Dr. Stefan Radev

Dr. Stefan Radev

Dr. Stefan Radev

University of Heidelberg
Institute for Psychology
Hauptstrasse 47–51 – Room F040
69117 Heidelberg

SMiP Advisors:  Prof. Dr. Andreas Voss, Prof. Dr. Thorsten Meiser, Prof. Jeffrey Rouder, Ph.D.

Thesis:  Deep learning architectures for amortized Bayesian inference in cognitive modeling

Degree: Dr. phil. (summa cum laude), received from the University of Heidelberg in May 2021

First placement: Start-up funding from RTG SMiP, researcher at the University of Heidelberg

  • Research Areas

    • Machine Learning & Deep Learning
    • Bayesian Methods for Parameter Estimation and Model Comparison
    • Mathematische Modelle
    • Neurofeedback
  • Teaching (SMIP)

    • Workshop „Python Basics“ (together with Ulf Mertens)
  • Publications

    D’Alessandro, M., Radev, S. T., Voss, A., & Lombardi, L. (2020). A Bayesian brain model of adaptive behavior: an application to the Wisconsin Card Sorting Task. PeerJ, 8(e10316), 1–32 https://doi.org/10.7717/peerj.10316

    Konicar, L., Radev, S. T., Prillinger, K., Klöbl, M., Diehm, R., Birbaumer, N., ... & Poustka, L. (2021). Volitional modification of brain activity in adolescents with Autism Spectrum Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback. NeuroImage: Clinical, 29, 1-10. doi.org/10.1016/j.nicl.2021.102557

    Mertens, U. K., Voss, A., & Radev, S. (2018). ABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison. PLOS ONE, 13(3), e0193981. https://doi.org/10.1371/journal.pone.0193981

    Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Kothe, U. (in press). BayesFlow: learning complex stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems. Retrieved from: doi.org/10.1109/TNNLS.2020.3042395

    Radev, S. T., Mertens, U. K., Voss, A., & Köthe, U. (2019). Towards end‐to‐end likelihood‐free inference with convolutional neural networks. Br J Math Stat Psychol. doi:10.1111/bmsp.12159

    Radev S. T., Wieschen E. M., Voss A., & Bürkner P. C. (2020). Amortized Bayesian inference for models of cognition. In Stewart, T. C. (Ed.). Proceedings of the 18th International Conference on Cognitive Modelling (pp. 201-207). University Park, PA: Applied Cognitive Science Lab, Penn State. Retrieved from: iccm conference.neocities.org/2020/ICCM2020Proceedings.pdf

    von Krause, M., Radev, S.T., Voss, A., Quintus, M., Egloff, B., & Wrzus, C. (2021). Stability and change in diffusion model parameters over two years. Journal of Intelligence, 9(2), 26. doi.org/10.3390/jintelligence9020026

    Wieschen, E. M., Voss, A., & Radev, S. (2020). Jumping to Conclusion? A Lévy Flight Model of Decision Making. The Quantitative Methods for Psychology, 16(2), 120–132. https://doi.org/10.20982/tqmp.16.2.p120

  • Talks

    Radev, S. (2019). Pushing the boundaries: Tackling intractable response-time models with deep learning methods. Talk given at the 14th Conference of the Section Methods and Evaluation of the German Psychological Society (DGPs), Kiel, Germany.

  • Posters

    Radev, S.T. (2019, June). Taming the Intractable: Deep Learning for Universal Parameter Estimation. Poster at the 34th IOPS/SMiP Summer Conference, 13–14 June 2019, Utrecht, Netherlands.

    Radev, S.T. (2019). BayesFlow: Learning complex stochastic models with invertible neural networks. Poster presented at the 50th Meeting of the European Mathematical Psychology Group (EMPG), Heidelberg, Germany.

    Radev, S.T., Mertens, U., Voss, A. (2018). Abrox – a graphical user interface for approximate Bayesian computation. In: 60. Tagung experimentell arbeitender Psychologen. Marburg, Germany.

    Radev, S. T., Lerche, V., Mertens, U., & Voss, A. (July 2017). Diffusion model analysis: a graphical user interface with fast-dm. Poster presented at the „50th Annual Meeting of the Society for Mathematical Psychology (MathPsych)“ 2017 in Warwick.

    Radev, S. T., Lerche, V., Mertens, U., & Voss, A. (September 2017). Diffusion model analysis: a graphical user interface to fast-dm. Poster presented at the „13. Tagung der Fach­gruppe Methoden & Evaluation der Deutschen Gesellschaft für Psychologie (FGME)“ 2017 in Tübingen.