Focus Group: Data Analytics

(Prof. Gemulla)

Our group's research focuses on systems and methods for analyzing and and learning from large datasets as well as their application in practice, including:

  • Machine learning with semi-structured/structured datadata
  • Combining unstructured and structured knowledge
  • Representation learning for multi-relational graphs
  • Efficient and scalable methods and systems for data-intensive processing

News

People

Former PhD students

Kaustubh Beedkar, Luciano del Corro, Kiril Gashteovski, Stefan Kain, Faraz Makari Manshadi, Alexander Renz-Wieland, Christina Teflioudi, Yanjie Wang

Data and Software

  • AdaPM: A fully adaptive parameter manager
  • LibKGE: A knowledge graph embedding library
  • Lapse: A parameter server with dynamic parameter allocation
  • OPIEC: An open information extraction corpus
  • MinIE: Open information extractor (spiritual successor to ClausIE)
  • DSGDpp: Various parallel algorithms for matrix factorization (including DSGD++)
  • DESQ: Frequent sequence mining with subsequence constraints
  • Rounding rank: algorithms for computing rounding-rank decompositions
  • CORE: Context-aware open relation extraction with factorization machines
  • FINET: Context-aware fine-grained named entity typing
  • Werdy: Recognition and Disambiguation of Verbs and Verb Phrases with Syntactic and Semantic Pruning
  • ClausIE: Clause-Based Open Information Extraction
  • LEMP: Fast Retrieval of Large Entries in a Matrix Product
  • LASH: Large-Scale Sequence Mining with Hierarchies
  • MG-FSM: Large-Scale Frequent Sequence Mining

Teaching

If you are interested in writing a seminar, Bachelor or Master thesis with us, please read the following guidelines.

Current semester (HWS 2024)

Previous semester (FSS 2024)

        Publications

        See also Google Scholar and DBLP.

        2023   A. Kochsiek, R. Gemulla
        A Benchmark for Semi-Inductive Link Prediction in Knowledge Graphs [pdfresources]
        In EMNLP Findings, 2023
         A. Kochsiek, A. Saxena, I. Nair, R. Gemulla
        Friendly Neighbors: Contextualized Sequence-to-Sequence Link Prediction [pdfresources]
        In Repl4NLP workshop, 2023
         A. Renz-Wieland, A. Kieslinger, R. Gericke, R. Gemulla, Z. Kaoudi, V. Markl
        Good Intentions: Adaptive Parameter Management via Intent Signaling [pdfresources]
        In CIKM, 2023
        2022   A. Kochsiek, F. Niesel, R. Gemulla
        Start Small, Think Big: On Hyperparameter Optimization for Large-Scale Knowledge Graph Embeddings [pdfresources]
        In ECML-PKDD, 2022
         A. Saxena, A. Kochsiek, R. Gemulla
        Sequence-to-Sequence Knowledge Graph Completion and Question Answering [pdf, video resources]
        In ACL, pp. 2814-2828, 2022
         A. Renz-Wieland, R. Gemulla, Z. Kaoudi, V. Markl
        NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter Access [pdfsource code]
        In SIGMOD, pp. 481–495, 2022
        2021   A. Kochsiek, R. Gemulla
        Parallel Training of Knowledge Graph Embedding Models: A Comparison of Techniques [pdfresources]
        In PVLDB, 15(3), 2021
         A. Renz-Wieland, T. Drobisch, R. Gemulla, Z. Kaoudi, V. Markl
        Just Move It! Dynamic Parameter Allocation in Action [pdfdemo]
        In PVLDB (demo), 14(12), 2021.
        2020   A. Renz-Wieland, R. Gemulla, S. Zeuch, V. Markl
        Dynamic Parameter Allocation in Parameter Servers [pdfsource code]
        In PVLDB, 13(12), pp. 1877-1890, 2020
         S. Broscheit, K. Gashteovski, Y. Wang, Rainer Gemulla
        Can We Predict New Facts with Open Knowledge Graph Embeddings? A Benchmark for Open Link Prediction [pdfresources]
        In ACL, 2020
         D. Ruffinelli, S. Broscheit, R. Gemulla
        You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings [pdfvideoresourcesOpenReview]
        In ICLR, 2020
         S. Broscheit, D. Ruffinelli, A. Kochsiek, P. Betz, R. Gemulla
        LibKGE – A knowledge graph embedding library for reproducible research [pdfsource]
        In EMNLP (demo), 2020
         K. Gashteovski, R. Gemulla, B. Kotnis, S. Hertling, C. Meilicke
        On Aligning OpenIE Extractions with Knowledge Bases: A Case Study [pdfslides, resources]
        In Eval4NLP, 2020
        2019   Y. Wang, D. Ruffinelli, R. Gemulla, S. Broscheit, C. Meilicke
        On Evaluating Embedding Models for Knowledge Base Completion [pdf]
        In RepL4NLP workshop, 2019
         K. Beedkar, R. Gemulla, W. Martens
        A Unified Framework for Frequent Sequence Mining with Subsequence Constraints [pdf (journal version), pdf (author version), resources]
        In TODS, 2019
         K. Gashteovski, S. Wanner, S. Hertling, S. Broscheit, R. Gemulla
        OPIEC: An Open Information Extraction Corpus [pdfposterresourcesOpenReview]
        In AKBC, 2019
         A. Renz-Wieland, M. Bertsch, R. Gemulla
        Scalable Frequent Sequence Mining With Flexible Subsequence Constraints [pdfposter]
        In ICDE, 2019
        Preprints
        (2019)
           
        Y. Wang, S. Broscheit, R. Gemulla
        A Relational Tucker Decomposition for Multi-Relational Link Prediction [arXiv]
        2019
        2018   C. Meilicke, M. Fink, Y. Wang, D. Ruffinelli, R. Gemulla, and H. Stuckenschmidt
        Fine-grained Evaluation of Rule- and Embedding-based Systems for Knowledge Graph Completion [pdfresources]
        In ISWC, 2018
         J. Pfeiffer, S. Broscheit, R. Gemulla, M. Göschl
        A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval [pdf]
        In BioNLP workshop, 2018
         S. Broscheit, R. Gemulla, M. Keuper
        Learning Distributional Token Representations from Visual Features [pdf]
        In RepL4NLP workshop, 2018
         Y. Wang, R. Gemulla, H. Li
        On Multi-Relational Link Prediction with Bilinear Models [pdfresources]
        In AAAI, 2018
        2017   K. Gashteovski, R. Gemulla, L. del Corro
        MinIE: Minimizing Facts in Open Information Extraction [pdfposterresources]
        In EMNLP, pp. 2620-2630, 2017
         C. Teflioudi, R. Gemulla
        Exact and Approximate Maximum Inner Product Search with LEMP [pdf (journal version)pdf (author version)resources]
        In TODS, 42(1) Art. 5, 2017
        2016   S. Neumann, R. Gemulla, P. Miettinen
        What You Will Gain By Rounding: Theory and Algorithms for Rounding Rank [pdftech reportresources]
        In ICDM, pp. 380–389, 2016
         K. Beedkar, R. Gemulla
        DESQ: Frequent Sequence Mining with Subsequence Constraints [pdftech reportresources]
        In ICDM (short paper), pp. 793–798, 2016
        2015   L. Del Corro, A. Abujabal, R. Gemulla, G. Weikum
        FINET: Context-Aware Fine-Grained Named Entity Typing [pdfslidesresources]
        In EMNLP, pp. 868–878, 2015
         F. Petroni, L. Del Corro, R. Gemulla
        CORE: Context-Aware Open Relation Extraction with Factorization Machines [pdfslidesresources]
        In EMNLP, pp. 1763-1773, 2015
         K. Beedkar, K. Berberich, R. Gemulla, I. Miliaraki
        Closing the Gap: Sequence Mining at Scale [pdf (journal version)pdf (author version)resources]
        In TODS, 40(2) Art. 8, 2015
         C. Teflioudi, R. Gemulla, O. Mykytiuk
        LEMP: Fast Retrieval of Large Entries in a Matrix Product [pdfslidesresources]
        In SIGMOD, pp. 107–122, 2015
         K. Beedkar, R. Gemulla
        LASH: Large-Scale Sequence Mining with Hierarchies [pdfslidessource code]
        In SIGMOD, pp. 491–503, 2015
         R. Gemulla
        A Self-Portrayal of GI Junior Fellow Rainer Gemulla: Data Analysis at Scale [pdf (journal version), pdf (author version)]
        it – Information Technology 57(2), pp. 130–132 , 2015
        2014   L. Del Corro, R. Gemulla, G. Weikum
        Werdy: Recognition and Disambiguation of Verbs and Verb Phrases with Syntactic and Semantic Pruning [pdfresources]
        In EMNLP, pp. 374–385, 2014
         P. Roy, J. Teubner, R. Gemulla
        Low-Latency Handshake Join [pdf]
        In PVLDB, 7(9), pp. 709–720, 2014
         L. Qu, Y. Zhang, R. Wang, L. Jiang, R. Gemulla, G. Weikum
        Senti-LSSVM: Sentiment-Oriented Multi-Relation Extraction with Latent Structural SVM [pdf]
        In TACL, 2, pp. 155–168, 2014
         D. Erdös, R. Gemulla, E. Terzi
        Reconstructing Graphs from Neighborhood Data [pdf (author version)pdf (journal version)]
        In TKDD, 8(4), 2014
        2013   F. Makari, C. Teflioudi, R. Gemulla, P. J. Haas, Y. Sismanis
        Shared-Memory and Shared-Nothing Stochastic Gradient Descent Algorithms for Matrix Completion [pdf (author version)pdf (journal version)source code]
        In KAIS (special issue: best papers of ICDM 2012), pp. 1–31, 2013
         F. Makari, R. Gemulla
        A Distributed Approximation Algorithm for Mixed Packing-Covering Linear Programs [pdf]
        In NIPS 2013 Biglearn workshop (poster), 2013
         F. Makari, B. Awerbuch, R. Gemulla, R. Khandekar, J. Mestre, M. Sozio
        A Distributed Algorithm for Large-Scale Generalized Matching [pdfslides]
        The analysis of the number of binary search steps (Lemma 2) contains a bug; see our Biglearn paper for a corrected version.
        In PVLDB, 6(9), pp. 613–624, 2013
         I. Miliaraki, K. Berberich, R. Gemulla, S. Zoupanos
        Mind the Gap: Large-Scale Frequent Sequence Mining [pdfslidesresources]
        In SIGMOD, pp. 797–808, 2013
         L. Del Corro, R. Gemulla
        ClausIE: Clause-Based Open Information Extraction [pdfslidesresources]
        In WWW, pp. 355–366, 2013
         R. Gemulla, P. J. Haas, W. Lehner
        Non-Uniformity Issues and Workarounds in Bounded-Size Sampling [pdf (author version)pdf (journal version)source code]
        In The VLDB Journal, 22(6), pp. 753–772, 2013
         K. Beedkar, L. Del Corro, R. Gemulla
        Fully Parallel Inference in Markov Logic Networks [pdf]
        In BTW, pp. 205–224, 2013
        2012   D. Erdös, R. Gemulla, E. Terzi
        Reconstructing Graphs from Neighborhood Data [pdfslides]
        In ICDM, pp. 231–240, 2012
         C. Teflioudi, F. Makari, R. Gemulla
        Distributed Matrix Completion [pdfslidessource code]
        In ICDM, pp. 655–664, 2012
         L. Qu, R. Gemulla, G. Weikum
        A Weakly Supervised Model for Sentence-Level Semantic Orientation Analysis with Multiple Experts [pdf]
        In EMNLP-CoNLL, pp. 149–159, 2012
        2011   R. Gemulla, P. J. Haas, Y. Sismanis, C. Teflioudi, F. Makari
        Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent [pdfslidessource code]
        In NIPS 2011 Biglearn workshop, 2011 (best paper award)
         R. Gemulla, E. Nijkamp, P. J. Haas, Y. Sismanis
        Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent [pdfslidessource code]
        In KDD, pp. 69–77, 2011
         K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.C. Kanne, F. Ozcan, E. Shekita
        Jaql: A Scripting Language for Large Scale Semistructured Data Analysis [pdf]
        In PVLDB (industrial track), 4(11), pp. 1272-1283, 2011
         M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, J. McPherson
        CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop [pdf]
        In PVLDB, 4(9), pp. 575–585, 2011
         R. Gemulla, P. J. Haas, E. Nijkamp, Y. Sismanis
        Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent [pdf]
        IBM Research Report RJ10481, March 2011 Revised February, 2013
         B. Schlegel, R. Gemulla, W. Lehner
        Memory-Efficient Frequent-Itemset Mining [pdf]
        In EDBT, pp. 461–472, 2011
        2010   S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, J. McPherson.
        Ricardo: Integrating R and Hadoop [pdf]
        In SIGMOD (industrial track), pp. 987–998, 2010
         B. Schlegel, R. Gemulla, W. Lehner.
        Fast Integer Compression using SIMD Instructions [pdf]
        In DAMON, pp. 34–40, 2010
        2009   K. Beyer, R. Gemulla. P. J. Haas, B. Reinwald, Y. Sismanis.
        Distinct-Value Synopses for Multiset Operations [pdftechnical perspective by Surajit Chaudhuri]
        In Commun. ACM, 52(10), pp. 87–95, 2009
         B. Schlegel, R. Gemulla, W. Lehner.
        k-Ary Search on Modern Processors [pdfslides]
        In DAMON, pp. 52–60, 2009
        2008   R. Gemulla.
        Sampling Algorithms for Evolving Datasets [pdfsummaryslides]
        Ph.D. thesis, Technische Universität Dresden, 2009
        URL for citations: nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224861856184-11644
         R. Gemulla, P. Rösch and W. Lehner.
        Linked Bernoulli Synopses: Sampling Along Foreign Keys [pdfslides]
        In SSDBM, pp. 6–23, 2008
         R. Gemulla and W. Lehner.
        Sampling Time-Based Sliding Windows in Bounded Space [pdfslides]
        As observed by Hu et al., the lower bound of Ω(k log N) stated in Theorem 1 should read Ω(k log(N/k)).
        In SIGMOD, pp. 379–392, 2008
         P. Rösch, R. Gemulla and W. Lehner.
        Designing Random Sample Synopses with Outliers [pdfposter]
        In ICDE (poster), pp. 1400-1402, 2008
        2007   R. Gemulla, W. Lehner and P.J. Haas.
        Maintaining Bounded-Size Sample Synopses of Evolving Datasets [pdf]
        The resizing algorithm proposed in this article contains a bug; see my Ph.D. thesis or our 2013 VLDB Journal paper for a corrected version.
        In The VLDB Journal, Special Issue: Best Papers of VLDB 2006, pp. 173–201, 2007
         K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis and R. Gemulla.
        On Synopses for Distinct-Value Estimation Under Multiset Operations [pdfslides]
        In SIGMOD, pp. 199–210, 2007
         R. Gemulla, W. Lehner and P. J. Haas.
        Maintaining Bernoulli Samples over Evolving Multisets [pdfslides]
        In PODS, pp. 93–102, 2007
        2006   R. Gemulla, W. Lehner and P. J. Haas.
        A Dip in the Reservoir: Maintaining Sample Synopses of Evolving Datasets [pdfslides]
        In VLDB, pp. 595–606, 2006
         A. Klein, R. Gemulla, P. Rösch and W. Lehner.
        Derby/S: A DBMS for Sample-Based Query Answering [pdfposter1poster2]
        In SIGMOD (demo), pp. 757–759, 2006
         R. Gemulla and W. Lehner.
        Deferred Maintenance of Disk-Based Random Samples [pdfslides]
        In EDBT, pp. 423–441, 2006