Patrick Betz
Researcher
University of Mannheim
B6, 26
D-68159 Mannheim
Email: patrick (at) informatik.uni-mannheim.de
Research group: Artificial Intelligence
Research Interests
- Neuro-Symbolic AI
- Knowledge representations
Software
PyClause - A library for symbolic rule handling for knowledge graphs
Publications
- P. Betz, L. Galarraga, S. Ott, C. Meilicke, F. Suchanek, H. Stuckenschmidt
PyClause – Simple and Efficient Rule Handling for Knowledge Graphs
In: IJCAI (demo track, forthcoming), 2024 - S. Ott, P. Betz, D. Stepanova, M. H. Gad-Elrab, C. Meilicke, H. Stuckenschmidt
Rule-based knowledge graph completion with canonical models
In: CIKM, 2023 - P. Betz, S. Lüdtke, C. Meilicke, H. Stuckenschmidt
On the aggregation of rules for knowledge graph completion
In: Knowledge and Logical Reasoning in the Era of Data-driven Learning Workshop@ICML 2023 - C. Meilicke, M. W. Chekol, P. Betz, M. Fink, H Stuckenschmidt.
Anytime bottom-up rule learning for large scale knowledge graph completion
In: The VLDB Journal, 2023 - P. Betz, C. Meilicke, H. Stuckenschmidt
Adversarial explanations for knowledge graph embeddings
In: IJCAI, 2022 - P. Betz, C. Meilicke, H. Stuckenschmidt
Supervised knowledge aggregation for knowledge graph completion
In: ESWC, 2022 - P. Betz, M. Niepert, P. Minervini, H. Stuckenschmidt
Backpropagating through markov logic networks
In: Proceedings of 15th International Workshop on Neural-Symbolic Learning and Reasoning, 2021 - C. Meilicke, P. Betz, H. Stuckenschmidt
Why a naive way to combine latent and symbolic knowledge base completion works surprisingly well
In: 3rd Conference on Automated Knowledge Base Construction, 2021 - S. Broscheit, D. Ruffinelli, A. Kochsiek, P. Betz, R. Gemulla
LibKGE – A knowledge graph embedding library for reproducible research
In: EMNLP (demo), 2020