Bachelor Seminar

The Chair of Artificial Intelligence typically offers a Bachelor Seminar in the lecture-free time between HWS and FFS. Participation requires the successful participation in the Elective Course “Künstliche Intelligenz” offered in the HWS term. Candidates will be selected based on the grade achieved in this course. Details of the Seminar will be sent to the participants of the course at the end of the HWS term.

Applications for Bachelor and Master Thesis

The Chair of Artificial Intelligence (Prof. Stuckenschmidt) offers the topics for master thesis that can be found here. Applications should be send to Dr. Ines Rehbein (rehbein@uni-mannheim.de). For bachelor thesis we do not offer such a list. Please directly contact the lecturer/researcher of the course/topic you are interested in.

Artificial Intelligence Group

(Prof. Stuckenschmidt)

Our group conducts fundamental and applied research in knowledge representation formalisms with a focus on reasoning techniques for information extraction and integration. Our work is centered around:

  • Explainable and Symbolic Machine Learning
  • Human Activity, Goal and Plan Recognition
  • Machine Learning in Process Management, Supply Chain Management and Smart Mobility
  • Social Data Science, i.e. Machine Learning in Psychology and Education Research

People

Projects

Projects

Software and Data

Courses FSS

Industrial Applications of Artificial Intelligence – Lecture (Lecture, english)
Course type:
Lecture
ECTS:
6
Course suitable for:
Language of instruction:
english
Credit hours 1:
2
Attendance:
On-campus and online, live & recorded
Learning target:
Expertise:

Students will acquire knowledge about possible applications of machine learning in different branches of industry as well as the dominant methods used in these areas:
  • Primary Sector: Agriculture, Energy Production
  • Secondary Sector: Production, Supply Chain Management
  • Tertiary Sector: Healthcare, Education, Finance

Methodological competence:

Successful participants will be able to: Identify potential for applying AI methods in different areas of industry; Decide on a suitable method for addressing typical problems in these industries

Personal competence:

Participants will learn to reflect and document their own learning process
Recommended requirement:
Literature:
Various Scientific Publications – details in the lecture slides
Examination achievement:
Submission of a Learning Portfolio
Instructor(s):
Prof. Dr. Heiner Stuckenschmidt
Description:
Participants will learn about the use of Artificial Intelligence methods, mostly from the field of machine learning in different sectors and industries. They will learn about application areas in the primary, secondary and tertiary sector, get an introduction to examples of such applications that have been published on a scientific level and gather some experience in working with data from the respective fields using publically available datasets.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik II: Grundlagen der Modellierung (Lecture, german)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
german
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Fachkompetenz:
  • Kenntnisse aktueller Modellierungssprachen und Werkzeugen.
  • Verständnis für Grundprinzipien und Formalen Grundlagen der Modellierung von Anwendungsdomänen und Prozessen.

Methodenkompetenz:
  • Beschreibung von Domänen und Prozesse einfacher und mittlerer Komplexität mit Hilfe gängiger Sprachen und Werkzeuge

Personale Kompetenz:
  • Verständnis komplexer Zusammenhänge, Arbeiten im Team, Kommunikation von Modellierungsentscheidungen
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
Schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
Schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr. Heiner Stuckenschmidt, Dr. Christian Meilicke
Description:
Die Vorlesung behandelt die Rolle konzeptueller Modellierung in der Wirtschaftsinformatik. Es werden Vorteile und Grenzen der Modlelierung im Unternehmenkontext aufgezeigt und Modellierungssprachen und Werkzeuge eingeführt. Inhalte der Veranstaltung umfassen unter anderem:
  • Modellierungsprinzipien
  • Praxisnahe Sprachen (UML, BPMN)
  • Formale Grundlagen von Modellierungssprachen (Logik, Pertri-Netze)
  • Modellierungswerkzeuge.
In der begleitenden Übung erstellen die Teilnehmer konzpetuelle Modelle realer Anwendungsdomänen mit Hilfe aktueller Modellierungssprachen und Werkzeuge.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Courses HWS

Data Science in Action (ENGAGE.EU Signature Course) (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Language of instruction:
english
Credit hours 1:
2
Attendance:
Online, live
Recommended requirement:
Literature:
Recommended Papers from invited speakers
Examination achievement:
Written Essay
Instructor(s):
Prof. Dr. Heiner Stuckenschmidt
Date(s):
Thursday  (weekly) 14.09.2023 – 07.12.2023 12:00 – 13:30 ZOOM-Lehre-056; Virtuelles Gebäude
Description:
The Mannheim Center for Data Science (MCDS) offers a lecture series on “Data Science in Action” together with the European University ENGAGE.EU (Signature Course). Renowned researchers from the University of Mannheim and its partner universities Université Toulouse Capitole, Tilburg University, Hanken School of Economics, Norwegian School of Economics (NHH) and  WU Vienna University of Economics and Business will provide insights into their data-based research. The speakers represent various disciplines, including business administration, computer science, political science, business education, media and communication studies, sociology, psychology and linguistics. The lecture series thus represents the relevance of data science in its entire breadth for science and society.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 04.09.2023 – 04.12.2023 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 04.09.2023 – 04.12.2023 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 04.09.2023 – 04.12.2023 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Artificial Intelligence (Lecture, german)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
german
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Suchverfahren als universelle Problemlösungsverfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unterschiedlichen Suchverfahren.
Methodenkompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungsproblem. Implementierung unterschiedlicher Suchverfahren und Heuristiken.
Recommended requirement:
Examination achievement:
Erfolgreiche Teilnahme am Übungsbetrieb
schriftliche Klausur (90 Minuten)
Instructor(s):
Dr. Christian Meilicke, Ralph Bubak
Date(s):
Tuesday  (weekly) 05.09.2023 – 05.12.2023 13:45 – 15:15 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Wednesday  (weekly) 06.09.2023 – 06.12.2023 12:00 – 13:30 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Monday  (single date) 06.11.2023 08:30 – 10:00 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Tuesday  (single date) 30.01.2024 10:15 – 11:45 A 104 Seminarraum; B 6, 23–25 Bauteil A
Description:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computerspiele
  • Constraintprobleme und deren Lösung
  • Logische Constraints
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Publications (past 5 years only)

2024

2023

2022

2021

2020

2019

2024

2023

2022

2021

2020

  • Alhersh, T., Belhaouari, S. and Stuckenschmidt, H. (2020). Metrics performance analysis of optical flow. In , VISIGRAPP 2020 : proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Feb 27, 2020 – Feb 29, 2020, Valetta, Malta (S. 749–758). Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, SCITEPRESS – Science and Technology Publications: Setúbal.
  • Burzlaff, F., Bongarth, B., Grottker, S., Hammen, J. and Bartelt, C. (2020). MergePoint: A graphical web-app for merging HTTP-endpoints and IoT-platform models. In , 53rd Hawaii International Conference on System Sciences, HICSS 2020 : Maui, Hawaii, USA, January 7–10, 2020 (S. 1–10). Proceedings of the 53rd Hawaii International Conference on System Sciences, ScolarSpace: Honolulu, HI.
  • Debjit, P., Opitz, J., Becker, M., Kobbe, J., Hirst, G. and Frank, A. (2020). Argumentative relation classification with background knowledge. In , Computational models of argument : proceedings of COMMA 2020 (S. 319–330). Frontiers in Artificial Intelligence and Applications, IOS Press: Amsterdam.
  • Fink, M., Meilicke, C. and Stuckenschmidt, H. (2020). Explaining differences between unaligned table snapshots. In , Advances in Database Technology – EDBT 2020, 23rd International Conference on Extending Database Technology, Copenhagen, Denmark, March 30 – April 02, proceedings (S. 133–144). , OpenProceedings.org: Copenhagen.
  • Hulpus, I., Kobbe, J., Stuckenschmidt, H. and Hirst, G. (2020). Knowledge graphs meet moral values. In , Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics : Barcelona, Spain (Online), December 2020 (S. 71–80). , Association for Computational Linguistics: Stroudsburg, PA.
  • Kobbe, J., Hulpus, I. and Stuckenschmidt, H. (2020). Unsupervised stance detection for arguments from consequences. In , EMNLP 2020 : proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 16th – 20th November 2020 (S. 50–60). , Association for Computational Linguistics: Online.
  • Kobbe, J., Rehbein, I., Hulpus, I. and Stuckenschmidt, H. (2020). Exploring morality in argumentation. In , Proceedings of the 7th Workshop on Argument Mining : Barcelona, Spain (Online), December 13, 2020 (S. 30–40). , Association for Computational Linguistics, ACL: Stroudsburg, PA.
  • Pernpeintner, M. (2020). Achieving emergent governance in competitive multi-agent systems. In , AAMAS '20 : Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, Auckland, Nea Zealand, May 2020 (S. 2204-2206). , ACM Digital Library: New York, NY.
  • Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2020). Robust decision tree induction from unreliable data sources. In , STAIRS 2020 : Proceedings of the 9th European Starting AI Researchers' Symposium 2020 co-located with 24th European Conference on Artificial Intelligence (ECAI 2020) Santiago Compostela, Spain, August, 2020 (S. Paper 6, 1–8). CEUR Workshop Proceedings, RWTH Aachen: Aachen, Germany.
  • Schreckenberger, C., Glockner, T., Stuckenschmidt, H. and Bartelt, C. (2020). Restructuring of Hoeffding trees for Trapezoidal Data Streams. In , 20th IEEE International Conference on Data Mining Workshops : 17–20 November 2020, Virtual Conference : Proceedings (S. 416–423). , IEEE: Los Alamitos, CA [u.a.].
  • Theil, C. K. and Stuckenschmidt, H. (2020). Predicting modality in financial dialogue. In , FNP-FNS 2020 : Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation, December 2020, Barcelona, Spain (Online) (S. 226–234). ACL Anthology, Association for Computational Linguistics: Stroudsburg, PA.
  • Štajner, S. and Hulpus, I. (2020). When shallow is good enough: Automatic assessment of conceptual text complexity using shallow semantic features. In , LREC 2020 Marseille : Twelfth International Conference on Language Resources and Evaluation : May 11–16, 2020, Palais du Pharo, Marseille, France : conference proceedings (S. 1414-1422). , European Language Resources Association, ELRA-ELDA: Paris.
  • Štajner, S., Nisioi, S. and Hulpus, I. (2020). CoCo: A tool for automatically assessing conceptual complexity of texts. In , LREC 2020 Marseille : Twelfth International Conference on Language Resources and Evaluation : May 11–16, 2020, Palais du Pharo, Marseille, France : conference proceedings (S. 7179-7186). , European Language Resources Association: Paris.

2019

  • Alhersh, T., Brahim Belhaouari, S. and Stuckenschmidt, H. (2019). Action recognition using local visual descriptors and inertial data. In , Ambient Intelligence : 15th European Conference, AmI 2019, Rome, Italy, November 13–15, 2019, Proceedings (S. 123–138). Lecture Notes in Computer Science, Springer: Berlin [u.a.].
  • Alhersh, T. and Stuckenschmidt, H. (2019). On the combination of IMU and optical flow for action recognition. In , 2019 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) : 11–15 March 2019 in Kyoto, Japan (S. 17–21). 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE: Piscataway, NJ.
  • Alhersh, T. and Stuckenschmidt, H. (2019). Unsupervised fine-tuning of optical flow for better motion boundary estimation. In , Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : February 25–27, 2019, in Prague, Czech Republic ; Volume 5: VISAPP (S. 776–783). Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – Volume 5: VISAPP, SciTePress: Setúbal, Portugal.
  • Burzlaff, F., Ackel, M. and Bartelt, C. (2019). A mapping language for IoT device descriptions. In , 2019 IEEE 43rd Annual Computer Software and Applications Conference : 15–19 July 2019, Milwaukee, Wisconsin : proceedings (S. 115–120). , IEEE Computer Society: Piscataway, NJ.
  • Burzlaff, F. and Bartelt, C. (2019). A conceptual architecture for enabling future self-adaptive service systems. In , 52nd Hawaii International Conference on System Sciences, HICSS 2019, Grand Wailea, Maui, Hawaii, USA, January 8–11, 2019 (S. 1–10). , AISeL: Atlanta, GA.
  • Chekol, M. W., Pirrò, G. and Stuckenschmidt, H. (2019). Fast interval joins for temporal SPARQL queries. In , The Web Conference 2019 : companion of The World Wide Web Conference WWW 2019 : May 13–17, 2019, San Francisco, CA, USA (S. 1148-1154). , Association for Computing Machinery: New York, NY.
  • Chekol, M. W. and Stuckenschmidt, H. (2019). Leveraging graph neighborhoods for efficient inference. In , CIKM '19 : proceedings of the 28th ACM International Conference on Information and Knowledge Management (S. 1893-1902). , Association for Computing Machinery: New York, NY.
  • Chekol, M. W. and Stuckenschmidt, H. (2019). Time-aware probabilistic knowledge graphs. In , 26th International Symposium on Temporal Representation and Reasoning : TIME 2019, October 16–19, 2019, Málaga, Spain (S. 1–17). Leibniz International Proceedings in Informatics : LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für Informatik: Wadern.
  • Diete, A., Sztyler, T. and Stuckenschmidt, H. (2019). Vision and acceleration modalities: Partners for recognizing complex activities. In , 2019 IEEE International Conference on Pervasive Computing and Communications workshops (PerCom workshops) : took place 11–15 March 2019 in Kyoto, Japan (S. 101–106). , IEEE Computer Society: Piscataway, NJ.
  • Hulpus, I., Kobbe, J., Becker, M., Opitz, J., Hirst, G., Meilicke, C., Nastase, V., Stuckenschmidt, H. and Frank, A. (2019). Towards explaining natural language arguments with background knowledge. In , PROFILES-SEMEX 2019 : Joint Proceedings of the 6th International Workshop on Dataset PROFlLing and Search & the 1st Workshop on Semantic Explainability co-loc. with 18th International Semantic Web Conference (ISWC 2019) Auckland, NZ, Oct. 27, 2019 (S. 62–77). CEUR Workshop Proceedings, RWTH Aachen: Aachen, Germany.
  • Hulpus, I., Štajner, S. and Stuckenschmidt, H. (2019). A spreading activation framework for tracking conceptual complexity of texts. In , 57th Annual Meeting of the Association for Computational Linguistics, ACL 2019 : Proceedings of the conference : July 28 – August 2, 2019, Florence, Italy (S. 3878-3887). , Association for Computational Linguistics, ACL: Stroudsburg, PA.
  • Kobbe, J., Opitz, J., Becker, M., Hulpus, I., Stuckenschmidt, H. and Frank, A. (2019). Exploiting background knowledge for argumentative relation classification. In , 2nd Conference on Language, Data and Knowledge (LDK 2019) (S. 8:1–8:14). OASIcs – OpenAccess Series in Informatics, Leibniz-Zentrum für Informatik: Wadern.
  • Meilicke, C., Chekol, M. W., Ruffinelli, D. and Stuckenschmidt, H. (2019). An introduction to AnyBURL. In , KI 2019: Advances in Artificial Intelligence : 42nd German Conference on AI, Kassel, Germany, September 23–26, 2019, proceedings (S. 244–248). Lecture Notes in Computer Science, Springer: Berlin [u.a.].
  • Meilicke, C., Chekol, M. W., Ruffinelli, D. and Stuckenschmidt, H. (2019). Anytime bottom-up rule learning for knowledge graph completion. In , Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19) : August 10–16, 2019, Macao, China (S. 3137-3143). , IJCAI/AAAI Press: Menlo Park, CA.
  • Pernpeintner, M. (2019). Collaboration as an emergent property of self-organizing software systems. In , 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems : FAS*W 2019 : proceedings (S. 231–233). , IEEE Computer Society Press: Piscataway, NJ.
  • Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2019). Enhancing a crowd-based delivery network with mobility predictions. In , PredictGIS'19 : Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility : Chicago, IL, USA, November 05, 2019 (S. 66–75). Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility, ACM: New York, NY.
  • Schreckenberger, C., Bartelt, C. and Stuckenschmidt, H. (2019). iDropout: Leveraging deep taylor decomposition for the robustness of deep neural networks. In , On the Move to Meaningful Internet Systems: OTM 2019 Conferences : Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October 21–25, 2019, Proceedings (S. 113–126). Lecture Notes in Computer Science, Springer: Berlin [u.a.].
  • Schreckenberger, C., Beckmann, S. and Bartelt, C. (2019). Next place prediction: A systematic literature review. In , PredictGIS 2018 : Proceedings of the 2nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility : ACM GIS 2018 Conference: November 6 – November 9, 2018, Seattle, Washington (S. 37–45). Proceedings of the 2Nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility, ACM: New York, NY.
  • Schäfer, B. and Stuckenschmidt, H. (2019). Arrow R-CNN for flowchart recognition. In , 2019 International Conference on Document Analysis and Recognition workshops (ICDARW) : 22–25 Sept. 2019, Sydney, Australia (S. 7–13). , IEEE: Piscataway, NJ.
  • Theil, C. K., Broscheit, S. and Stuckenschmidt, H. (2019). PRoFET: Predicting the risk of firms from event transcripts. In , Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019 (S. 5211-5217). , IJCAI/AAAI Press: Menlo Park, CA.

2024

2023

2022

2021

2019