Here you find the publications of the research group AI-Systems Engineering. The current publications of the scientists associated with InES can be found in the respective homepages of the associated chairs:
Oesterle, M., Grams, T. and Bartelt, C. (2024). DRAMA at the PettingZoo: Dynamically restricted action spaces for multi-agent reinforcement learning frameworks.
In , Proceedings of the 57th Annual Hawaii International Conference on System Sciences, HICSS 2024, Hilton Hawaiian Village Waikiki Beach Resort, Hawaii, USA, January 3–6, 2024 (S. 7810-7819). ,
Department of IT-Management, Shidler College of Business, University of Hawaii: Honolulu, HI.
Tschalzev, A., Nitschke, P., Kirchdorfer, L., Lüdtke, S., Bartelt, C. and Stuckenschmidt, H. (2024). Enabling mixed effects neural networks for diverse, clustered data using Monte Carlo methods.
In , Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence: Jeju, 03–09 August 2024 (S. ). ,
International Joint Conferences on Artificial Intelligence: Jeju, South Korea.
Cohausz, L., Tschalzev, A., Bartelt, C. and Stuckenschmidt, H. (2023). Investigating the importance of demographic features for EDM-predictions.
In , Proceedings of the 16th International Conference on Educational Data Mining (S. 125–136). ,
International Educational Data Mining Society: Bengaluru, India.
Ernst, J. S., Marton, S., Brinkmann, J., Vellasques, E., Foucard, D., Kraemer, M. and Lambert, M. (2023). Bias mitigation for large language models using adversarial learning.
In , Proceedings of the 1st Workshop on Fairness and Bias in AI co-located with 26th European Conference on Artificial Intelligence (ECAI 2023),Kraków, Poland, October 1st, 2023 (S. 1–14). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Lüdtke, S., Bartelt, C. and Stuckenschmidt, H. (2023). Outlying aspect mining via sum-product networks.
In , Advances in knowledge discovery and data mining: 27th Pacific-Asia Conference on knowledge discovery and data mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023 : proceedings. Part I (S. 27–38). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Schreckenberger, C., He, Y., Lüdtke, S., Bartelt, C. and Stuckenschmidt, H. (2023). Online random feature forests for learning in varying feature spaces.
In , Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol. 4 (S. 4587-4595). ,
AAAI Press: Washington, DC.
Cohausz, L., Wilken, N. and Stuckenschmidt, H. (2022). Plan-similarity based heuristics for goal recognition.
In , 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) : PerCom Workshops 2022 (S. 316–321). ,
IEEE: Pisa.
Lüdtke, S., Bartelt, C. and Stuckenschmidt, H. (2022). Exchangeability-aware sum-product networks.
In , Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, 23–29 July 2022 (S. 4864-4870). ,
International Joint Conferences on Artificial Intelligence Organization: Wien.
Oesterle, M., Bartelt, C., Lüdtke, S. and Stuckenschmidt, H. (2022). Self-learning governance of black-box multi-agent systems.
In , Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XV : International Workshop, COINE 2022, virtual event, May 9, 2022, revised selected papers (S. 73–91). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2022). Dynamic forest for learning from data streams with varying feature spaces.
In , Cooperative information systems : 28th International Conference, CoopIS 2022, Bozen-Bolzano, Italy, October 4–7, 2022, Proceedings (S. 95–111). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Wilken, N., Cohausz, L., Schaum, J., Lüdtke, S., Bartelt, C. and Stuckenschmidt, H. (2022). Leveraging planning landmarks for hybrid online goal recognition.
In , International Conference on Automated Planning and Scheduling ICAPS (2022) : June 13–17, 2022, virtual (S. ). ,
CEUR Workshop Proceedings: Aachen.
Hoffmann, L., Bartelt, C. and Stuckenschmidt, H. (2021). Knowledge injection via ML-based initialization of neural networks.
In , Proceedings of the CIKM 2021 Workshops (CIKMW 2021) co-located with 30th ACM International Conference on Information and Knowledge Management (CIKM 2021) : Gold Coast, Queensland, Australia, November 1–5,2021 (S. 1–6). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Metzger, N., Hoffmann, L., Bartelt, C., Stuckenschmidt, H., Wommer, M. and Bescos del Castillo, M. B. (2021). Towards trace-graphs for data-driven test case mining in the domain of automated driving.
In , Third IEEE International Conference on Artificial Intelligence Testing: AITest 2021 : proceedings : 23–26 August 2021, online event (S. 41–48). ,
IEEE: Piscataway, NJ.
Pernpeintner, M. (2021). Toward a self-learning governance loop for competitive multi-attribute MAS.
In , AAMAS '21: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems : Richland, SC, Virtual Event United Kingdom, May, 2021 (S. 1619-1621). ,
International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC.
Pernpeintner, M., Bartelt, C. and Stuckenschmidt, H. (2021). Governing black-box agents in competitive multi-agent systems.
In , Multi-Agent Systems : 18th European Conference, EUMAS 2021, virtual event, June 28–29, 2021, revised selected papers (S. 19–36). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Wilken, N., Stuckenschmidt, H. and Bartelt, C. (2021). Combining symbolic and data-driven methods for goal recognition.
In , 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (S. 428–429). ,
IEEE Computer Society: Piscataway, NJ.
Burzlaff, F., Bongarth, B., Grottker, S., Hammen, J. and Bartelt, C. (2020). MergePoint: A graphical web-app for merging HTTP-endpoints and IoT-platform models.
In , 53rd Hawaii International Conference on System Sciences, HICSS 2020 : Maui, Hawaii, USA, January 7–10, 2020 (S. 1–10). Proceedings of the 53rd Hawaii International Conference on System Sciences,
ScolarSpace: Honolulu, HI.
Pernpeintner, M. (2020). Achieving emergent governance in competitive multi-agent systems.
In , AAMAS '20 : Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, Auckland, Nea Zealand, May 2020 (S. 2204-2206). ,
ACM Digital Library: New York, NY.
Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2020). Robust decision tree induction from unreliable data sources.
In , STAIRS 2020 : Proceedings of the 9th European Starting AI Researchers' Symposium 2020 co-located with 24th European Conference on Artificial Intelligence (ECAI 2020) Santiago Compostela, Spain, August, 2020 (S. Paper 6, 1–8). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Schreckenberger, C., Glockner, T., Stuckenschmidt, H. and Bartelt, C. (2020). Restructuring of Hoeffding trees for Trapezoidal Data Streams.
In , 20th IEEE International Conference on Data Mining Workshops : 17–20 November 2020, Virtual Conference : Proceedings (S. 416–423). ,
IEEE: Los Alamitos, CA [u.a.].
Burzlaff, F., Ackel, M. and Bartelt, C. (2019). A mapping language for IoT device descriptions.
In , 2019 IEEE 43rd Annual Computer Software and Applications Conference : 15–19 July 2019, Milwaukee, Wisconsin : proceedings (S. 115–120). ,
IEEE Computer Society: Piscataway, NJ.
Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2019). Enhancing a crowd-based delivery network with mobility predictions.
In , PredictGIS'19 : Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility : Chicago, IL, USA, November 05, 2019 (S. 66–75). Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility,
ACM: New York, NY.
Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2019). iDropout: Leveraging deep taylor decomposition for the robustness of deep neural networks.
In , On the Move to Meaningful Internet Systems: OTM 2019 Conferences : Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October 21–25, 2019, Proceedings (S. 113–126). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Schreckenberger, C., Beckmann, S. and Bartelt, C. (2019). Next place prediction: A systematic literature review.
In , PredictGIS 2018 : Proceedings of the 2nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility : ACM GIS 2018 Conference: November 6 – November 9, 2018, Seattle, Washington (S. 37–45). Proceedings of the 2Nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility,
ACM: New York, NY.
Burzlaff, F., Bartelt, C. and Jacobs, S. (2018). Executing model-based software development for embedded I4.0 devices properly.
In , MOD-WS 2018 : Joint Proceedings of the Workshops at Modellierung 2018 co-located with Modellierung 2018, Braunschweig, Germany, February 21, 2018 (S. 35–46). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Burzlaff, F., Bartelt, C. and Stuckenschmidt, H. (2018). Next steps in knowledge-driven architecture composition.
In , LWDA 2018 : Proceedings of the Conference “Lernen, Wissen, Daten, Analysen” Mannheim, Germany, August 22–24, 2018 (S. 78–83). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Achichi, M., Cheatham, M., Dragisic, Z., Euzenat, J., Faria, D., Ferrara, A., Flouris, G., Fundulaki, I., Harrow, I., Ivanova, V., Jiménez-Ruiz, E., Kolthoff, K., Kuss, E., Lambrix, P., Leopold, H., Li, H., Meilicke, C., Mohammadi, M., Montanelli, S., Pesquita, C., Saveta, T., Shvaiko, P., Splendiani, A., Stuckenschmidt, H., Thiéblin, E., Todorov, K., Trojahn, C. and Zamazal, O. (2017). Results of the Ontology Alignment Evaluation Initiative 2017.
In , OM 2017 : Proceedings of the 12th International Workshop on Ontology Matching co-located with the 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21, 2017 (S. 61–113). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Burzlaff, F. (2017). Knowledge-driven architecture composition.
In , 47. Jahrestagung der Gesellschaft für Informatik, Informatik 2017, Chemnitz, Germany, September 25–29, 2017 (S. 2365-2370). Lecture Notes in Informatics,
Gesellschaft für Informatik e.V.: Bonn.
Atkinson, C., Gerbig, R. and Metzger, N. (2015). On the execution of deep models.
In , EXE 2015 : Proceedings of the 1st International Workshop on Executable Modeling co-located with ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS 2015) Ottawa, Canada, September 27, 2015 (S. 28–33). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Kolthoff, K. and Dutta, A. (2015). Semantic relation composition in large scale knowledge bases.
In , Linked Data for Information Extraction : Proceedings of the Third International Workshop on Linked Data for Information Extraction (LD4IE2015) co-loc. with the 14th International Semantic Web Conference (ISWC 2015) ; Bethlehem, PA, USA, Oct. 12, 2015 (S. 34–47). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Umlauft, J., Johnson, C. W., Roux, P., Trugman, D. T., Lecointre, A., Walpersdorf, A., Nanni, U., Gimbert, F., Rouet-Leduc, B., Hulbert, C., Lüdtke, S., Marton, S. and Johnson, P. A. (2023). Mapping glacier basal sliding applying machine learning.
Journal of geophysical research : JGR. F, Earth surface, 128, 1–20.
Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2020). Tree-based learning for dynamic data streams.
PhD Forum, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2020, Online.
In order to improve performance and enhance the user experience for the visitors to our website, we use cookies and store anonymous usage data. For more information please read our privacy policy.