleichungen (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lektor(en):
Markov Processes (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Leif Döring
MAS 511 Kinetic Models (Seminar, englisch)
Vorlesungs­typ:
Seminar
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Methods for Systems of Hyperbolic Conservation Laws (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Simone Göttlich
Model Driven Development (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will be familiar with the accepted best practices and technologies used in mainstream model-driven development as well as state-of-the-art modeling technologies emerging from research institutions.
Methodological competence:
Students will know how to apply modeling technologies in real-world projects.
Personal competence:
Students will have the capability to analyse, understand and model complex systems.
Empfohlene Voraussetzungen:
Literatur:
Advanced Software Engineering
Prüfungs­leistung:
Advanced Software Engineering
Lektor(en):
Colin Atkinson
Beschreibung:
The course focuses on the principles, practices and tools involved in advanced model-driven development. This includes established modelling standard languages (e. g. UML, ATL, OCL . . . ) and modelling infrastructures (e. g. MOF, EMF, etc. ) as well as leading edge, state-of-the-art modelling technologies (e. g. LML, PLM . . . ). Key topics addressed include –
  • Multi-level modeling
  • Meta-modeling
  • Ontology engineering versus model engineering
  • Model transformations
  • Domain specific language definition and use
  • Model creation and evolution best practices
  • Model-driven software development
  • Model checking and ontology validation
Numerical methods for Hamilton-Jacobi equations (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Simone Göttlich
MAC 508 Computational SDEs (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Fach­kompetenz: Die Studierenden haben die grundlegenden Fragestellungen  und wichtigsten Methoden der Numerik stochastischer Differentialgleichungen erlernt, insbesondere die    Unterschiede zwischen den verschiedenen Approximations­begriffen, das Euler- und Milstein­verfahren  sowie Multi-level Monte-Carlo-Verfahren (MK1,M02).
Methoden­kompetenz: Die Studierenden können nach Besuch des Moduls gegebene numerische Probleme für stochastische Differentialgleichungen klassifizieren und zur Bearbeitung geeignete Verfahren auswählen bzw. konstruieren (MF1,MF2,MO3).
Personale Kompetenz: Teamarbeit
Empfohlene Voraussetzungen:
Literatur:
Numerik, Wahrscheinlichkeits­theorie I, Stochastische Simulation
Prüfungs­leistung:
Numerik, Wahrscheinlichkeits­theorie I, Stochastische Simulation
Lektor(en):
Andreas Neuenkirch , Peter Parczewski
Beschreibung:
Theoretische Grundlagen: stochastische Prozesse; stochastische Integration und stochastische Differentialgleichungen.
Numerik: Simulation von Gaußprozessen; Fehlerbegriffe; Klassische Approximations­verfahren; Cameron-Clark Theorem; Quadratur von SDGLn; Anwendungen in Technik und Finanzmathematik
Anfrageoptimierung (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
  • Verständnis der Grundlegenden Funktions­weisen alternativer Plangeneratoren,
  • detaillierte Kenntnisse physischer Planalternativen,
  • detaillierte Kostenanalysen

Methoden­kompetenz:

  • Algorithmen und Komplexitäten der Plangenerierung,
  • Kostenrechnung anhand gegebener Statistiken

Personale Kompetenz:

  • Fundamentales Verständnis für die Probleme und Lösungen der traditionellen Anfragebearbeitung
Empfohlene Voraussetzungen:
Literatur:
Datenbanksysteme I und deren Voraussetzungen, Kombinatorik, Statistik
Prüfungs­leistung:
Datenbanksysteme I und deren Voraussetzungen, Kombinatorik, Statistik
Lektor(en):
Beschreibung:
Grundlagen der Anfrageoptimierung
Semantic Web Technologies (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
The participants of this course learn about principles and applications of Semantic Web standards. They become familiar with their technical foundations such as representation and query languages, or logical inference. After taking this course, the students will be aware of the problems and benefits of semantic technologies in the context of tasks such as knowledge management, information search and data integration, and they will be capable of judging the applicability of these technologies for addressing practical challenges.
Methodological competence:
The participants learn how to design and implement Semantic Web applications. They are able to use standardized modeling languages for building knowledge representations, and to query these models by means of languages such as SPARQL.
Personal competence:
By jointly building a semantic web application, the students learn how to effectively work in teams. They improve upon their presentation skills by showing the outcomes of their projects to the other participants of the course.
Empfohlene Voraussetzungen:
Literatur:
Java programming skills
Prüfungs­leistung:
Java programming skills
Lektor(en):
Beschreibung:
  • Vision and Principles of the Semantic Web
  • Representation Languages (XML, RDF, RDF Schema, OWL)
  • Knowledge Modeling: Ontologies and Linked Data
  • Logical Reasoning in RDF and OWL
  • Commercial and Open Source Tools and Systems
Seminar Mathematische Optimierung (Seminar, deutsch)
Vorlesungs­typ:
Seminar
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
Lektor(en):
Claudia Schillings
Some PDEs with competition effects and functional inequalities (Seminar, englisch)
Vorlesungs­typ:
Seminar
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lernziel:
Fach­kompetenz:
Vertrautheit mit ausgewählten Kapiteln der Theorie komplexer Funktionen in einer Veränderlichen (MK1)
Methoden­kompetenz:
Fähigkeit Konzepte der komplexen Analysis mit denen der Algebra zu verbinden (MO2)
Personale Kompetenz:
Vertieftes Verständnis für Argumentationen in der komplexen Analysis (MO3)
Empfohlene Voraussetzungen:
Literatur:
Analysis I, II, Lineare Algebra I, Funktionen­theorie I
Prüfungs­leistung:
Analysis I, II, Lineare Algebra I, Funktionen­theorie I
Lektor(en):
Beschreibung:
Eine Auswahl aus folgenden Themen:
Riemannsche Flächen und ihre Uniformisierung
Fundamentalgruppe und universelle Überlagerung
Garbentheorie auf Riemannschen Flächen
Modulformen
Text Analytics (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire knowledge of state-of-the-art principles and methods of Natural Language Processing, with a specific focus on the application of statistical methods to human language technologies.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Natural Language Processing, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different practical and application-oriented scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Empfohlene Voraussetzungen:
Literatur:
Programming skills (Java or C++ preferred). Fundamental notions of linear algebra and probability theory.
Prüfungs­leistung:
Programming skills (Java or C++ preferred). Fundamental notions of linear algebra and probability theory.
Lektor(en):
Simone Paolo Ponzetto
Beschreibung:
In the digital age, techniques to automatically process textual content have become ubiquitous. Given the breakneck speed at which people produce and consume textual content online – e.g., on micro-blogging and other collaborative Web platforms like wikis, forums, etc. – there is an ever-increasing need for systems that automatically understand human language, answer natural language questions, translate text, and so on. This class will provide a complete introduction to state-of-the-art principles and methods of Natural Language Processing (NLP). The main focus will be on statistical techniques, and their application to a wide variety of problems. This is because statistics and NLP are nowadays highly intertwined, since many NLP problems can be formulated as problems of statistical inference, and statistical methods, in turn, represent de-facto the standard way  to solve many, if not the majority, of NLP problems. Covered topics will include:
 
  • Words
    • Language Modeling
    • Part-Of-Speech Tagging
  • Syntax
    • Statistical Parsing
  • Semantics and pragmatics
    • Computational Lexical Semantics
    • Computational Discourse
  • Applications
    • Topic Modeling
    • Information Extraction
    • Question Answering and Summarization
    • Statistical Alignment and Machine Translation
Coursework will include homework assignments and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course.
Web Data Integration (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Empfohlene Voraussetzungen:
Literatur:
Programming skills in Java
Prüfungs­leistung:
Programming skills in Java
Lektor(en):
Christian Bizer
Beschreibung:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
 
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
Web Data Integration (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Empfohlene Voraussetzungen:
Literatur:
Programming skills in Java
Prüfungs­leistung:
Programming skills in Java
Lektor(en):
Christian Bizer
Beschreibung:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
 
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion