PyClause - A library for symbolic rule handling for knowledge graphs
Publications
P. Betz, L. Galarraga, S. Ott, C. Meilicke, F. Suchanek, H. Stuckenschmidt PyClause – Simple and Efficient Rule Handling for Knowledge Graphs In: IJCAI (demo track, forthcoming), 2024
S. Ott, P. Betz, D. Stepanova, M. H. Gad-Elrab, C. Meilicke, H. Stuckenschmidt Rule-based knowledge graph completion with canonical models In: CIKM, 2023
P. Betz, S. Lüdtke, C. Meilicke, H. Stuckenschmidt On the aggregation of rules for knowledge graph completion In: Knowledge and Logical Reasoning in the Era of Data-driven Learning Workshop@ICML 2023
C. Meilicke, M. W. Chekol, P. Betz, M. Fink, H Stuckenschmidt. Anytime bottom-up rule learning for large scale knowledge graph completion In: The VLDB Journal, 2023
P. Betz, C. Meilicke, H. Stuckenschmidt Adversarial explanations for knowledge graph embeddings In: IJCAI, 2022
P. Betz, C. Meilicke, H. Stuckenschmidt Supervised knowledge aggregation for knowledge graph completion In: ESWC, 2022
P. Betz, M. Niepert, P. Minervini, H. Stuckenschmidt Backpropagating through markov logic networks In: Proceedings of 15th International Workshop on Neural-Symbolic Learning and Reasoning, 2021
C. Meilicke, P. Betz, H. Stuckenschmidt Why a naive way to combine latent and symbolic knowledge base completion works surprisingly well In: 3rd Conference on Automated Knowledge Base Construction, 2021
S. Broscheit, D. Ruffinelli, A. Kochsiek, P. Betz, R. Gemulla LibKGE – A knowledge graph embedding library for reproducible research In: EMNLP (demo), 2020
In order to improve performance and enhance the user experience for the visitors to our website, we use cookies and store anonymous usage data. For more information please read our privacy policy.