Paper accepted for PVLDB 2021

The paper „Dual-Objective Fine-Tuning of BERT for Entity Matching“ by Ralph Peeters and Christian Bizer has been accepted for publication by the Proceedings of the VLDB Endowment (PVLDB) 2021. The paper will be presented at the VLDB 2021 conference in Copenhagen, Denmark in August.

Abstract 

An increasing number of data providers have adopted shared numbering schemes such as GTIN, ISBN, DUNS, or ORCID numbers for identifying entities in the respective domain. This means for data integration that shared identifiers are often available for a subset of the entity descriptions to be integrated while such identifiers are not available for others. The challenge in these settings is to learn a matcher for entity descriptions without identifiers using the entity descriptions containing identifiers as training data. The task can be approached by learning a binary classifier which distinguishes pairs of entity descriptions for the same real-world entity from descriptions of different entities. The task can also be modeled as a multi-class classification problem by learning classifiers for identifying descriptions of individual entities. We present a dual-objective training method for BERT, called JointBERT, which combines binary matching and multi-class classification, forcing the model to predict the entity identifier for each entity description in a training pair in addition to the match/non-match decision. Our evaluation across five entity matching benchmark datasets shows that dualobjective training can increase the matching performance for seen products by 1% to 5% F1 compared to single-objective Transformer-based methods, given that enough training data is available for both objectives. In order to gain a deeper understanding of the strengths and weaknesses of the proposed method, we compare JointBERT to several other BERT-based matching methods as well as baseline systems along a set of specific matching challenges. This evaluation shows that JointBERT, given enough training data for both objectives, outperforms the other methods on tasks involving seen products, while it underperforms for unseen products. Using a combination of LIME explanations and domain-specific word classes, we analyze the matching decisions of the different deep learning models and conclude that BERT-based models are better at focusing on relevant word classes compared to RNN-based models.

Full-Text

Preprint version of the paper.

More information about the VLDB 2021 conference.

 

Back