Introduction: Multi-Agent Systems consist of multiple autonomous entities with individual goals, acting on a shared environment in an intertwined manner. To steer their collective behavior whilst maintaining autonomy, it is necessary for a governing instance to reason about agent strategies and to predict their future actions, which might not just be a straight-forward extrapolation of the current observations but also exhibit a temporal evolution of goals and strategies.
Goal and Objective: The goal of this seminar is to find out how temporal logic—in particular Linear Temporal Logic, but also related or extended logics—can be applied to create an AI-based governance capable of approximating an agent’s (potentially dynamic) strategic behavior from observed actions and subsequently choosing suitable counter-actions leading to a given system goal.
The expected result is a research paper showing relevant existing approaches and their respective benefits and drawbacks, as well as own ideas on how this problem can be defined, formalized and solved.
Starting Papers:
Introduction: In one of InES’ current research projects, a fleet of drones and transport vehicles is used to deliver goods from warehouses to customers. The corresponding optimization problem can be solved with two distinct models: The drones can make their own decisions and cooperate in the overall task, or everything is planned and controlled by a central governing authority.
We want to examine the second approach and find out how to design and set up a central controller which is able to manage such a system, given some constraints and an overall delivery objective. This can include machine learning techniques, but also plain optimization algorithms or heuristics.
Goal and Objective: The goal of this seminar is to investigate approaches and algorithms which are well-suited to solve the above-mentioned real-world problem and its specific challenges, and to recommend an approach for implementation in the project.
The expected result is a research paper listing and comparing relevant existing approaches with their respective benefits and drawbacks in the given context.
Starting Papers:
Introduction: In one of InES’ current research projects, an autonomous fleet of drones is used to deliver goods from warehouses to customers. The drones can make use of transport vehicles to be carried the better part of the way, which saves energy and is much faster than flying the entire distance. The drones need to make intelligent decisions and act autonomously, such that the system does not depend on a central controlling instance. As a consequence, the entire system is modeled as a Governed Multi-Agent System, and the drone behavior is an essential part of its functionality.
Goal and Objective: The goal of this seminar is to find out which ML techniques are suitable for enabling the drones to act effectively and efficiently in the scenario defined above. You will be given precise information about the (self-interested) goals of the drone as well as the constraints imposed by the use case and the general environment. Within these boundaries, your task will be to identify and compare ML approaches which can (and subsequently will) be implemented in the controlling unit of a real-world drone.
The expected result is a research paper listing and comparing relevant existing approaches with their respective benefits and drawbacks in the given context.
Starting Papers:
Introduction: Data-driven approaches for reducing manual effort and increasing automation have gained popularity for various application areas over the past years. Current research started to adopt these approaches for supporting different tasks in software engineering e.g. automatic method and commit message generation or semantic code retrieval approaches, among many others. Recently, researchers started to propose data-driven approaches to support users during GUI prototyping and therefore reduce required time, effort and skills to create well-designed GUI prototypes. The goal of this seminar work is to provide a clear overview and discussion of data-driven approaches that provide assistance to users for GUI prototyping in various ways.
Goal and Objective: Overview and discussion of different data-driven state-of-the-art approaches that provide assistance to users for GUI prototyping in various ways.
Starting Papers:
Introduction: Deep Learning is continuously showing its enormous success in a variety of complex tasks related to different fields, e.g., computer vision and natural language processing. However, the performance of Deep Learning still highly depends on the input data. This leads to limitations in certain application domains with low data availability or quality. Integrating prior knowledge into the specification and learning of a neural network offers potential to overcome these limitations.
Goal and Objective: In this seminar you will familiarize yourself with approaches to combine Deep Learning with prior knowledge based on scientific literature and your own exploration. You should provide an overview and classification of current approaches as well as describing their advantages and disadvantages.
Starting Papers:
Introduction: Over the past decade the task of recognizing human activities from observed (sensor-) data was extensively studied. Basically the approaches that solve this task can be divided into two groups: Knowledge-based approaches and data-driven approaches. As the names suggest, knowledge-based approaches rely on handcrafted domain knowledge to solve the task, whereas data-driven approaches try to learn to solve the task from historical training data. In addition, there is also a third group of approaches that try to combine knowledge-based and data-driven techniques to hybrid approaches.
Goal and Objective: The aim of this seminar is to provide an overview and comparison of existing hybrid approaches to activity recognition. Furthermore, the benefits and weaknesses of the different approaches should be critically discussed.
Starting Papers: