Hier finden Sie die Publikationen der Forschungsgruppe AI-Systems Engineering. Die Publikationen der am InES assoziierten Wissenschaftlerinnen und Wissenschaftler entnehmen Sie bitte den jeweiligen Webseiten der assoziierten Lehrstühle:
Oesterle, M., Grams, T. und Bartelt, C. (2024). DRAMA at the PettingZoo: Dynamically restricted action spaces for multi-agent reinforcement learning frameworks.
In , Proceedings of the 57th Annual Hawaii International Conference on System Sciences, HICSS 2024, Hilton Hawaiian Village Waikiki Beach Resort, Hawaii, USA, January 3–6, 2024 (S. 7810-7819). ,
Department of IT-Management, Shidler College of Business, University of Hawaii: Honolulu, HI.
Tschalzev, A., Nitschke, P., Kirchdorfer, L., Lüdtke, S., Bartelt, C. und Stuckenschmidt, H. (2024). Enabling mixed effects neural networks for diverse, clustered data using Monte Carlo methods.
In , Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence: Jeju, 03–09 August 2024 (S. ). ,
International Joint Conferences on Artificial Intelligence: Jeju, South Korea.
Cohausz, L., Tschalzev, A., Bartelt, C. und Stuckenschmidt, H. (2023). Investigating the importance of demographic features for EDM-predictions.
In , Proceedings of the 16th International Conference on Educational Data Mining (S. 125–136). ,
International Educational Data Mining Society: Bengaluru, India.
Ernst, J. S., Marton, S., Brinkmann, J., Vellasques, E., Foucard, D., Kraemer, M. und Lambert, M. (2023). Bias mitigation for large language models using adversarial learning.
In , Proceedings of the 1st Workshop on Fairness and Bias in AI co-located with 26th European Conference on Artificial Intelligence (ECAI 2023),Kraków, Poland, October 1st, 2023 (S. 1–14). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Lüdtke, S., Bartelt, C. und Stuckenschmidt, H. (2023). Outlying aspect mining via sum-product networks.
In , Advances in knowledge discovery and data mining: 27th Pacific-Asia Conference on knowledge discovery and data mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023 : proceedings. Part I (S. 27–38). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Schreckenberger, C., He, Y., Lüdtke, S., Bartelt, C. und Stuckenschmidt, H. (2023). Online random feature forests for learning in varying feature spaces.
In , Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol. 4 (S. 4587-4595). ,
AAAI Press: Washington, DC.
Cohausz, L., Wilken, N. und Stuckenschmidt, H. (2022). Plan-similarity based heuristics for goal recognition.
In , 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) : PerCom Workshops 2022 (S. 316–321). ,
IEEE: Pisa.
Lüdtke, S., Bartelt, C. und Stuckenschmidt, H. (2022). Exchangeability-aware sum-product networks.
In , Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, 23–29 July 2022 (S. 4864-4870). ,
International Joint Conferences on Artificial Intelligence Organization: Wien.
Oesterle, M., Bartelt, C., Lüdtke, S. und Stuckenschmidt, H. (2022). Self-learning governance of black-box multi-agent systems.
In , Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XV : International Workshop, COINE 2022, virtual event, May 9, 2022, revised selected papers (S. 73–91). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Schreckenberger, C., Bartelt, C. und Stuckenschmidt, H. (2022). Dynamic forest for learning from data streams with varying feature spaces.
In , Cooperative information systems : 28th International Conference, CoopIS 2022, Bozen-Bolzano, Italy, October 4–7, 2022, Proceedings (S. 95–111). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Wilken, N., Cohausz, L., Schaum, J., Lüdtke, S., Bartelt, C. und Stuckenschmidt, H. (2022). Leveraging planning landmarks for hybrid online goal recognition.
In , International Conference on Automated Planning and Scheduling ICAPS (2022) : June 13–17, 2022, virtual (S. ). ,
CEUR Workshop Proceedings: Aachen.
Hoffmann, L., Bartelt, C. und Stuckenschmidt, H. (2021). Knowledge injection via ML-based initialization of neural networks.
In , Proceedings of the CIKM 2021 Workshops (CIKMW 2021) co-located with 30th ACM International Conference on Information and Knowledge Management (CIKM 2021) : Gold Coast, Queensland, Australia, November 1–5,2021 (S. 1–6). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Metzger, N., Hoffmann, L., Bartelt, C., Stuckenschmidt, H., Wommer, M. und Bescos del Castillo, M. B. (2021). Towards trace-graphs for data-driven test case mining in the domain of automated driving.
In , Third IEEE International Conference on Artificial Intelligence Testing: AITest 2021 : proceedings : 23–26 August 2021, online event (S. 41–48). ,
IEEE: Piscataway, NJ.
Pernpeintner, M. (2021). Toward a self-learning governance loop for competitive multi-attribute MAS.
In , AAMAS '21: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems : Richland, SC, Virtual Event United Kingdom, May, 2021 (S. 1619-1621). ,
International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC.
Pernpeintner, M., Bartelt, C. und Stuckenschmidt, H. (2021). Governing black-box agents in competitive multi-agent systems.
In , Multi-Agent Systems : 18th European Conference, EUMAS 2021, virtual event, June 28–29, 2021, revised selected papers (S. 19–36). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Wilken, N., Stuckenschmidt, H. und Bartelt, C. (2021). Combining symbolic and data-driven methods for goal recognition.
In , 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (S. 428–429). ,
IEEE Computer Society: Piscataway, NJ.
Burzlaff, F., Bongarth, B., Grottker, S., Hammen, J. und Bartelt, C. (2020). MergePoint: A graphical web-app for merging HTTP-endpoints and IoT-platform models.
In , 53rd Hawaii International Conference on System Sciences, HICSS 2020 : Maui, Hawaii, USA, January 7–10, 2020 (S. 1–10). Proceedings of the 53rd Hawaii International Conference on System Sciences,
ScolarSpace: Honolulu, HI.
Pernpeintner, M. (2020). Achieving emergent governance in competitive multi-agent systems.
In , AAMAS '20 : Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, Auckland, Nea Zealand, May 2020 (S. 2204-2206). ,
ACM Digital Library: New York, NY.
Schreckenberger, C., Bartelt, C. und Stuckenschmidt, H. (2020). Robust decision tree induction from unreliable data sources.
In , STAIRS 2020 : Proceedings of the 9th European Starting AI Researchers' Symposium 2020 co-located with 24th European Conference on Artificial Intelligence (ECAI 2020) Santiago Compostela, Spain, August, 2020 (S. Paper 6, 1–8). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Schreckenberger, C., Glockner, T., Stuckenschmidt, H. und Bartelt, C. (2020). Restructuring of Hoeffding trees for Trapezoidal Data Streams.
In , 20th IEEE International Conference on Data Mining Workshops : 17–20 November 2020, Virtual Conference : Proceedings (S. 416–423). ,
IEEE: Los Alamitos, CA [u.a.].
Burzlaff, F., Ackel, M. und Bartelt, C. (2019). A mapping language for IoT device descriptions.
In , 2019 IEEE 43rd Annual Computer Software and Applications Conference : 15–19 July 2019, Milwaukee, Wisconsin : proceedings (S. 115–120). ,
IEEE Computer Society: Piscataway, NJ.
Schreckenberger, C., Bartelt, C. und Stuckenschmidt, H. (2019). Enhancing a crowd-based delivery network with mobility predictions.
In , PredictGIS'19 : Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility : Chicago, IL, USA, November 05, 2019 (S. 66–75). Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility,
ACM: New York, NY.
Schreckenberger, C., Bartelt, C. und Stuckenschmidt, H. (2019). iDropout: Leveraging deep taylor decomposition for the robustness of deep neural networks.
In , On the Move to Meaningful Internet Systems: OTM 2019 Conferences : Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October 21–25, 2019, Proceedings (S. 113–126). Lecture Notes in Computer Science,
Springer: Berlin [u.a.].
Schreckenberger, C., Beckmann, S. und Bartelt, C. (2019). Next place prediction: A systematic literature review.
In , PredictGIS 2018 : Proceedings of the 2nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility : ACM GIS 2018 Conference: November 6 – November 9, 2018, Seattle, Washington (S. 37–45). Proceedings of the 2Nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility,
ACM: New York, NY.
Burzlaff, F., Bartelt, C. und Jacobs, S. (2018). Executing model-based software development for embedded I4.0 devices properly.
In , MOD-WS 2018 : Joint Proceedings of the Workshops at Modellierung 2018 co-located with Modellierung 2018, Braunschweig, Germany, February 21, 2018 (S. 35–46). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Burzlaff, F., Bartelt, C. und Stuckenschmidt, H. (2018). Next steps in knowledge-driven architecture composition.
In , LWDA 2018 : Proceedings of the Conference „Lernen, Wissen, Daten, Analysen“ Mannheim, Germany, August 22–24, 2018 (S. 78–83). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Achichi, M., Cheatham, M., Dragisic, Z., Euzenat, J., Faria, D., Ferrara, A., Flouris, G., Fundulaki, I., Harrow, I., Ivanova, V., Jiménez-Ruiz, E., Kolthoff, K., Kuss, E., Lambrix, P., Leopold, H., Li, H., Meilicke, C., Mohammadi, M., Montanelli, S., Pesquita, C., Saveta, T., Shvaiko, P., Splendiani, A., Stuckenschmidt, H., Thiéblin, E., Todorov, K., Trojahn, C. und Zamazal, O. (2017). Results of the Ontology Alignment Evaluation Initiative 2017.
In , OM 2017 : Proceedings of the 12th International Workshop on Ontology Matching co-located with the 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21, 2017 (S. 61–113). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Burzlaff, F. (2017). Knowledge-driven architecture composition.
In , 47. Jahrestagung der Gesellschaft für Informatik, Informatik 2017, Chemnitz, Germany, September 25–29, 2017 (S. 2365-2370). Lecture Notes in Informatics,
Gesellschaft für Informatik e.V.: Bonn.
Atkinson, C., Gerbig, R. und Metzger, N. (2015). On the execution of deep models.
In , EXE 2015 : Proceedings of the 1st International Workshop on Executable Modeling co-located with ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS 2015) Ottawa, Canada, September 27, 2015 (S. 28–33). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Kolthoff, K. und Dutta, A. (2015). Semantic relation composition in large scale knowledge bases.
In , Linked Data for Information Extraction : Proceedings of the Third International Workshop on Linked Data for Information Extraction (LD4IE2015) co-loc. with the 14th International Semantic Web Conference (ISWC 2015) ; Bethlehem, PA, USA, Oct. 12, 2015 (S. 34–47). CEUR Workshop Proceedings,
RWTH Aachen: Aachen, Germany.
Umlauft, J., Johnson, C. W., Roux, P., Trugman, D. T., Lecointre, A., Walpersdorf, A., Nanni, U., Gimbert, F., Rouet-Leduc, B., Hulbert, C., Lüdtke, S., Marton, S. und Johnson, P. A. (2023). Mapping glacier basal sliding applying machine learning.
Journal of geophysical research : JGR. F, Earth surface, 128, 1–20.
Schreckenberger, C., Bartelt, C. und Stuckenschmidt, H. (2020). Tree-based learning for dynamic data streams.
PhD Forum, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2020, Online.
Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies und speichern anonyme Nutzungsdaten. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.