Foto: Staatliche Schlösser und Gärten Baden-Württemberg

Wirtschafts­mathematik und Wirtschafts­informatik (alle)

Information on your course choice

Please note that you have to take the majority of classes at the School of Business Informatics and Mathematics. In most cases you do not need to register for courses, please just attend the first lecture. In case you want to take courses outside from our school you can choose from the university wide electives list.
Good to know: undergraduate students are allowed to take graduate’s level courses at the School of Business Informatics and Mathematics. Partially, there are no requirements for participation in a Master’s course.

Wirtschafts­informatik (Bachelor)

Analysis für Wirtschafts­informatiker (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
  • Vertrautheit im Umgang mit den grundlegenden Begriffen und Methoden der Analysis sowie der wesentlichen mathematischen Beweismethoden.

Methoden­kompetenz:

  • Fähigkeit Sachverhalte zu formalisieren, abstraktes Denken.

Personale Kompetenz:

  • Teamarbeit.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur (90 Minuten)
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 10:15 - 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 12:00 - 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
  • Mengen und Abbildungen
  • Die reellen Zahlen
  • Folgen, Reihen und Potenzreihen
  • Stetigkeit und Differenzierbarkeit von Funktionen in einer reellen Variablen
  • Riemann-Integral
  • Differenzierbarkeit von Funktionen in mehreren reellen Variablen
  • Optional: Mehrdimensionale Integralrechnung, algorithmische Fragestellungen
Data Mining (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), project report, oral project presentation
Lektor(en):
Termin(e):
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Data Security and Privacy (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 13:45 - 15:15
Praktikum Software Engineering (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
4
Lernziel:
Fach­kompetenz:
Kenntnisse der Schlüssel­technologien der modernen Softwaretechnik, sowie der gängigen Software Entwicklungs­prozesse. Dies umfasst insbesondere die Gebiete der System- und Anforderungs­analyse, An-wendungs­design und Systemarchitektur, Implementierung, Validie-rung und Verifikation, Testen, Softwarequalität, Wartung und Wei-ter­entwicklung von Softwaresystemen.
Methoden­kompetenz:
Die Fähigkeit große Softwaresysteme beschreiben, entwerfen und entwickeln zu können unter Berücksichtigung diverser Risiken, die in industriellen Großprojekten auftreten (bspw. Qualität, Kosten, unter-schiedliche Stakeholder, Termindruck, …).
Personale Kompetenz:
Fähigkeiten große Softwaresysteme im Team zu entwerfen, zu entwickeln / implementieren, zu testen und auszuliefern.
Fähigkeiten ein komplexes Themengebiet in schriftlicher und mündlicher Form klar und unmissverständlich wiederzugeben.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Ausarbeitung und entwickeltes System, Teammeetings (14 Meetings à max. 2 Stunden) und Kolloquia (3 Kolloquien à max. 30 Minuten), Praktische Prüfungen, Programmier­projekt(e)
Lektor(en):
Termin(e):
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 12:00 - 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
Die Veranstaltung befasst sich mit dem der Methoden und Techniken die für eine team-orientierte, ingenieurmäßige Entwicklung von nicht-trivialen Softwaresystemen erforderlich sind. Insbesondere sind dies:
  • Software-Entwicklungs­prozesse
  • System- und Anforderungs­analyse
  • Anwendungs­design und Systemarchitektur
  • Softwarequalität
  • Validierung, Verifikation und Testen
  • Wartung und Weiter­entwicklung
Praktische Informatik II (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Aufbau und Arbeits­weise moderner Digitalrechner, Aufgaben und Funktions­weise moderner Betriebs­systeme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeits­weise von Compilern.
Methoden­kompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Studien­beginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungs­betrieb
schriftliche Klausur (90 Minuten)

Studien­beginn vor HWS 2011:
schriftliche Klausur (90 Minuten)

Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 10:15 - 11:45 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 12:00 - 13:30 B 243 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungs­programmen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebs­systeme
3. Compilerbau
4. Java Virtual Machine
Programmier­praktikum II (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
  • Gründliche Kenntnis der Programmiersprache Java
  • Fortgeschrittene Programmier­kenntnisse in Themen­bereichen wie bspw. Assertions, Client-Server Kommunikation, Multi-Threading, sowie häufig verwendete Java-Bibliotheken und Frameworks.
  • Vertraut mit JUnit und den wichtigsten Konzepten des Software-Testens mit Java.

Methoden­kompetenz:

  • Fähigkeit die erlernten Fach­kompetenzen einzusetzen und somit qualitative anspruchsvolle Java-Anwendungen zu entwickeln und zu warten.

Personale Kompetenz:

  • Eigen­verantwortliches Arbeiten
  • Team­fähigkeit
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Programmiertestate, Programmier­projekte, Programming Competence Test (180 Minuten)
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 08:30 - 10:00 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Beschreibung:
Im Programmier­praktikum II werden die erworbenen Kenntnisse aus der Veranstaltung Programmier­praktikum I erweitert und vertieft. Basierend auf der Programmiersprache Java, werde hier die folgenden Themengebiete vermittelt:
 
  • Generische Datentypen,
  • Stream-Klassen (Java IO)
  • Client-Server Kommunikation
  • Multi-Threading
  • JDBC (Datenbanken)
  • Verarbeitung von XML-Dokumenten
  • Assertions (Design by Contract)
  • Testen
  • Weitere ausgewählte Themen
 
Darüber hinaus werden Werkzeuge für die Team-orientierte  Entwicklung größerer Programmpakete vorgestellt. Dazu gehört insbesondere die Entwicklungs­umgebung Eclipse.
Selected Topics in IT-Security (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
4
Lernziel:
This course aims to increase the security awareness of students and offers them a basic understanding with respect to a variety of interesting topics. After this course, students will be able to (1) learn about symmetric and asymmetric encryption schemes, (2) classify and describe vulnerabilities and protection mechanisms of popular network protocols, web protocols, and software systems (2) analyze / reason about basic protection mechanisms for modern OSs, software and hardware systems.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Oral exam (30 minutes)
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 15:30 - 17:00
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 17:15 - 18:45
Beschreibung:
Background and Learning Objectives
 
The large-scale deployment of Internet-based services and the open nature of the Internet come alongside with the increase of security threats against existing services. As the size of the global network grows, the incentives of attackers to abuse the operation of online applications also increase and their advantage in mounting successful attacks becomes considerable.
 
These cyber-attacks often target the resources, availability, and operation of online services. In the recent years, a considerable number of online services such as Amazon, CNN, eBay, and Yahoo were hit by online attacks; the losses in revenues of Amazon and Yahoo were almost 1.1 million US dollars. With an increasing number of services relying on online resources, security becomes an essential component of every system.
 
Content Description
 
This lecture covers the security of computer, software systems, and tamper resistant hardware. The course starts with a basic introduction on encryption functions, spanning both symmetric and asymmetric encryption techniques, discusses the security of the current encryption standard AES and explains the concept of Zero-Knowledge proofs. The course then continues with a careful examination of wired and wireless network security issues, and web security threats and mechanisms. This part also extends to analysis of buffer overflows. Finally, the course also covers a set of selected security topics such as trusted computing and electronic voting.
 
Topics:
 
  • Encryption Schemes (Private Key vs. Public Key, Block cipher security) and Cryptographic Protocols
  • Cryptanalysis,e.g., side channel attacks
  • Network Security
  • Wireless Security
  • Web Security (SQL, X-Site Scripting)
  • Buffer Overflows
  • Malware & Botnets
  • Trusted computing
  • Electronic Voting
  • OS Security
Softwaretechnik I (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Fach­kompetenz:
Kenntnisse der Schlüssel­technologien der modernen Softwaretechnik, sowie der gängigen Software Entwicklungs­prozesse. Dies umfasst insbesondere die Gebiete der System- und Anforderungs­analyse, Anwendungs­design und Systemarchitektur, Implementierung, Validierung und Verifikation, Testen, Softwarequalität, Wartung und Weiter­entwicklung von Softwaresystemen. Methoden­kompetenz:
Die Fähigkeit große Softwaresysteme beschreiben, entwerfen und entwickeln zu können unter Berücksichtigung diverser Risiken, die in industriellen Großprojekten auftreten (bspw. Qualität, Kosten, unterschiedliche Stakeholder, Termindruck, …). Personale Kompetenz:
Fähigkeiten große Softwaresysteme im Team zu entwerfen, zu entwi-ckeln / implementieren, zu testen und auszuliefern.
Fähigkeiten ein komplexes Themengebiet in schriftlicher und mündli-cher Form klar und unmissverständlich wiederzugeben.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Klausur (90 Minuten)
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 12:00 - 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
Die Veranstaltung befasst sich mit dem Kennenlernen, Verstehen und Anwenden der Methoden, Techniken und Werkzeuge, die für eine team-orientierte, ingenieurmäßige Entwicklung von nicht-trivialen Softwaresystemen erforderlich sind. Insbesondere sind dies:
  • Software-Entwicklungs­prozesse
  • System- und Anforderungs­analyse
  • Anwendungs­design und Systemarchitektur
  • Softwarequalität
  • Validierung, Verifikation und Testen
  • Wartung und Weiter­entwicklung
Theoretische Informatik (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
3
Lernziel:
Fach­kompetenz:
Die Studierenden beherrschen neue grundlegende Konzepte der Informatik, insbesondere im Themenkreis Berechenbarkeit, effiziente Berechenbarkeit, kryptographische Sicherheit. Sie kennen weiterhin grundlegende Techniken der  Komplexitätsanalyse und können diese auf gegebene Berechnungs­probleme anwenden.
Methoden­kompetenz:
Die Studierenden können gegebenen Probleme bezüglich der zu ihrer
Lösung in verschiedener formaler Berechnungs­modelle aufzubringenden Ressourcen klassifizieren. Sie besitzen ein grundlegendes formales Verständnis für die wichtigsten Komplexitätsmerkmale wie nicht berechenbar, nicht effizient berechenbar, effizient berechenbar, kryptographisch sicher.

Personale Kompetenz:
Die Studierenden können Berechnungs­probleme in Anwendungs­zusammenhängen  identifizieren, sie formal  spezifizieren und bezüglich der zu ihrer Lösung nötigen Ressourcen  klassifizieren. Sie besitzen die Fähigkeit, auf höherem Niveau zu abstrahieren, mit formalen Modellierungs­techniken zu arbeiten, und die Komplexität von Problemstellungen abzuschätzen.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten)
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 13:45 - 15:15
Mittwoch  (2-wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45
Beschreibung:
  • Grundlegende uniforme und nichtuniforme Berechnungs­modelle und Berechnungs­paradigmen
  • Universelle Turingmaschinen und Berechenbarkeit
  • Logik- insbesondere SAT-Algorithmen
  • NP-Vollständigkeits­theorie
  • Formale Sprachen, Grammatiken, Grundlagen des Compilerbaus
Wirtschafts­informatik II: Grundlagen der Modellierung (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
  • Kenntnisse aktueller Modellierungs­sprachen und Werkzeugen.
  • Verständnis für Grundprinzipien und Formalen Grundlagen der Modellierung von Anwendungs­domänen und Prozessen.

Methoden­kompetenz:
  • Beschreibung von Domänen und Prozesse einfacher und mittlerer Komplexität mit Hilfe gängiger Sprachen und Werkzeuge

Personale Kompetenz:
  • Verständnis komplexer Zusammenhänge, Arbeiten im Team, Kommunikation von Modellierungs­entscheidungen
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Studien­beginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungs­betrieb
Schriftliche Klausur (90 Minuten)

Studien­beginn vor HWS 2011:
Schriftliche Klausur (90 Minuten)

Lektor(en):
Termin(e):
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 12:00 - 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
Die Vorlesung behandelt die Rolle konzeptueller Modellierung in der Wirtschafts­informatik. Es werden Vorteile und Grenzen der Modlelierung im Unternehmenkontext aufgezeigt und Modellierungs­sprachen und Werkzeuge eingeführt. Inhalte der Veranstaltung umfassen unter anderem:
  • Modellierungs­prinzipien
  • Praxisnahe Sprachen (UML, BPMN)
  • Formale Grundlagen von Modellierungs­sprachen (Logik, Pertri-Netze)
  • Modellierungs­werkzeuge.
In der begleitenden Übung erstellen die Teilnehmer konzpetuelle Modelle realer Anwendungs­domänen mit Hilfe aktueller Modellierungs­sprachen und Werkzeuge.
Wirtschafts­informatik IV - IS 204 (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
The overall aim is to provide students with concepts of distributed systems from a theoretical and practical view. In the lecture students will learn the theoretical concepts. Some aspects of these topics will be elaborated in more detail in the exercise sessions. Here, concrete examples and implementations are presented and discussed.
Interactive tutorials complement the lectures and exercises and pro-vide means for the students to provide own solutions in essay and code to core problems of distributed information systems.
The students will get a profound base in distributed computing as well as networks with the associated problems and how to adress and solve these challenges.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schiftliche Klausur (90 Minuten)
Lektor(en):
Termin(e):
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Beschreibung:
This lecture covers basic principles of modern information systems. Such systems are characterized by their distributed nature. Thus we will discuss architectures of information systems as well as underlying concepts of computer communication and distributed systems.
 
The following topics will be covered in the lecture:
  • Introduction to Distributed Systems, and Computer­Networks
    • Distributed Systems: Characteristics and Requirements
    • Communication models
    • Layered communication networks
    • Reference Models (ISO/OSI, TCP/IP)
    • Communication Services: connection-oriented/less
    • Socket API
  • Middleware
    • Distributed Shared Memory
    • Message Passing
    • Pub/Sub
    • Mobile Agents
    • Multimedia
    • RPC, RMI
  • Application Protocols
    • SMTP
    • FTP
    • HTTP+HTML
    • IIOP
  • Presentation Layer
    • Classification
    • Requirements
    • Approaches
    • ASN.1
    • XDR
    • XML
  • Synchronization (conditional if covered in Praktische Informatik II)
    • Processes and concurrency
    • Race Conditions
    • Critical Regions
    • Semaphores/Monitors
    • Deadlocks
  • Time and Global States
    • Physical clocks (Cristian’s algorithm, Logical clocks, Lamport’s algorithm)
    • Vector Clocks
    • Global States
    • Snapshot Algorithm
  • Replication
    • Passive Replication
    • Active Replication
  • Peer to Peer Architectures
    • Application examples
    • Achitectures (centralized, distributed, hybrid)
    • Gnutella
    • Chord
  • Network Security Basics
    • Security Goals, Threats, Attacks
    • Security Mechanisms
    • Threats in Communication Networks
    • Security Goals & Requirements
    • Network Security Analysis
    • Safeguards

Wirtschafts­informatik (Master)

Algorithmik (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
3
Lernziel:
Fach­kompetenz:
Die Studierenden erlernen wichtige und anspruchsvolle Verfahren zur Lösung komplexer Probleme vorwiegend im Bereich der diskreten Optimierung und der Analyse der Verfahren.
Methoden­kompetenz:
Anhand praktischer Probleme aus dem Bereich des  Operation Research erlernen sie wie man diese Probleme  abstrahiert und  mittels der erlernten Verfahren einer Lösung zuführt.
Personale Kompetenz:
Ihr analytisches, konzentriertes und präzises Denken wird  geschult. Durch die eigenständige Behandlung von Anwendungen z. B. aus dem Bereich Operations Research im Rahmen der Übungs­aufgaben wird ihr Abstraktions­vermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert. Durch die Auseinandersetzung mit der Thematik von P versus NP und der beispielhaften Behandlung von praktisch relevanten NP-vollständigen Problemen werden sie  sensibilisiert  für die Thematik der effizienten Lösbarkeit.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Klausur, 90 Minuten
Lektor(en):
Termin(e):
Montag  (2-wöchentlich) 10.02.2020 - 25.05.2020 10:15 - 11:45
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 10:15 - 11:45
Beschreibung:
Aufbauend auf der Veranstaltung Algorithmen und Datenstrukturen werden fortgeschrittene Konzepte und Algorithmen unter Einbeziehung der Korrektheit und Kosten der Verfahren behandelt. Dabei stehen Fragestellungen, die einen Bezug zu wirtschafts­wissenschaft­lichen Anwendungen haben im Fokus. Besonderes Augenmerk liegt dabei auf der Abbildung von konkreten praktischen Problemen, auf den Konzepten und deren Lösung mittels der Algorithmen. Die Problematik der nicht effizient (P versus NP) berechenbaren Probleme wird diskutiert und Heuristiken für NP-vollständige Optimierungs­probleme behandelt. Behandelte Fragestellungen sind z. B.:
  • Netzwerke und Algorithmen auf Netzwerken, Max-flow, Min-cost,
  • Matching bipartit, non bipartit, gewichtete
  • Stabiles Heirats­problem
  • Zuweisungs­problem
  • Touren in Graphen: Handels­reisender, Chinesischer Briefträger
  • SAT-Algorithmen
Data Mining (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), project report, oral project presentation
Lektor(en):
Termin(e):
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Data Mining II (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire knowledge of advanced techniques and applications of data mining.
Methodological competence:
  • Successful participants will be able to address advanced issues in data mining projects, conduct complex projects and develop applications in the data mining field.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
written examination (90 minutes), written project report, oral project presentation
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 13:45 - 15:15
Beschreibung:
Data mining deals with the discovery of patterns in data, and with making predictions for the future, based on observations of the past. This course covers advanced issues in data mining which need to be addressed when applying data mining methods in real world projects, including:
  • Data Preprocessing
  • Regression and Forecasting
  • Dimensionality Reduction
  • Anomaly Detection
  • Time Series Analysis
  • Parameter Tuning
  • Ensemble Learning
  • Online Learning
Data Security and Privacy (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 13:45 - 15:15
Datenbanksysteme II (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
  • Grundlegende Kenntnisse in verteilte relationale Datenbanken
  • objekt­orientierte Datenbanken
  • objektrelationale Datenbanken
  • deduktive Datenbanken
  • XML-Datenbanken
  • OLAP/OLTP
  • Leistungs­bewertung

Methoden­kompetenz:

  • Verständnis der alternativen Datenrepräsentationen, deren Vor- und Nachteile
  • Ziel­orientierter Einsatz der verschiedenen Datenrepräsentationen

Personale Kompetenz:

  • Verständnis der Rolle alternativer Daten­modelle für fundamentale betriebliche Informations­systeme
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur, 90 Minuten
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 12:00 - 13:30
Beschreibung:
Über das relationale Modell hinausgehende Themen (objekt­orientierte, objektrelationale Datenbanken, SQL/XML).
Information Retrieval and Web Search (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire knowledge of fundamental techniques of Information Retrieval and Web Search, including standard retrieval models, evaluation of information retrieval systems, text classification and clustering, as well as web search topics such as crawling and link-based algorithms.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Information Retrieval and Web search, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different search scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), written project report, oral project presentation
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 13:45 - 15:15
Beschreibung:
Given the vastness and richness of the Web, users need high-performing, scalable and efficient methods to access its wealth of information and satisfy their information needs. As such, being able to search and effectively retrieve relevant pieces of information from large text collections is a crucial task for the majority (if practically not all) of Web applications. In this course we will explore a variety of basic and advanced techniques for text-based information retrieval and Web search. Covered topics will include:
 
  • Efficient text indexing;
  • Boolean and vector space retrieval models;
  • Evaluation of retrieval systems;
  • Probabilistic Information Retrieval;
  • Text classification and clustering;
  • Web search, crawling and link-based algorithms.
 
Coursework will include homework assignments, a term project and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course. In addition, students are expected to successfully complete a term project in teams of 2-4 people. The projects will focus on a variety of IR problems covered in class. Project deliverables include both software (i.e., code and documentation) and a short report explaining the work performed and its evaluation.
Query Optimization (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
  • Verständnis der Grundlegenden Funktions­weisen alternativer Plangeneratoren,
  • detaillierte Kenntnisse physischer Planalternativen,
  • detaillierte Kostenanalysen

Methoden­kompetenz:

  • Algorithmen und Komplexitäten der Plangenerierung,
  • Kostenrechnung anhand gegebener Statistiken

Personale Kompetenz:

  • Fundamentales Verständnis für die Probleme und Lösungen der traditionellen Anfragebearbeitung
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung (30 Minuten)
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 13:45 - 15:15
Beschreibung:
Grundlagen der Anfrageoptimierung
Web Mining (Vorlesung mit Übung, englisch)
Vorlesungs­typ:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Expertise:
Students will acquire knowledge of the techniques, opportunities and applications of Web mining. Methodological competence:
  • Successful participants will be able to identify opportunities for mining knowledge from Web content, select and apply appropriate techniques and interpret the results.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
written examination (90 minutes), written project report, oral project presentation
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 10:15 - 11:45
Beschreibung:
The textual content as well as the structured data which is accessible on the Web has an enormous potential for being mined to derive knowledge about nearly any aspect of human life. The course covers advanced data mining techniques for extracting knowledge from Web content as a basis for business decisions and applications. The course will cover the following topics:
  • Goals and Principles of Web Mining
  • Gathering and Preprocessing Web Data
  • Social Network Analysis
  • Opinion Mining and Sentiment Analysis
  • Web Usage Mining
  • Executing Large Scale Web Mining Tasks

Wirtschafts­mathematik (Bachelor)

Dynamische Systeme und Stabilität (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lektor(en):
Empirical Processes (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
MAA 403 Dynamische Systeme (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Grundbegriffe gewöhnlicher und partieller Differenzialgleichungen (BF1, BK1)
• Trennung der Variablen, exakte Differenzialgleichungen (BK1, BO3)
• maximale Lösungen (BK1)
• lineare Flüsse (BK1)
• Prinzip der linearisierten Stabilität (BK1, BF1)
Methoden­kompetenz:
• Erkennen verschiedener Differenzialgleichungen (BF2)
• Berechnen von Lösungen von Differenzialgleichungen (BF2, BO3)
• Erstellung von Phasendiagrammen (BF2)
• Diskussion der Stabilität von Gleichgewichten (BF2, BO3)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 12:00 - 13:30
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45
Beschreibung:
• gewöhnliche Differenzialgleichungen
• Existenz und Eindeutigkeit
• hyperbolische Flüsse
• Stabilitätsanalyse
MAB 406 Lineare Algebra II / B (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
5.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
• Vertiefung der Linearen Algebra I wie Sesquilinearformen und Spektralsätze kennen (BK1)
Methoden­kompetenz:
• Das Wechselspiel zwischen abstrakten Objekten (Endomorphismen, Bilinearformen) und repräsentierenden konkreten Daten (Matrizen) würdigen (BF1, BO2).
• Die Verbindung von Algebra und Geometrie würdigen (BF1, BO2).
Personale Kompetenz:
• Strukturiertes Denken (BO2).
• Teamarbeit (BF4).
• Kommunikations­fähigkeit (BO1, BO4).
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Termin(e):
Montag  (wöchentlich) 30.03.2020 - 25.05.2020 12:00 - 13:30 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Freitag  (wöchentlich) 03.04.2020 - 29.05.2020 12:00 - 13:30 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Beschreibung:
• Algebra und Geometrie der Sesquilinearformen und Bilinearformen
• Spektralsätze
MAB 513 Computer­algebra (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
4
Lernziel:
Fach­kompetenz:
• Kenntnis der jeweiligen Vor- und Nachteile von numerischem gegenüber symbolischem Rechnen (BF1, BF3, BO3)
• Einsatz­möglichkeiten modularer und p-adischer Methoden (BK1, BK3, BO3)
• Grundlegende Sätze über Polynomringe und ihre Ideale (BF1, BK1)
• Anwendung von Gröbnerbasen auf  die Reduktion nach einem Ideal (BF1, BK1)
Methoden­kompetenz:
• Grund­kenntnisse im Umgang mit einem Computer­algebrasystem  (BK3)
• Effiziente Anwendung des (erweiterten) Euklidischen Algorithmus auf algebraische Probleme (BK1, BK3, BO3)
• Faktorisierung von Polynomen (BK1, BK3, BO3)
• Lösungs­verfahren für nichtlineare Gleichungs­systeme (BK1, BK3, BO3)
• Berechnung von Gröbnerbasen nach Buchberger (BK1, BK3, BO3)
Personale Kompetenz:
• Fähigkeit zur Lösung mathematischer Probleme durch symbolisches Rechnen (BK3, BO3)
• Verständnis der Mathematik hinter den wichtigsten Algorithmen der Computer­algebra (BF1, BO3)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 13:45 - 15:15
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 13:45 - 15:15
Beschreibung:
• Exaktes, numerisches und symbolisches Rechnen
• Euklidischer Algorithmus für Zahlen und Polynome
• Resultanten und ihre Berechnung
• Modulare Berechnung des größten gemeinsamen Teilers zweier Polynome, Schranken für Teiler
• Faktorialität von Polynomringen
• Quadratfreie Zerlegung über Körpern beliebiger Charakteristik
• Faktorisierung von Polynomen einer oder mehrerer Veränderlicher nach Zassenhaus, Henselsches Lemma, LLL-Algorithmus
• Lösung nichtlinearer Gleichungs­systeme mit Resultanten und mit Gröbnerbasen
MAC 405 Monte Carlo Methods (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lernziel:
Fach­kompetenz:
Mathematischer Hintergrund und Algorithmen zur Erzeugung von Pseudozufallszahlen (BK1, BK3, BO3)
Grundverständnis für die Erzeugung von Algorithmen für die Simulation von „discrete event systems“ (BK3, BO2)
„Goodness-of-fit“ Tests (BK1)
Mathematischer Hintergrund und Algorithmen zur numerischen Behandlung von Markovketten in diskreter und stetiger Zeit (BK3, BO3)
Grundverständnis von Monte-Methoden und ihrer Verbesserungen durch Varianzreduktions­verfahren (BK1, BK3, BO3)
Grundverständnis der Markovketten-Monte-Carlo Methode (BK1, BK3, BO3)
Methoden­kompetenz:
Erkennen, welche Algorithmen zur Erzeugung von Pseudozufallszahlen verschiedener Verteilungen eingesetzt werden können, Umsetzung in konkrete Programme (BF2, BF3, BO3)
Fähigkeit einfache stochastische Modelle zu simulieren und die Ergebnisse zu validieren (BF2, BF3, BO3)
Grund­kenntnisse in der Programmierung mit Scilab (BF3)
Personale Kompetenz:
Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 13:45 - 15:15
Beschreibung:
Erzeugung von Pseudozufallszahlen: Inversions-, Kompositions- und Akzeptanz-Verwerfungs­methode, spezielle Methoden
Simulation diskreter Ereignissysteme
Monte-Carlo-Methode, Varianzreduktion
Statistische Validierung: Chi-Quadrat-Test, Kolmogorov-Smirnov-Test
Numerische Behandlung von Markovketten
Markovketten-Monte-Carlo
MAT 302 Analysis II (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
10.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
• Konvergenz in metrischen Räumen (BK1)
• Stetigkeit von Abbildungen zwischen metrischen Räumen (BK1)
• Differenzierbarkeit von Funktionen mehrerer Variablen  (BK1)
• Grundbegriffe der nichtlinearen Analysis (BF1, BK1)
• Integration von Funktionen mehrerer Variablen (BK1)
Methoden­kompetenz:
• mathematische Beweisführung (BF1, BO2)
• Hantieren mit Gleichungen und Ungleichungen (BF1, BO2)
• Berechnen von Grenzwerten (BF1,BO3)
• Berechnen von Ableitungen (BO2)
• Bestimmung von Minima unter Zwangs­bedingungen (BF2, BO3)
• Berechnen von Integralen (BO2)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Termin(e):
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 08:30 - 10:00 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 10:15 - 11:45 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Beschreibung:
• metrische Räume
• normierte Vektorräume
• Funktionen mehrerer Variabler
• Funktionale
MAT 304 Lineare Algebra II / A (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
4.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
2
Lernziel:
Fach­kompetenz:
• Vertiefungen der Linearen Algebra I wie Normalformen von Endomorphismen kennen (BK1)
Methoden­kompetenz:
• Das Wechselspiel zwischen abstrakten Objekten (Endomorphismen, Bilinearformen) und repräsentierenden konkreten Daten (Matrizen) würdigen (BF1, BO2).
Personale Kompetenz:
• Strukturiertes Denken (BO2).
• Teamarbeit (BF4).
• Kommunikations­fähigkeit (BO1).
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 23.03.2020 12:00 - 13:30 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Freitag  (wöchentlich) 14.02.2020 - 27.03.2020 12:00 - 13:30 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Beschreibung:
• Euklidische Vektorräume, Normalformen von Endomorphismen oder andere Ergänzungen zur Linearen Algebra I
Mathematisches Seminar Master (Seminar, )
Vorlesungs­typ:
Seminar
ECTS:
3.0
Kurs geeignet für:
Kurssprache:
SWS:
2
Lektor(en):
Termin(e):
Donnerstag  (Einzeltermin) 13.02.2020 15:30 - 17:00
Samstag  (Einzeltermin) 14.03.2020 08:30 - 19:00
Samstag  (Einzeltermin) 21.03.2020 08:30 - 19:00
Samstag  (Einzeltermin) 28.03.2020 08:30 - 19:00
MCMC / Bayes Statistics (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Stochastik 2 (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 12:00 - 13:30 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 08:30 - 10:00 A 001 Großer Hörsaal; B 6, 23-25 Bauteil A

Wirtschafts­mathematik (Master)

Applied Topology (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 12:00 - 13:30
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 12:00 - 13:30
Empirical Processes (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):
MAA 501 Funktionen­theorie II (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Vertrautheit mit ausgewählten Kapiteln der Theorie komplexer Funktionen in einer Veränderlichen (MK1)
Methoden­kompetenz:
Fähigkeit Konzepte der komplexen Analysis mit denen der Algebra zu verbinden (MO2)
Personale Kompetenz:
Vertieftes Verständnis für Argumentationen in der komplexen Analysis (MO3)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
mündliche Prüfung
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 17:15 - 18:45
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 17:15 - 18:45
Beschreibung:
Eine Auswahl aus folgenden Themen:
Riemannsche Flächen und ihre Uniformisierung
Fundamentalgruppe und universelle Überlagerung
Garbentheorie auf Riemannschen Flächen
Modulformen
MAB 503 Elliptische Kurven (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lernziel:
Fach­kompetenz:
Grundzüge der Theorie ebener algebraischer Kurven (MK1)
Elliptische Kurven als Gruppen (MK1)
Faktorisierung mit endlichen Gruppen, insbesondere mit elliptischen Kurven über endlichen Körpern (MK1, MO2)
Verschlüsselungs­verfahren, elektronischen Unterschriften und Schlüsselaustausch mittels diskreter Logarithmen im Fall elliptischer Kurven (MK1, MK2, MF1, MF2, MO2)
Sicherheitsüberlegungen (MK2, MF1, MF2, MO2, MO3)
Methoden­kompetenz:
Berechnung der Weierstraß'schen Normalform in beliebiger Charakteristik (MK1)
Rechnen in der Gruppe der rationalen Punkte einer elliptischen Kurve, insbesondere über endlichen Körpern (MK1)
Anwendung elliptischer Kurven auf Faktorisierungs­probleme (MK1, MO2)
Aufsetzen von Kryptosystemen auf der Basis elliptischer Kurven (MK2, MF1, MF2, MO2)
Wichtige Angriffs­möglichkeiten auf solche Systeme (MK2, MF1, MO3)
Personale Kompetenz:
Kenntnisse über elliptische Kurven, insbesondere über endlichen Körpern, fundiertes Verständnis für Möglichkeiten und Grenzen von deren Anwendungen in der Kryptologie (MK1, MK2, MF2, MO2, MO3)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 13:45 - 15:15
Freitag  (wöchentlich) 14.02.2020 - 29.05.2020 10:15 - 11:45
Beschreibung:
Ebene Kurven, Singularitäten und Schnittmultiplizitäten
Satz von Bezout
Gruppenstruktur elliptischer Kurven
Weierstraß'sche Normalformen
Wendepunktkonfiguration, n-Teilungs­punkte und Tate-Modul
Faktorisierung ganzer Zahlen mit elliptischen Kurven
Kryptographie mit elliptischen Kurven
Weil- und Tatepaarung mit Anwendungen auf die Kryptanalyse
MAB 513 Computer­algebra (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Kurssprache:
englisch
SWS:
4
Lernziel:
Fach­kompetenz:
• Kenntnis der jeweiligen Vor- und Nachteile von numerischem gegenüber symbolischem Rechnen (BF1, BF3, BO3)
• Einsatz­möglichkeiten modularer und p-adischer Methoden (BK1, BK3, BO3)
• Grundlegende Sätze über Polynomringe und ihre Ideale (BF1, BK1)
• Anwendung von Gröbnerbasen auf  die Reduktion nach einem Ideal (BF1, BK1)
Methoden­kompetenz:
• Grund­kenntnisse im Umgang mit einem Computer­algebrasystem  (BK3)
• Effiziente Anwendung des (erweiterten) Euklidischen Algorithmus auf algebraische Probleme (BK1, BK3, BO3)
• Faktorisierung von Polynomen (BK1, BK3, BO3)
• Lösungs­verfahren für nichtlineare Gleichungs­systeme (BK1, BK3, BO3)
• Berechnung von Gröbnerbasen nach Buchberger (BK1, BK3, BO3)
Personale Kompetenz:
• Fähigkeit zur Lösung mathematischer Probleme durch symbolisches Rechnen (BK3, BO3)
• Verständnis der Mathematik hinter den wichtigsten Algorithmen der Computer­algebra (BF1, BO3)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 13:45 - 15:15
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 13:45 - 15:15
Beschreibung:
• Exaktes, numerisches und symbolisches Rechnen
• Euklidischer Algorithmus für Zahlen und Polynome
• Resultanten und ihre Berechnung
• Modulare Berechnung des größten gemeinsamen Teilers zweier Polynome, Schranken für Teiler
• Faktorialität von Polynomringen
• Quadratfreie Zerlegung über Körpern beliebiger Charakteristik
• Faktorisierung von Polynomen einer oder mehrerer Veränderlicher nach Zassenhaus, Henselsches Lemma, LLL-Algorithmus
• Lösung nichtlinearer Gleichungs­systeme mit Resultanten und mit Gröbnerbasen
MAC 501 Advanced Mathematical Finance (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
SWS:
4
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 10:15 - 11:45
Donnerstag  (wöchentlich) 13.02.2020 - 28.05.2020 10:15 - 11:45
MAC 502 Computational Finance (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lektor(en):
Termin(e):
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45
MAC 507 Nonlinear Optimization (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 10:15 - 11:45
MAC 510 Numerik partieller Differentialgleichungen (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
SWS:
4
Lektor(en):
Termin(e):
Dienstag  (wöchentlich) 11.02.2020 - 26.05.2020 13:45 - 15:15
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 12:00 - 13:30
MAC 516 Wahrscheinlichkeits­theorie II - Stochastische Prozesse (Vorlesung, deutsch)
Vorlesungs­typ:
Vorlesung
ECTS:
Kurs geeignet für:
Kurssprache:
deutsch
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 10:15 - 11:45
Mittwoch  (wöchentlich) 12.02.2020 - 27.05.2020 10:15 - 11:45
MAS 510 Diffusion Equations (Seminar, englisch)
Vorlesungs­typ:
Seminar
ECTS:
Kurs geeignet für:
Kurssprache:
englisch
SWS:
2
Lektor(en):
Termin(e):
Montag  (wöchentlich) 10.02.2020 - 29.05.2020 10:15 - 11:45
Mathematisches Seminar Master (Seminar, )
Vorlesungs­typ:
Seminar
ECTS:
3.0
Kurs geeignet für:
Kurssprache:
SWS:
2
Lektor(en):
Termin(e):
Donnerstag  (Einzeltermin) 13.02.2020 15:30 - 17:00
Samstag  (Einzeltermin) 14.03.2020 08:30 - 19:00
Samstag  (Einzeltermin) 21.03.2020 08:30 - 19:00
Samstag  (Einzeltermin) 28.03.2020 08:30 - 19:00
MCMC / Bayes Statistics (Vorlesung, englisch)
Vorlesungs­typ:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Kurssprache:
englisch
Lektor(en):

Contact School of Business Informatics and Mathematics

Juliane Roth, M.A.

Juliane Roth, M.A.

Auslands­koordinatorin, Internationales Marketing, Gast­wissenschaft­ler­programm
Universität Mannheim
Fakultät für Wirtschafts­informatik und Wirtschafts­mathematik
B 6, 26
Gebäudeteil B – Raum B 1.05
68159 Mannheim
Tel.: +49 621 181-2340
Fax: +49 621 181-2423
E-Mail: roth(at)wim.uni-mannheim.de
Sprechstunde:
Mi 10–11.30 Uhr oder nach Vereinbarung von Mo–Mi 9–15 Uhr