Machine Learning and Computer Vision

(Prof. Dr.-Ing Margret Keuper)

Our group's research focuses on Computer Vision and Machine Learning. More specifically, we are interested in:

  • Robustness and Reliability of Deep Learning Models
  • Neural Architecture Search
  • Grouping Problems (in applications such as Image and Motion Segmentation and Multiple Object Tracking)
  • Efficient Solvers for Large Grouping Problems
  • Motion Estimation
  • Image Generation and Deep Fake Detection
  • Vision for Medical Imaging
  • Understanding and building Vision Language Models and other Vision Foundation Models
Upcoming Presentations @ CVPR
We are happy to announce:  Three papers from our group were accepted at the CVPR Synthetic Data for Computer Vision workshop @ CVPR 2025. DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions, S. Agnihotri, A. Ansari, A. Dackermann, F. Rösch, M. Keuper, Synthetic Data for Computer ...
Paper accepted at ACL
We are happy to announce that our work Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation (Yuxuan Zhou, Margret Keuper, Mario Fritz), has been accepted to the ACL main conference. This is joint work with Yuxuan Zhou (Uni-Mannheim and ...
Logo of the ICML conference
Paper accepted at ICML
We are happy to announce that Patrick Knab's (INES) and Katharina Prasse's collaboration has turned into an ICLM 2025 paper: Katharina Prasse, Patrick Knab, Sascha Marton, Christian Bartelt, Margret Keuper, 2025. DCBM: Data-Efficient Visual Concept Bottleneck Models. International Conference on ...
WACV logo containing name, location, and date of the conference.
Two Papers Presented at WACV
We have two DWS research projects being presented at WACV in Tucson, Arizona. Katharina Prasse, Isaac Bravo, Stefanie Walter, and Margret Keuper. I spy with my little eye a minimum cost multicut investigation of dataset frames. In Proceedings of the Winter Conference on Applications of Computer ...
Yumeng with PhD hat and gifts.
Yumeng Li's PhD thesis successfully defended
Yumeng successfully defended her PhD thesis “Improving Alignment and Controllability in GANs and Diffusion Models”. The thesis was created with Bosch BCAI and jointly supervised by Margret Keuper, Anna Khoreva, and Dan Zhang. Yumeng's research focussed on image and video generation. GANs were ...
Three papers accepted at ICLR 2025
We are happy to announce that the following papers from our group have been accepted to ICLR 2025: Paul Gavrikov, Jovita Lukasik, Steffen Jung, Robert Geirhos, Muhammad Jehanzeb Mirza, Margret Keuper, Janis Keuper: Can we talk models into seeing the world differently? Proceedings of the Nineth ...

Machine Learning and Computer Vision Group

Master and Bachelor Theses

If you are interested in writing a seminar, Bachelor or Master thesis with us, please feel free to contact us. The list below represents a highly incomplete set of the topics currently offered by our group, talk to us for more topics and additional information. Your own ideas and interests are welcome as well.

  • Using uncertainties to improve panoptic segmentation (contact: Shashank)
  • Optical Flow NeRFs (contact: Prof. Dr.-Ing Margret Keuper)
  • Compressing LLMs for Edge Devices (contact: Shashank​​​​​​​)
  • Structured Pruning of Vision Models (contact: Shashank​​​​​​​)
  • Zero Cost Proxies for evaluating Optical Flow Estimation methods (contact: Shashank​​​​​​​)

Completed Student Projects

  • Team Project: Julian Yuya Caspary, Luca Schwarz and Xinyan Gao: FLOWBENCH: A ROBUSTNESS BENCHMARK FOR OPTICAL FLOW ESTIMATION. November, 2024
  • Team Project: Jonas Jakubassa, Simon Kral, and Ruben Weber: DetecBench: A Robustness-Aware Benchmarking Tool For Object Detection. December, 2024
  • Team Project: David Schader, Nico Sharei, and Mehmet Ege Kaçar: SemSegBench: Robustness-Aware Benchmarking Of Semantic Segmentation. December, 2024
  • Team Project: Amaan Ansari, Annika Dackermann, and Fabian Rösch: DispBench: A Robustness Evaluator For Disparity Estimation. December, 2024

Publications

Peer Reviewed Journal and Conference Papers

2025

  • An evaluation of zero-cost proxies-from neural architecture performance prediction to model robustness, J. Lukasik, M. Moeller, M. Keuper, International Journal of Computer Vision, 1--18, 2025.
  • DCBM: Data-Efficient Visual Concept Bottleneck Models, K. Prasse, P. Knab, S. Marton, C. Bartelt, M. Keuper,  International Conference on Machine Learning (ICML) 2025.
  • Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation, Y. Zhou, M. Keuper, M. Fritz, Annual Meeting of the Association for Computational Linguistics (ACL) 2025.
  • Segment any Repeated Object, Y. Liu, C. Graf, M. Spies, M. Keuper, IEEE International Conference on Robotics and Automation (ICRA)
  • VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis, Y. Li, W. Beluch, M. Keuper, D. Zhang, A. Khoreva, International Conference on Representation Learning (ICLR) 2025.
  • Can we talk models into seeing the world differently? P. Gavrikov, J. Lukasik, S. Jung, R. Geirhos, M.J. Mirza, M. Keuper, J. Keuper, International Conference on Representation Learning (ICLR) 2025.
  • I Spy With My Little Eye: A Minimum Cost Multicut Investigation of Dataset Frames , K. Prasse, I. Bravo, S. Walter, M. Keuper , Winter Conference on Computer Vision (WACV) 2025.
  • Fair-TAT: Improving Model Fairness Using Targeted Adversarial Training, T. Medi, S. Jung, M. Keuper, Winter Conference on Computer Vision (WACV) 2025.
  • DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions, S. Agnihotri, A. Ansari, A. Dackermann, F. Rösch, M. Keuper, Synthetic Data for Computer Vision Workshop@ CVPR 2025
  • Corner Cases: How Size and Position of Objects Challenge ImageNet-Trained Models, M. Fatima, S. Jung, M. Keuper, Synthetic Data for Computer Vision Workshop@ CVPR 2025
  • Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?, S. Agnihotri, D. Schader, N. Sharei, M. Keuper, Synthetic Data for Computer Vision Workshop@ CVPR 2025.

2024

  • Learning the essential in less than 2k additional weights – a simple approach to improve image classification stability under corruptions, K. Bäuerle, P. Müller, S. M. Kazim, I. Ihrke, and M. Keuper, Transactions on Machine Learning Research, 2024.
  • As large as it gets: Learning infinitely large Filters via Neural Implicit Frequency Functions, J. Grabinski, J. Keuper, M. Keuper, Transactions on Machine Learning Research 2024. (featured certification)
  • Intra-& extra-source exemplar-based style synthesis for improved domain generalization, Y. Li, D. Zhang, M. Keuper, A. Khoreva, International Journal of Computer Vision, 132 (2), 446–465, 2024.
  • Improving Stability during Upsampling-- Spectral Artifacts and the Importance of Spatial Context, S. Agnihotri, J. Grabinski, M. Keuper, European Conference on Computer Vision (ECCV) 2024.
  • CosPGD: A unified white-box adversarial attack for pixel-wise prediction tasks, S. Agnihotri, S. Jung, M. Keuper, International Conference on Machine Learning (ICML) 2024.
  • MultiMax: Sparse and Multi-Modal Attention Learning, Y. Zhou, M. Fritz, M. Keuper, International Conference on Machine Learning (ICML) 2024.
  • Implicit Representations for Constrained Image Segmentation ,J. P. Schneider, M. Fatima, J. Lukasik, A. Kolb, M. Keuper, M. Moeller, International Conference on Machine Learning (ICML) 2024.
  • Adversarial Supervision Makes Layout-to-Image Diffusion Models Thrive, Y. Li, M. Keuper, D. Zhang, A. Khoreva, International Conference on Representation Learning (ICLR) 2024.
  • Differentiable Sensor Layouts for End-to-End Learning of Task-Specific Camera Parameters, H. Sommerhoff, S. Agnihotri, M. Saleh, M. Moeller, M. Keuper, A. Kolb, ICCP 2024.

2023

  • Improving primary-vertex reconstruction with a minimum-cost lifted multicut graph partitioning algorithm, V. Kostyukhin, M. Keuper, I. Ibragimov, N. Owtscharenko, M. Cristinziani, Journal of Instrumentation (JINST), Volume 18, July 2023.
  • Higher-Order Multicuts for Geometric Model Fitting and Motion Segmentation, E. Levinkov*, A. Kardoost*, B. Andres and M. Keuper (*equal contribution), IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 1, pp. 608–622, 1 Jan. 2023.
  • Neural Architecture Design and Robustness: A Dataset, S. Jung, J. Lukasik, M. Keuper, International Conference on Representation Learning (ICLR), 2023.
  • Divide & Bind Your Attention for Improved Generative Semantic Nursing, Y. Li, M. Keuper, D. Zhang, A. Khoreva, British Machine Vision Conference (BMVC), 2023 (oral).
  • Intra-Source Style Augmentation for Improved Domain Generalization, Y. Li, D. Zhang, A. Khoreva, M. Keuper, Winter Conference on Computer Vision (WACV) 2023.
  • Towards Understanding Climate Change Perceptions: A Social Media Dataset, K. Prasse, S. Jung, I. Bravo, S. Walter, M. Keuper, NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning, 2023.
  • Implicit Representations for Image Segmentation, J.-P. Schneider, M. Fatima, J. Lukasik, A. Kolb, M. Keuper, M. Moeller, Neurips 2023 UniReps workshop, 2023.
  • Classification robustness to common optical aberrations, P. Müller, A. Braun, M. Keuper, ICCV2023 AROW Workshop, 2023.
  • S. Agnihotri, K.V. Gandikota, J. Grabinski, P. Chandramouli, M. Keuper, On the unreasonable vulnerability of transformers for image restoration and an easy fix, ICCV2023 AROW Workshop, 2023.
  • An extended Benchmark Study of Human-Like Behavior under Adversarial Training, P. Gavrikov, J. Keuper, M. Keuper, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023.
  • Differentiable Architecture Search: a One-Shot Method? , J. Lukasik, J. Geiping, M. Möller, M. Keuper, AutoML Conference workshop, 2023.
  • FullFormer: Generating Shapes inside Shapes, T. Medi, J. Tayyub, M. Sarmad, F. Lindseth, M. Keuper, German Conference on Pattern Recognition (GCPR) 2023.
  • Local Spherical Harmonics Improve Skeleton-based Hand Action Recognition, K. Prasse, S. Jung, Y. Zhou, M. Keuper, German Conference on Pattern Recognition (GCPR) 2023.
  • An Evaluation of Zero-Cost Proxies -- from Neural Architecture Search to Model Robustness, J. Lukasik, M. Möller, M. Keuper, German Conference on Pattern Recognition (GCPR) 2023.

2022

  • Aliasing and adversarial robust generalization of CNNs, J. Grabinski, J. Keuper, M. Keuper, Machine Learning, Springer 2022.
  • Trading-off Image Quality for Robustness is not necessary with Deterministic Autoencoders, A. Saseendran, K. Skubsch, M. Keuper, Advances in Neural Information Processing Systems (NeurIPS), 2022 (spotlight).
  • Robust Models are Less Over-Confident, J. Grabinski, P. Gavrikov, J. Keuper, M. Keuper, Advances in Neural Information Processing Systems (NeurIPS), 2022.
  • Learning Where to Look -- Generative NAS is Surprisingly Efficient, J. Lukasik, S. Jung, M. Keuper, European Conference on Computer Vision (ECCV), 2022.
  • FrequencyLowCut Pooling -- Plug & Play against Catastrophic Overfitting, J. Grabinski, S. Jung, J. Keuper, M. Keuper, European Conference on Computer Vision (ECCV), 2022.
  • Surrogate NAS Benchmarks: Going beyond the limited search space of tabular NAS benchmarks, J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper and F. Hutter, International Conference on Learning Representations (ICLR), 2022.
  • Learning to solve Minimum Cost Multicuts efficiently using Edge-Weighted Graph Convolutional Neural Networks, S. Jung, M. Keuper, ECML-PKDD 2022.
  • Estimating the Robustness of Classification Models by the Structure of the Learned Feature-Space, K. Ho, F.J. Pfreundt, J. Keuper, M. Keuper, AAAI-22 Workshop on Adversarial Machine Learning and Beyond, 2022.
  • SP-VIT: Learning 2D Spatial Priors for Vision Transformers , Y. Zhou, W. Xiang, C. Li, B. Wang, X. Wei, L. Zhang, M. Keuper, X Hua, British Machine Vision Conference (BMVC), 2022.
  • Optimizing Edge Detection for Image Segmentation with Multicut Penalties, S. Jung, S. Ziegler, A. Kardoost, M. Keuper, German Conference on Pattern Recognition (GCPR), 2022.
  • Aliasing coincides with CNNs vulnerability towards adversarial attacks, J. Grabinski, J. Keuper, M. Keuper, AAAI-22 Workshop on Adversarial Learning and Beyond, 2022.
  • Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?, P. Lorenz, D. Straßel, M. Keuper, J. Keuper, AAAI-22 Workshop on Adversarial Learning and Beyond, 2022.

2021

  • Arrow R-CNN for Handwritten Diagram Recognition, B. Schäfer, M. Keuper, H. Stuckenschmidt, International Journal on Document Analysis and Recognition (IJDAR) 24(1), 3–17, Springer Berlin Heidelberg 2021.
  • Shape your Space: A Gaussian Mixture Regularization Approach to Deterministic Autoencoders, A. Saseendran, K. Skubch, S. Falkner, M. Keuper, Advances in Neural Information Processing Systems (NeurIPS), 2021.
  • Multi-Class Multi-Instance Count Conditioned Adversarial Image Generation, A. Saseendran, K. Skubsch, M. Keuper, International Conference on Computer Vision (ICCV), 2021.
  • Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis, Y. He, N. Yu, M. Keuper and M. Fritz, International Joint Conference on Artificial Intelligence (IJCAI), 2021.
  • Uncertainty in Minimum Cost Multicuts for Image and Motion Segmentation, A. Kardosst and M. Keuper, Uncertainty in Artificial Intelligence (UAI), 2021.
  • Spectral Distribution Aware Image Generation, S. Jung, M. Keuper, AAAI Conference on Artificial Intelligence 2021. Detecting AutoAttack in the frequency domain
  • P Lorenz, P. Harder, D. Straßel, M. Keuper, J. Keuper, ICML 2021 Workshop on Adversarial Machine Learning, 2021.
  • DARTS for Inverse Problem: A Study on Hyperparameter Sensitivity, J. Geiping, J. Lukasik, M. Keuper, M. Möller, NeurIPS 2021 workshop on Inverse Problems, 2021.
  • Internalized biases in Fréchet inception distances, S. Jung and M. Keuper, NeurIPS 2021 Workshop on Distribution Shifts, 2021.
  • Smooth Variational Graph Embeddings for Efficient Neural Architecture Search, J Lukasik, D Friede, A Zela, H Stuckenschmidt, F Hutter, M Keuper, International Joint Conference on Neural Networks (IJCNN), 2021.
  • SpectralDefence: Detecting Adversarial Attacks on CNNs in the Fourier Domain, P. Harder, F.J. Pfreundt, M. Keuper, J. Keuper, International Joint Conference on Neural Networks (IJCNN), 2021.
  • MSM:Multi-Stage Multicuts for Scalable Image Clustering, K. Ho, A. Chatzimichalilidis, M. Keuper, J. Keuper, International Conference on High Performance Computing, 267–287, 2021.

2020

  • Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering, M. Keuper, S. Tang, B. Andres, T. Brox and B. Schiele, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 42, no. 1, pp. 140–153, 1 Jan. 2020.
  • Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions, R. Durall, M. Keuper, F.J. Pfreundt, J. Keuper, Intl. Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
  • Self-supervised Sparse to Dense Motion Segmentation, A. Kardoost, K. Ho, P. Ochs, M. Keuper, ACCV 2020, 15th Asian Conference on Computer Vision, 2020.
  • A Two-Stage Minimum Cost Multicut Approach to Self-Supervised Multiple Person Tracking, K. Ho, A. Kardoost, F.-J. Pfreundt, J. Keuper, M. Keuper, ACCV 2020, 15th Asian Conference on Computer Vision, 2020.
  • Unsupervised Bootstrapping of Active Learning for Entity Resolution, A. Primpeli, C. Bizer and M. Keuper, European Semantic Web Conference (ESWC), 2020.
  • Object Segmentation Tracking from Generic Video Cues, A. Kardoost, S. Müller, J. Weickert and M. Keuper, ICPR 2020, 25th International Conference on Pattern Recognition, 2020.
  • Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches, K. Ho, J. Keuper, F.J. Pfreundt, M. Keuper, ICPR 2020, 25th International Conference on Pattern Recognition, 2020.
  • Neural Architecture Performance Prediction Using Graph Neural Networks, Jovita Lukasik, David Friede, Heiner Stuckenschmidt, M. Keuper, DAGM German Conference on Pattern Recognition (GCPR), 2020.
  • A Benders Decomposition Approach to Correlation Clustering, J. Lukasik, M. Keuper, M. Singh, J. Yarkony, SC20 workshop on Machine Learning in High Performance Computing Environments (MLHPC), 2020.

2018

  • Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation, E. Ilg, T. Saikia, M. Keuper, T. Brox, European Conference on Computer Vision (ECCV), 2018.
  • Solving Minimum Cost Lifted Multicut Problems by Node Agglomeration, A. Kardoost and M. Keuper, ACCV 2018, 14th Asian Conference on Computer Vision, 2018.
  • Learning Distributional Token Representations from Visual Features, S. Broscheit, R. Gemulla, M. Keuper, ACL 2018, Representation Learning for NLP : Proc. of the Third Workshop, Melbourne, Australia (187–194), Association for Computational Linguistics, 2018. 

2017

  • Higher-Order Minimum Cost Lifted Multicuts for Motion Segmentation, M. Keuper, International Conference on Computer Vision (ICCV), 2017.
  • Joint optical flow and uncertainty estimation, A. S. Wannenwetsch, M. Keuper, and S. Roth, International Conference on Computer Vision (ICCV), 2017.
  • STD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data Driven Pooling, Y. He, W.-C. Chiu, M. Keuper, M. Fritz , Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  • FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks, E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  • Learning Dilation Factors for Semantic Segmentation of Street Scenes, Y. He, M. Keuper, B. Schiele and M. Fritz , DAGM German Conference on Pattern Recognition (GCPR), 2017. 

2016

  • Point-wise mutual information-based video segmentation with high temporal consistency, M. Keuper and T. Brox, In Computer Vision – ECCV 2016 Workshops, LNCS, Springer: Cham., 2016.

2015

  • Motion Trajectory Segmentation via Minimum Cost Multicuts, M. Keuper, B. Andres, T. Brox, International Conference on Computer Vision (ICCV), 2015.
  • Efficient Decomposition of Image and Mesh Graphs by Lifted Multicuts, M. Keuper, E. Levinkov, N. Bonneel, G. Lavoue, T. Brox, B. Andres, International Conference on Computer Vision (ICCV), 2015. 

2014

  • Spectral graph reduction for efficient image and streaming video segmentation, F. Galasso, M. Keuper, T. Brox, B. Schiele, Conference on Computer Vision and Pattern Recognition (CVPR), 2014. (oral). 

2013

  • Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF), M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, T. Brox, Conference on Computer Vision and Pattern Recognition (CVPR), 2013.